Mostrar el registro sencillo del ítem

dc.contributor.advisorCobo Ángel, Martha Isabel
dc.contributor.authorPieruccini Ramírez, Diana Carolina
dc.date.accessioned2013-12-17T20:01:16Z
dc.date.available2013-12-17T20:01:16Z
dc.date.issued2013-12-17
dc.identifier.citationNi, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32, 3238-3247.
dc.identifier.citationHaryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy and Fuels, 19(5), 2098-2106.
dc.identifier.citationFrusteri, F., & Freni, S. (2007). Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell. Journal of Power Sources, 173(1), 200-209.
dc.identifier.citationSimson, A., Waterman, E., Farrauto, R., & Castaldi, M. (2009). Kinetic and process study for ethanol reforming using a Rh/Pt washcoated monolith catalyst. Applied Catalysis B: Environmental, 89(1-2), 58-64.
dc.identifier.citationKoh, A. C. W., Chen, L., Leong, W. K., Ang, T. P., Johnson, B. F. G., Khimyak, T., & Lin, J. (2009). Ethanol steam reforming over supported ruthenium and ruthenium-platinum catalysts: Comparison of organometallic clusters and inorganic salts as catalyst precursors. International Journal of Hydrogen Energy, 34(14), 5691-5703.
dc.identifier.citationForeign Investment in Latin America and the Caribbean 2007. ECLA, United Nations: Economic Commission for Latin America and the Caribbean.
dc.identifier.citationRenewable Energy Focus e-Mega Handbook. Escrito por Bent Sorensen (Sorensen),Paul Breeze,Galen J. Suppes,Nasir El Bassam,Dr. Semida Silveira,Shang-Tian Yang,Aldo V. da Rosa,Harsh K. Gupta,Sukanta Roy,Mukesh Doble,Michel Broussely,Preben Maegaard,Frano Barbir,Gianfranco Pistoia,Soteris Kalogirou,Truman Storvick. ELSEVIER 2009.
dc.identifier.citationPark, S. H., Cha, J., & Lee, C. S. (2010). Effects of bioethanol-blended diesel fuel on combustion and emission reduction characteristics in a direct injection diesel engine with exhaust gas recirculation (EGR). Energy and Fuels, 24(7), 3872-3883.
dc.identifier.citationEwan, B. C. R., & Allen, R. W. K. (2005). A figure of merit assessment of the routes to hydrogen. International Journal of Hydrogen Energy, 30(8), 809819.
dc.identifier.citationEwan, B. C. R., & Allen, R. W. K. (2005). A figure of merit assessment of the routes to hydrogen. International Journal of Hydrogen Energy, 30(8), 809819.
dc.identifier.citationXuan, J., Leung, M. K. H., Leung, D. Y. C., & Ni, M. (2009). A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1301-1313.
dc.identifier.citationChristensen, D. O., Silveston, P. L., Croiset, E., & Hudgins, R. R. (2004). Production of hydrogen from the noncatalytic partial oxidation of ethanol. Industrial and Engineering Chemistry Research, 43(11), 26362642.
dc.identifier.citationKothari, R., Buddhi, D., & Sawhney, R. L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews, 12(2), 553-563.
dc.identifier.citationLu, P., Chen, T., & Chern, J. (2011). Reaction network and kinetic analysis of ethanol steam reforming over a Ru/Al2O3 catalyst. Catalysis Today, 174(1), 17-24.
dc.identifier.citationYun, S., Lim, H., & Ted Oyama, S. (2012). Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin Pd and PdCu membranes for improved conversion and hydrogen yield. Journal of Membrane Science, 409-410, 222-231.
dc.identifier.citationde Lima, S. M., da Silva, A. M., da Costa, L. O. O., Assaf, J. M., Jacobs, G., Davis, B. H., Noronha, F. B. (2010). Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, 377(1-2), 181-190.
dc.identifier.citationBusca, G., Costantino, U., Montanari, T., Ramis, G., Resini, C., & Sisani, M. (2010). Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni-Co-Zn-Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 35(11), 5356-5366.
dc.identifier.citationCarrero, A., Calles, J. A., & Vizcaíno, A. J. (2007). Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation. Applied Catalysis A: General,327(1), 82-94
dc.identifier.citationBrown, L. F. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397.
dc.identifier.citationFatsikostas, A. N., & Verykios, X. E. (2004). Reaction network of steam reforming of ethanol over ni-based catalysts. Journal of Catalysis, 225(2), 439-452.
dc.identifier.citationBenito, M., Sanz, J. L., Isabel, R., Padilla, R., Arjona, R., & Daza, L. (2005). Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151(1-2), 11-17.
dc.identifier.citationCavallaro, S. (2000). Ethanol steam reforming on Rh/Al2O3 catalysts. Energy and Fuels, 14(6), 1195-1199.
dc.identifier.citationVaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117(1), 39-49.
dc.identifier.citationDeluga, G. A., Salge, J. R., Schmidt, L. D., & Verykios, X. E. (2004). Renewable hydrogen from ethanol by autothermal reforming. Science, 303(5660), 993-997.
dc.identifier.citationMas, V., Kipreos, R., Amadeo, N., & Laborde, M. (2006). Thermodynamic analysis of ethanol/water system with the stoichiometric method. International Journal of Hydrogen Energy, 31(1), 21-28.
dc.identifier.citationSun, S., Yan, W., Sun, P., & Chen, J. (2012). Thermodynamic analysis of ethanol reforming for hydrogen production. Energy, 44(1), 911-924.
dc.identifier.citationComas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1-2), 61-67.
dc.identifier.citationDe Ávila, C. N., Hori, C. E., & de Assis, A. J. (2011). Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions. Energy, 36(7), 4385-4395.
dc.identifier.citationGarcía, E. Y., & Laborde, M. A. (1991). Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis. International Journal of Hydrogen Energy, 16(5), 307-312.
dc.identifier.citationVasudeva, K., Mitra, N., Umasankar, P., & Dhingra, S. C. (1996). Steam reforming of ethanol for hydrogen production: Thermodynamic analysis. International Journal of Hydrogen Energy, 21(1), 13-18.
dc.identifier.citationWanat, E. C., Venkataraman, K., & Schmidt, L. D. (2004). Steam reforming and water-gas shift of ethanol on rh and rh-ce catalysts in a catalytic wall reactor. Applied Catalysis A: General, 276(1-2), 155-162.
dc.identifier.citationErdohelyi, A., Raskó, J., Kecskés, T., Tóth, M., Dömök, M., & Baán, K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 116(3), 367-376
dc.identifier.citationLiguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354.
dc.identifier.citationFrusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., & Cavallaro, S. (2004). H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 5(10), 611-615.
dc.identifier.citationMúnera, J. F., Cornaglia, L. M., Cesar, D. V., Schmal, M., & Lombardo, E. A. (2007). Kinetic studies of the dry reforming of methane over the Rh/La2O3- SiO2 catalyst. Industrial and Engineering Chemistry Research,46(23), 7543- 7549.
dc.identifier.citationDiagne, C., Idriss, H., Pearson, K., Gómez-García, M. A., & Kiennemann, A. (2004). Efficient hydrogen production by ethanol reforming over Rh catalysts. effect of addition of Zr on CeO2 for the oxidation of CO to CO2.Comptes Rendus Chimie, 7(6-7), 617-622.
dc.identifier.citationIdriss, H. (2004). Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platinum Metals Review, 48(3), 105-115.
dc.identifier.citationHoms, N., Llorca, J., & de la Piscina, P. R. (2006). Low-temperature steamreforming of ethanol over ZnO-supported ni and cu catalysts. The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts.Catalysis Today, 116(3), 361-366.
dc.identifier.citationSun, J., Qiu, X. -., Wu, F., & Zhu, W. -. (2005). H2 from steam reforming of ethanol at low temperature over Ni/Y2O3 and Ni/La2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy, 30(4), 437-445
dc.identifier.citationLiguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354
dc.identifier.citationYamazaki, T., Kikuchi, N., Katoh, M., Hirose, T., Saito, H., Yoshikawa, T., & Wada, M. (2010). Behavior of steam reforming reaction for bio-ethanol over Pt/ZrO2 catalysts. Applied Catalysis B: Environmental, 99(1-2), 81-88
dc.identifier.citationPalmeri, N., Cavallaro, S., Chiodo, V., Freni, S., Frusteri, F., & Bart, J. C. J. (2007). Hydrogen production from ethanol on Rh/MgO based catalysts. the influence of rhodium precursor on catalytic performance.International Journal of Hydrogen Energy, 32(15 SPEC. ISS.), 3335-3342
dc.identifier.citationSheng, P. Y., Chiu, W. W., Yee, A., Morrison, S. J., & Idriss, H. (2007). Hydrogen production from ethanol over bimetallic Rh-M/CeO2 (M = Pd or Pt). Catalysis Today, 129(3-4), 313-321.
dc.identifier.citationYee, A., Morrison, S. J., & Idriss, H. (2000). Reactions of ethanol over M/CeO2 catalysts. evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2. Catalysis Today, 63(2-4), 327-335.
dc.identifier.citationSimson, A., Farrauto, R., & Castaldi, M. (2011). Steam reforming of ethanol/gasoline mixtures: Deactivation, regeneration and stable performance. Applied Catalysis B: Environmental, 106(3-4), 295-303.
dc.identifier.citationKaila, R. K., Gutiérrez, A., Slioor, R., Kemell, M., Leskelä, M., & Krause, A. O. I. (2008). Zirconia-supported bimetallic RhPt catalysts: Characterization and testing in autothermal reforming of simulated gasoline. Applied Catalysis B: Environmental, 84(1-2), 223-232.
dc.identifier.citationBreen, J. P., Burch, R., & Coleman, H. M. (2002). Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental, 39(1), 65-74.
dc.identifier.citationBshish, A., Yaakob, Z., Narayanan, B., Ramakrishnan, R., & Ebshish, A. (2011). Steam-reforming of ethanol for hydrogen production. Chemical Papers, 65(3), 251-266.
dc.identifier.citationMúnera, J. F., Carrara, C., Cornaglia, L. M., & Lombardo, E. A. (2010). Combined oxidation and reforming of methane to produce pure H2 in a membrane reactor. Chemical Engineering Journal, 161(1-2), 204-211.
dc.identifier.citationLaborde M.A., González F.R. La energía del hidrógeno. Ciencia y tecnología para el desarrollo CYTED, 2010. 42-43
dc.identifier.citationEcopetrol S.A., “Catalizadores estables y rentables,” Innova, vol. 8, Jul. 2012.
dc.identifier.citationAraque, M., Vargas, J. C., Zimmermann, Y., & Roger, A. -. (2011). Study of a CeZrCoRh mixed oxide for hydrogen production by ethanol steam reforming. International Journal of Hydrogen Energy, 36(2), 1491-1502.
dc.identifier.citationPereira, E. B., Ramírez de la Piscina, P., & Homs, N. (2011). Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts. Bioresource Technology,102(3), 3419-3423.
dc.identifier.citationPerego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52(2-3), 133-145
dc.identifier.citationElsass, F. (2006). Chapter 12.8 transmission electron microscopy
dc.identifier.citationCobo, M., Quintero, A., & Correa, C. M. d. (2008). Liquid phase dioxin hydrodechlorination over Pd/γ-Al2O3. Catalysis Today, 133-135(1-4), 509- 519.
dc.identifier.citationVenezia, A. M., Liotta, L. F., Pantaleo, G., La Parola, V., Deganello, G., Beck, A., Guczi, L. (2003). Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Applied Catalysis A: General, 251(2), 359-368.
dc.identifier.citationHeidebrecht, P., Galvita, V., & Sundmacher, K. (2008). An alternative method for parameter identification from temperature programmed reduction (TPR) data. Chemical Engineering Science, 63(19), 4776-4788
dc.identifier.citationT, K. (2003). Kinetic analysis of temperaure programed reaction . Chemical publications series, 1-78.
dc.identifier.urihttp://hdl.handle.net/10818/9492
dc.description135 páginas
dc.description.abstractEn esta tesis se llevó a cabo el estudio de la actividad catalítica del catalizador RhPt/La2O3 en la reacción de reformado con vapor de etanol (RVE) para la producción de H2. El catalizador se preparó por el método de impregnación húmeda incipiente con cargas de metales Rh y Pt de 6% y 2% respectivamente. El estudio se realizó con el fin de contribuir al desarrollo de un catalizador activo para su posible aplicación en sistemas catalíticos que puedan ser insertados a bordo de vehículos eléctricos y así producir y consumir H2 mediante una serie de etapas catalíticas integradas. Para tal efecto el catalizador fue sometido a una serie de experimentos que permitieron evaluar el impacto de diferentes variables operación sobre la distribución de productos. En este sentido, los resultados experimentales y termodinámicos mostraron un comportamiento similar al incrementar la fracción mol de agua en el alimento, favoreciendo el rendimiento a H2 y disminuyendo la producción de CO y CH4, gracias al aumento en la velocidad de las reacciones de reformado con vapor de etanol (RVE) y de desplazamiento del gas de agua (RDGA). Por otro lado, el incremento de la temperatura favoreció la producción de CO e H2 y disminuyó la producción de CO2 lo cual indica que el aumento en la producción de H2 está relacionado con la alta favorabilidad del RVE a mayor temperatura, mientras que el aumento de CO y la disminución de CO2 muestran la desfavorabilidad de la RDGA con la temperatura.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectCatalizadores metálicos
dc.subjectHidrógeno
dc.subjectHidrógeno como combustible -- Catalizadores
dc.titleProducción de hidrógeno por reformado de etanol usando el catalizador bimetálico Rh-Pt/La2O3es_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.localTE06263
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem