Mostrar el registro sencillo del ítem

dc.contributor.advisorCueto Vigil, María Clementina
dc.contributor.advisorDíaz Barrera, Luis Eduardo
dc.contributor.authorAragón Rojas, Stephania
dc.date.accessioned2013-09-30T13:05:53Z
dc.date.available2013-09-30T13:05:53Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationAcuña, Y. (2009). Selección e identificación bacterias ácido lácticas (BAL) con potencial probiótico aisladas del suero costeño., Universidad de La Sabana.
dc.identifier.citationAnderson, J. W., & Gilliland, S. E. (1999). Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr, 18(1), 43-50.
dc.identifier.citationAndrade, S., & Borges, N. (2009). Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J Dairy Res, 76(4), 469-474.
dc.identifier.citationAries, V., & Hill, M. J. (1970). Degradation of steroids by intestinal bacteria I. Deconjugation of bile salts. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 202(3), 526-534.
dc.identifier.citationBao, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y., et al. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21(5), 695-701.
dc.identifier.citationBateup, J. M., McConnell, M. A., Jenkinson, H. F., & Tannock, G. W. (1995). Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host. Appl. Environ. Microbiol. 61: 1147-1149
dc.identifier.citationBaratto, C., Gelinski, J., Debastiani, J., & Dalbó, M. (2012). Molecular and phenotypic characterization of Lactobacillus curvatus isolated from handmade Brazilian salami. African Journal of Biotechnology. 11:11724-11731
dc.identifier.citationBegley, M., Sleator, R. D., Gahan, C. G. M., & Hill, C. (2005). Contribution of three bile associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infection and immunity, 73(2), 894.
dc.identifier.citationBegley, M., Hill, C., & Gahan, C. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and environmental microbiology, 72(3), 1729.
dc.identifier.citationBelviso, S., Giordano, M., Dolci, P., & Zeppa, G. (2009). In vitro cholesterol-lowering activity of Lactobacillus plantarum and Lactobacillus paracasei strains isolated from the Italian Castelmagno PDO cheese. Dairy Sci. Technol, 89, 7.
dc.identifier.citationBresson, J.-L., Flynn, A., Heinonen, M., Hulshof, K., Korhonen, H., Lagiou, P., et al. (2008). Scientific substantiation of a health claim related to LACTORAL (acombination of three probiotic strains: Lactobacillus plantarum,Lactobacillus rhamnosus, Bifidobacterium longum) and living probioticbacteria, pursuant to Article 14 of Regulation (EC) No 1924/2006, The EFSA Journal, 862:. 1-8
dc.identifier.citationCao, R., Cronk, Z. X., Zha, W., Sun, L., Wang, X., Fang, Y., et al. (2010). Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein coupled receptors and the AKT pathway. J Lipid Res, 51(8), 2234-2244.
dc.identifier.citationCardona, M. E., Vanay, V. d. V., Midtvedt, T., & Norin, E. (2000). Probiotics in gnotobiotic mice. Microbial Ecology in Health and Disease. 12: 219 –224)
dc.identifier.citationCardona, M. E., Vanay, V. d. V., Midtvedt, T., & Norin, E. (2000). Probiotics in gnotobiotic mice. Microbial Ecology in Health and Disease. 12: 219 –224)
dc.identifier.citationChristiaens, H., Leer, R. J., Pouwels, P. H., & Verstraete, W. (1992 ). Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792-3798
dc.identifier.citationChul-Cyu, H., Cho, J.-K., Chai, Y.-G., Ha, Y.-A., & Shin (2006). Purification and Characterization of Bile Salt Hydrolase from Lactobacillusplantarum CK 102. J. Microbiol. Biotechnol. 16:1047–1052
dc.identifier.citationCorzo, G., & Gilliland, S. (1999a). Bile Salt Hydrolase Activity of Three Strains of Lactobacillus acidophilus1. Journal of dairy Science, 82(3), 472-480
dc.identifier.citationCorzo, G., & Gilliland, S. (1999b). Measurement of Bile Salt Hydrolase Activity from Lactobacillus acidophilus Based on Disappearance of Conjugated Bile Salts1. Journal of dairy science, 82(3), 466-471.
dc.identifier.citationCueto, C., García, D., Garcés, F., & Cruz, J. (2007). Preliminary studies on the microbiological characterization of lactic acid bacteria in suero costeño, a Colombian traditional fermented milk product. Rev Latinoam Microbiol, 49: 12-18.
dc.identifier.citationDambekodi, P., & Gilliland, S. (1998). Incorporation of Cholesterol into the Cellular Membrane of Bifidobacterium longum1. Journal of dairy science, 81(7), 1818-1824.
dc.identifier.citationDarukaradhya, J., Phillips, M., & Kailasapathy, K. (2006). Selective enumeration of Lactobacillus acidophilus, Bifidobacteriumspp., starter lactic acid bacteria and non-starter lactic acid bacteriafrom Cheddar cheese. International Dairy Journal, 16: 439–445
dc.identifier.citationDashkevicz, M. P., & Feighner, S. D. (1989). Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol,55:11-16
dc.identifier.citationDave, R. I., & Shah, N. P. (1996). Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. J Dairy Sci, 79(9), 1529-1536.
dc.identifier.citationDu Toit, M., Franz, C., Dicks, L., Schillinger, U., Haberer, P., Warlies, B., et al. (1998). Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. International Journal of Food Microbiology, 40(1-2), 93-104.
dc.identifier.citationDuary, R. K., Batish, V. K., & Grover, S. (2012). Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep, 39(3), 2541-2552.
dc.identifier.citationDussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., et al. (2002). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol, 45(4), 1095-1106.
dc.identifier.citationElkins, C. A., Moser, S. A., & Savage, D. C. (2001). Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology, 147(12), 3403.
dc.identifier.citationElkins, C. A., & Savage, D. C. (1998). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. Journal of bacteriology, 180(17), 4344.
dc.identifier.citationElkins, C. A., & Savage, D. C. (1998). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. Journal of bacteriology, 180(17), 4344.
dc.identifier.citationFang, F., Li, Y., Bumann, M., Raftis, E. J., Casey, P. G., Cooney, J. C., et al. (2009). Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. Journal of bacteriology, 191(18), 5743.
dc.identifier.citationFazeli, H., & Moshtaghian, J. M., Maryam Shirzadi,Mohamad. (2010). Reduction in serum lipid parameters by incorporation of a nativestrain of Lactobacillus Plantarum A7 in Mice Iranian. Journal of Diabetes and Lipid Disorders, 9:1-7
dc.identifier.citationFood and Agriculture Organization of the United Nations, F. (2002). Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, pp. 1-11
dc.identifier.citationFukushima, M., Yamada, A., Endo, T., & Nakano, M. (1999). Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched. Diet. Nutrition, 15(5), 373- 378.
dc.identifier.citationGokavi, S., Zhang, L., Huang, M. K., Zhao, X., & Guo, M. (2005). Oat-based Symbiotic Beverage Fermented by Lactobacillus plantarum, Lactobacillus paracasei ssp. casei, and Lactobacillus acidophilus. Journal of food science, 70(4), M216-M223.
dc.identifier.citationGregory, R., Stephan, F., Ali, M., Wichai, A., Toshihiko, H., & S, L. S. (2011). High total serum cholesterol, medication coverage and therapeutic control: an analysis of national health examination survey data from eight countries Bull World Health Organ, 89, 92–101. doi:10.2471/BLT.10.079947
dc.identifier.citationGulgez Gokce, Y., Mehmet, O., & Aslım, B. (2011). Identification of Lactobacillus strains from breast-fed infantand investigation of their cholesterol-reducing effects. World J Microbiol Biotechnol, 27: 2397–2406
dc.identifier.citationGuo, X. H., Kim, J. M., Nam, H. M., & Park, S. Y. (2010). Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe, 16(4), 321-326.
dc.identifier.citationHamelin, K., Bruant, G., El-Shaarawi, A., Hill, S., Edge, T. A., Fairbrother, J., et al. (2007). Occurrence of Virulence and Antimicrobial Resistance Genes in Escherichia coli Isolates from Different Aquatic Ecosystems within the St. Clair River and Detroit River Areas Applied And Environmental Microbiology (Vol. 73, pp. 477–484).
dc.identifier.citationHerrema, H., Meissner, M., van Dijk, T. H., Brufau, G., Boverhof, R., Oosterveer, M. H., et al. (2010). Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology, 51(3), 806-816.
dc.identifier.citationHong, K. S., Kang, H. W., Im, J. P., Ji, G. E., Kim, S. G., Jung, H. C., et al. (2009). Effect of probiotics on symptoms in korean adults with irritable bowel syndrome. Gut Liver, 3(2), 101-107.
dc.identifier.citationHoveyda, N., Heneghan, C., Mahtani, K. R., Perera, R., Roberts, N., & Glasziou, P. (2009). A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC Gastroenterol, 9, 15.
dc.identifier.citationHuang, Y., & Zheng, Y. (2010). The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C 1-like 1 in Caco-2 cells. British Journal of Nutrition, 103(4), 473-478.
dc.identifier.citationHuijghebaert, S. M., Mertens, J., & Eyssen, H. J. (1982). Isolation of a bile salt sulfataseproducing Clostridium strain from rat intestinal microflora. Applied and Environmental Microbiology, 43(1), 185.
dc.identifier.citationIsolauri, E., Rautava, S., Kalliomäki, M., Kirjavainen, P., & Salminen, S. (2002). Role of probiotics in food hypersensitivity. Curr Opin Allergy Clin Immunol, 2(3), 263-271.
dc.identifier.citationJamaly, N., Benjouad, A., & Bouksaim, M. (2011). Probiotic Potential of Lactobacillus strains Isolated from Known Popular Traditional Moroccan Dairy Products. British Microbiology Research Journal, 1: 79-94
dc.identifier.citationJeun, J., Kim, S., Cho, S. Y., Jun, H. J., Park, H. J., Seo, J. G., et al. (2010). Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition, 26(3), 321-330.
dc.identifier.citationJiang, J. K., Hang, X. M., Zhang, M., Liu, X. L., Li, D. T., & Yang, H. (2010). Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Annals of Microbiology, 60(1), 81-88.
dc.identifier.citationJones, B. V., Begley, M., Hill, C., Gahan, C. G. M., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences, 105(36), 13580.
dc.identifier.citationJones, M. L., Chen, H., Ouyang, W., Metz, T., & Prakash, S. (2004). Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. Journal of Biomedicine and Biotechnology, 2004, 61-69.
dc.identifier.citationKailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol, 78(1), 80-88
dc.identifier.citationKaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., & Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One, 4(12), e8099
dc.identifier.citationKiessling, G., Schneider, J., & Jahreis, G. (2002). Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr, 56(9), 843-849.
dc.identifier.citationKimoto, H., Ohmomo, S., & Okamoto, T. (2002). Cholesterol removal from media by lactococci. Journal of dairy science, 85(12), 3182-3188.
dc.identifier.citationKofi, A. (2005). Objetivos De Desarrollo Del Milenio: Una Mirada Desde América Latina Y El Caribe. Santiago de Chile: Naciones Unidas, pp. 1-357
dc.identifier.citationKoskenniemi, K., Laakso, K., Koponen, J., Kankainen, M., Greco, D., Auvinen, P., et al. (2011). Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics, 10(2), M110.002741.
dc.identifier.citationKumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., et al. (2012). Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res, 2012, 902917.
dc.identifier.citationKumar, R., Grover, S., & Batish, V. (2011). Hypocholesterolaemic effect of dietary inclusion of two putativeprobiotic bile salt hydrolase-producing Lactobacillus plantarumstrains in Sprague–Dawley rats. British Journal of Nutrition (pp. 561–573)
dc.identifier.citationKumar, R., Grover, S., Mohanty, A. K., & Batish, V. K. (2010). Molecular Cloning and Sequence Analysis of Bile Salt Hydrolase Gene (bsh) from Lactobacillus plantarumMBUL90 Strain of Human Origin. Food Biotechnolog, 24: 215–226
dc.identifier.citationKumar, R. S., Brannigan, J. A., Prabhune, A. A., Pundle, A. V., Dodson, G. G., Dodson, E. J., et al. (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. Journal of Biological Chemistry, 281(43), 32516.
dc.identifier.citationKurdi, P., Van Veen, H. W., Tanaka, H., Mierau, I., Konings, W. N., Tannock, G. W., et al. (2000). Cholic acid is accumulated spontaneously, driven by membrane delta pH, in many lactobacilli. Journal of Bacteriology, 182(22), 6525.
dc.identifier.citationLambert, J. M., Bongers, R. S., De Vos, W. M., & Kleerebezem, M. (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Applied and environmental microbiology, 74(15), 4719.
dc.identifier.citationLambert, J. M., Bongers, R. S., & Kleerebezem, M. (2007). Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Applied and environmental microbiology, 73(4), 1126.
dc.identifier.citationLin, W. H., Hwang, C. F., Chen, L. W., & Tsen, H. Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol, 23(1), 74-81.
dc.identifier.citationLiong, M. T., Dunshea, F. R., & Shah, N. P. (2007). Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets. Br J Nutr, 98(4), 736-744.
dc.identifier.citationLiong, M. T., & Shah, N. P. (2005). Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. International Dairy Journal, 15(4), 391-398.
dc.identifier.citationLiu, C., Zhang, Z. Y., Dong, K., Yuan, J. P., & Guo, X. K. (2009). Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. Biomed Environ Sci, 22(5), 401-412
dc.identifier.citationLourenço, R., & Camilo, M. E. (2002). Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp, 17(6), 262-270.
dc.identifier.citationLundeen, S. G., & Savage, D. C. (1990). Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. Journal of bacteriology, 172(8), 4171.
dc.identifier.citationLundeent, S. G., & Savage, D. C. (1992). Multiple Forms of Bile Salt Hydrolase from Lactobacillus sp. Strain 100-100. Journal of Bacreriology, 174.
dc.identifier.citationLye, H. S., Rahmat-Ali, G. R., & Liong, M. T. (2010). Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal, 20(3), 169-175.
dc.identifier.citationLye, H. S., Rusul, G., & Liong, M. T. (2010). Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. [Article]. Journal of Dairy Science, 93(4), 1383-1392.
dc.identifier.citationMacfarlane, S., & Dillon, J. F. (2007). Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol, 102(5), 1187-1196.
dc.identifier.citationMarroki, A., Zúñiga, M., Kihal, M., & Martínez, G. (2011). Characterization of lactobacillus from algerian goat’s milk based on phenotypic, 16srdna sequencing and their technological properties. Brazilian Journal of Microbiology, 42: 112-116.
dc.identifier.citationMartoni, C., Bhathena, J., Jones, M. L., Urbanska, A. M., Chen, H., & Prakash, S. (2007). Investigation of microencapsulated BSH active lactobacillus in the simulated human GI tract. J Biomed Biotechnol, 2007(7), 13684.
dc.identifier.citationMartoni, C., Bhathena, J., Urbanska, A. M., & Prakash, S. (2008). Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract. Appl Microbiol Biotechnol, 81(2), 225-233.
dc.identifier.citationMasuda, N., & Oda, H. (1983). 7 alpha-Dehydroxylation of bile acids by resting cells of an unidentified, gram-positive, nonsporeforming anaerobic bacterium. Appl Environ Microbiol, 45:456–462
dc.identifier.citationMcAuliffe, O., Cano, R. J., & Klaenhammer, T. R. (2005). Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Applied and environmental microbiology, 71(8), 4925.
dc.identifier.citationMoreira, J. L., Mota, R. M., Horta, M. F., Teixeira, S. M., Neumann, E., Nicoli, J. R., et al. (2005). Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling. BMC Microbiol, 5, 15.
dc.identifier.citationMoser, S. A., & Savage, D. C. (2001). Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol, 67(8), 3476-3480.
dc.identifier.citationNguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International. Journal of Food Microbiology, 113(3), 358-361.
dc.identifier.citationNoh, D., Kim, S., & Gilliland, S. (1997). Incorporation of Cholesterol into the Cellular Membrane of Lactobacillus acidophilus ATCC 431211. Journal of dairy science, 80(12), 3107-3113.
dc.identifier.citationOh, H.-K., Ji Yoon, L., Soo, J. L., Min, J. K., Geun-Bae, K., Jung, H. K., et al. (2008). Molecular Cloning and Characterization of a Bile Salt Hydrolase fromLactobacillus acidophilus PF01. J. Microbiol. Biotechnol, 18: 449–456
dc.identifier.citationOinonen, C., & Rouvinen, J. (2000). Structural comparison of Ntn-hydrolases. Protein Science, 9(12), 2329-2337.
dc.identifier.citationOoi, L. G., Ahmad, R., Yuen, K. H., & Liong, M. T. (2010). Lactobacillus acidophilus CHO220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. Journal of dairy science, 93(11), 5048-5058.
dc.identifier.citationOrtua, S., Felisa, G. E., Marzottob, M., Deriua, A., Molicottia, P., Sechia, L. A., et al. (2007). Identification and functional characterization of Lactobacillusstrains isolated from milk and Gioddu, a traditional Sardinian fermented milk. International Dairy Journal, 17: 1312–1320
dc.identifier.citationPant, N., Marcotte, H., Brüssow, H., Svensson, L., & Hammarström, L. (2007). Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol, 7, 86.
dc.identifier.citationPatel, A. K., Singhania, R. R., Pandey, A., & Chincholkar, S. B. (2010). Probiotic bile salt hydrolase: current developments and perspectives. Applied biochemistry and biotechnology, 162(1), 166-180.
dc.identifier.citationPereira, D. I. A., McCartney, A. L., & Gibson, G. R. (2003). An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Applied and environmental microbiology, 69(8), 4743.
dc.identifier.citationPfeiler, E. A., Azcarate-Peril, M. A., & Klaenhammer, T. R. (2007). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol, 189(13), 4624-4634.
dc.identifier.citationRamasamy, K., Abdullah, N., Wong, M. C. V. L., Karuthan, C., & Ho, Y. W. (2010). Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens. Journal of the Science of Food and Agriculture, 90(1), 65-69.
dc.identifier.citationReid, G., Cuperus, P. L., Bruce, A. W., van der Mei, H. C., Tomeczek, L., Khoury, A. H., et al. (1992). Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacilli: effect of serial culture passages. Appl Environ Microbiol, 58(5), 1549-1553
dc.identifier.citationRidlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of lipid research, 47(2), 241.
dc.identifier.citationRoth, G. F., StephanMokdad , Ali Aekplakorn, Wichai Hasegawa, Toshihiko Lim, Stephen. (2010). High total serum cholesterol, medication coverage and therapeutic control: an analysis of national health examination survey data from eight countries. Bulletin of the World Health Organization, 89, 9.
dc.identifier.citationSalarmoini, M., & Fooladi, M. H. (2011). Efficacy of Lactobacillus acidophilus as Probiotic to Improve Broiler Chicks Performance.J. Agr. Sci. Tech,13: 87-92.
dc.identifier.citationSchaafsma, G., Meuling, W. J., van Dokkum, W., & Bouley, C. (1998). Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur J Clin Nutr, 52(6), 436-440.
dc.identifier.citationShao, A., & Hathcock, J. N. (2008). Risk assessment for the amino acids taurine, Lglutamine and L-arginine. Regul Toxicol Pharmacol, 50(3), 376-399.
dc.identifier.citationShih-Wen, S., Yi-Cheng, L., & Yih-Ming, W. (2006). Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis, 19: 112– 117.
dc.identifier.citationSmet, I., Van Hoorde, L., Saeyer, N. D., Vande Woestyne, M., & Verstraete, W. (1994). In vitro Study of Bile Salt Hydrolase (BSH) Activity of BSH IsogenicLactobacillus plantarum 80 Strains and Estimation of Cholesterol Lowering through Enhanced BSH Activity, Microbial Ecology in Health & Disease. Journal of Food Composition and Analysis, 7: 315-329
dc.identifier.citationSridevi, N., Vishwe, P., & Prabhune, A. (2009). Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Research International, 42(4), 516-520
dc.identifier.citationTanaka, H., Doesburg, K., Iwasaki, T., & Mierau, I. (1999). Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity. Journal of Dairy Science, 82(12), 2530-2535.
dc.identifier.citationTanaka, H., Hashiba, H., Kok, J., & Mierau, I. (2000). Bile salt hydrolase of Bifidobacterium longum---biochemical and genetic characterization. Applied and environmental microbiology, 66(6), 2502.
dc.identifier.citationTannock, G., Tangerman, A., Schaik, A. V., & McConnell, M. (1994). Deconjugation of bile acids by lactobacilli in the mouse small bowel. Source Appl Environ Microbiol, (Vol. 60, pp. 3419-3420).
dc.identifier.citationTannock, G. W., Dashkevicz, M. P., & Feighner, S. D. (1989). Lactobacilli and bile salt hydrolase in the murine intestinal tract. Applied and environmental microbiology, 55(7), 1848
dc.identifier.citationTaranto, M. P., Sesma, F., & Valdez, G. F. d. (1999). Localization and primary characterization of bile salt hydrolase from Lactobacillus reuteri. Biotechnology Letters, 21, pp. 935-938
dc.identifier.citationTaranto, M. P., Fernandez Murga, M. L., Lorca, G., & de Valdez, G. F. (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J Appl Microbiol, 95(1), 86-91
dc.identifier.citationThornton, G., O'Sullivan, M., O'Sullivan, G., Weerkamp, A., Shanahan, F., & Collins, J. ( 1995). Bile tolerance and bile salt hydrolase activity of lactobacilli and bifidobacteria isolated from the human intestine. Gastroenterology. A928
dc.identifier.citationVizoso Pinto, M. G., Franz, C. M. A. P., Schillinger, U., & Holzapfel, W. H. (2006). Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. International journal of food microbiology, 109(3), 205-214
dc.identifier.citationWang, C. Y., Wu, S. C., Ng, C. C., & Shyu, Y. T. (2010). Effect of Lactobacillus-fermented adlay-based milk on lipid metabolism of hamsters fed cholesterol-enriched diet. Food Research International, 43(3), 819-824.
dc.identifier.citationWang, Y. M., Zhang, B., Xue, Y., Li, Z. J., Wang, J. F., Xue, C. H., et al. (2010). The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids Health Dis, 9, 4.
dc.identifier.citationWoo, P. C., Fung, A. M., Lau, S. K., & Yuen, K. Y. (2002). Identification by 16S rRNA gene sequencing of Lactobacillus salivarius bacteremic cholecystitis. J Clin Microbiol, 40(1), 265-267.
dc.identifier.citationWoo, P. C., Ng, K. H., Lau, S. K., Yip, K. T., Fung, A. M., Leung, K. W., et al. (2003). Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol, 41(5), 1996-2001.
dc.identifier.citationXie, N., Cui, Y., Yin, Y. N., Zhao, X., Yang, J. W., Wang, Z. G., et al. (2011). Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a highcholesterol diet. BMC Complement Altern Med, 11, 53.
dc.identifier.citationYin, S., Zhai, Z., Wang, G., An, H., Luo, Y., & Hao, Y. (2011). A novel vector for lactic acid bacteria that uses a bile salt hydrolase gene as a potential food-grade selection marker. J Biotechnol, 152(1-2), 49-53.
dc.identifier.citationYoung, T. A., Geun, B. K., Kwang, S. L., Young, J. B., & Hyun, U. K. (2003). Deconjugation of bile salts by Lactobacillus acidophilus isolates. International Dairy Journal, 13: 303–311
dc.identifier.citationZago, M., Fornasari, M. E., Carminati, D., Burns, P., Suàrez, V., Vinderola, G., et al. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol, 28(5), 1033-1040
dc.identifier.citationZeng, X. Q., Pan, D. D., & Zhou, P. D. (2011). Functional Characteristics of Lactobacillusfermentum F1. Current microbiology, 62(1), 27-31.
dc.identifier.urihttp://hdl.handle.net/10818/8321
dc.description109 páginas
dc.description.abstractLa hipercolesterolemia es un factor de riesgo para desarrollar enfermedades cardiovasculares. Se evaluó in vitro la capacidad de disminuir el colesterol por la actividad de la enzima hidrolasa de sales biliares (BSH), adsorber el colesterol y la actividad de BSH en cinco cepas L. fermentum. BSH fue determinada por la cantidad de glicina o taurina liberadas, indicando que las cepas evaluadas hidrolizaban las sales conjugadas con taurina y glicina. Por otro lado, se determinó que el gen bsh en cepas L. fermentum se expresa a la segunda hora de crecimiento bacteriano y la actividad de la enzima BSH, medida por HPLC, inicia en el mismo momento. La cepa L. fermentum K73 fue la que presentó mayor potencial hipocolesterolémico.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectColesteroles_CO
dc.subjectPrebióticoses_CO
dc.subjectAnticolesterémicoses_CO
dc.subjectHipolipemianteses_CO
dc.subjectHidrolasases_CO
dc.subjectÁcidos y sales biliareses_CO
dc.titleEvaluación bioquímica y molecular de la capacidad hipocolesterolémica de bacterias ácido lácticas con potencial probióticoes_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local254600
dc.identifier.localTE05910
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem