Mostrar el registro sencillo del ítem

dc.contributor.advisorDíaz Barrera, Luis Eduardo
dc.contributor.advisorJaramillo Lanchero, Rubén Darío
dc.contributor.authorPerna Manrique, Olga
dc.date.accessioned2013-09-24T19:33:03Z
dc.date.available2013-09-24T19:33:03Z
dc.date.created2013 páginas
dc.date.issued2013-09-24
dc.identifier.citationKrystynowicz, A. & Bielecki, S. Biosynthesis of bacterial cellulose andits potential application in the different industries. PolishBiotechnology News consultado en. www.biotechnology-pl.com/science/krystynowicz.html
dc.identifier.citationWilliams, S. & Cannon, R. (1989). Alternative environmental roles for celluloseproduced by Acetobacter xylinum. Appl. Environ. Microbiol. 55,2448-2452
dc.identifier.citationHans, N. & Robyt, J. (1998).The mechanism of Acetobacter xylinum cellulosebiosynthesis: direction of chain elongation and the role of lipidpyrophosphate intermediates in the cell membrane. Carbohydr.Res. 313, 125-133
dc.identifier.citationVerschuren P.G., Cardona T.D., Robert Nout MJ., De Gooijer K.D and Van den Heuvel J.e. (2000).Location and limitation of cellulose production by Ace/obauer :()'/in!l111 established from oxygen profiles. J. Biosci. Bioeng. 89(5): 414419.
dc.identifier.citationBrown, A.J. (1886). XLIII.-On an acetic ferment which forms cellulose. Rev.Journal of the Chemical Society, Transactions, Vol.49, 432-439.
dc.identifier.citationHestrin, S. and Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum: preparation of freeze dried cells capable of polymerizing glucose to cellulose, Biochem. J., 58, 345
dc.identifier.citationDudman, W. (1959). Cellulose production by Acetobacter Acetigenum in defined medium. J. gen. Rev. Microbiol. Vol. 21, 327.
dc.identifier.citationEmbuscado, M., Marks, J., Bemiller, J. 1994. Bacterial Cellulose. Rev. Food Hydrocolloid, Vol. 8, 407-418.
dc.identifier.citationOikawa, T., Ohtori, T. y Ameyama, M. (1995) Production of cellulose from D.mannitol by Acetobacter xylinum KU-1. Bioscience, Biotechnology, Biochemistry. vol. 59(2), pág. 331 332.
dc.identifier.citationBudhiono, A., Rosidi, B., Taher, H., & Iguchi, M..(1999). Kinetic aspect of bacterial cellulose formation in nata-decoco culture system. Carbohydrate Polymers, 40,137–143.
dc.identifier.citationRamana KV, Tomar A, Singh L.( 2000).Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. J Microbiol Biotechnol; 16:245-248.
dc.identifier.citationIshihara, M., Matsunaga, M., y col.(2002). Utilization of D- xylose as carbon source for production of bacterial cellulose. Enzyme and Microbial Technology. vol. 31, pág. 986-991.
dc.identifier.citationBae, S. y Shoda, M . (2004) .Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. Vol 20(5), pág1366-71.
dc.identifier.citationBae, S. y Shoda, M.( 2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied Microbial Biotechnology vol. 67, pág. 45-51
dc.identifier.citationS. Keshk, K. Sameshima, (2006). Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture, Enzyme Microb. Technol. 40 4–8. A19
dc.identifier.citationPremjet, S. Premjet, D. y ,Ohtani, Y. (2007). The Effect of Ingredients of Sugar Cane Molasses on Bacterial Cellulose Production by Acetobacter xylinum ATCC 10245. Sen'i Gakkaishi, 63.193-199.
dc.identifier.citationSurma, B., Presler, S., Danielewicz., D. (2008). Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Rev. Fibres Text. Eastern Eur. Vol. 16: 108-111.
dc.identifier.citationKurosumi, A., Sasaki, C., y col.( 2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers. vol. 76, pág. 333-335
dc.identifier.citationMikkelsen, D., Flanagan, B., Dykes, G. and Gidley, M.( 2009). Influence of different carbon sources on bacterial cellulose production y Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107: 576–583. doi: 10.1111/j.13652672.2009.04226.
dc.identifier.citationZeng, X., Small, D.P., Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers. 85:506-513.
dc.identifier.citationJyh-Ming Wu, Ren-Han Liu (2012). Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. Journal of Bioscience and Bioengineering, Available online 23 October 2012.
dc.identifier.citationCampbell, P.N. Smith, A.D. y Peters, T.J.,. Bioquímica Ilustrada . Quinta Edición. Barcelona: Masson. (2006)
dc.identifier.citationCzaja W., Krystynowicz A., Bielecki S. and Brown J., R. Malcolm. (2006). "Microbial cellulose--the natural power to heal wounds". Biomaterials, Vol. 27, No. 2, pp. 145-151.
dc.identifier.citationArshad Chaudry (Agosto 2004). «Cell Culture» (en inglés). The Science Creative Quarterly. [Consultado el 12 de Diciembre de 2010].Disponible en http://www.scq.ubc.ca/cell-culture/
dc.identifier.citationAkerholm, M., Hinterstoisser, B. y Salmén, L. (2004). Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research. vol. 339,pág. 569-578.
dc.identifier.citationWatanabe K., Tabuchi M., Morinaga Y. and Yoshinaga F. (1998) "Structural features and properties of bacterial cellulose produced in agitated culture". Cellulose, Vol. 5, No. 3, pp. 187-200
dc.identifier.citationJung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010). Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101: 3602-3608.
dc.identifier.citationRomling U.( 2002). Molecular biology of cellulose production in bacteria.Research in Microbiology 153: 205–212.
dc.identifier.citationSaxena, I. M., and R. M. Brown, Jr. (2007). A perspective on the assembly of cellulose-synthesizing complexes: possible role of KORRIGAN and microtubules in cellulose synthesis in plants. In: Brown, Jr., R. M. and Saxena, I. M. (eds) Cellulose: Molecular and Structural Biology, pp 169-181
dc.identifier.citationZhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489
dc.identifier.citationDelmer DP (1999). Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245-27613.Brown, Jr. R. M. (1994). Understanding nature's preference for cellulose I assembly: Toward a new biotechnology era for cellulose. Proc. Inter.Symp. Fiber Sci. and Tech. p437-239. Publishers. The Society of Fiber Science and Technology, Japan.
dc.identifier.citationDe Faveri D, Torre, P., Molinari F., Perego P., Converti A., (2003) ´Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hanseniiµ Enzyme and Microbial Technology 33 708-719
dc.identifier.citationHwang JW, Yang YK, Hwang JK et al (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188
dc.identifier.citationMéndez Ortiz, Micaela Marcela; Membrillo Hernández, Jorge. (2004). Mecanismos moleculares de la síntesis de celulosa en bacterias Tip Revista Especializada en Ciencias Químico-Biológicas, vol. 7, núm. 001, , pp. 26-34 Universidad Nacional Autónoma de México
dc.identifier.citationMatsuoka, M., Tsuchida, T., y col.( 1996). A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. Sucrofermentans. Bioscience, Biotechnology, Biochemistry vol. 60, pág. 575-579.
dc.identifier.citationPourramezan, G.Z., A.M. Roayaei and Q.R. Qezelbash.( 2009). Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2 Biotechnology, 8: 150-154
dc.identifier.citationBielecki, S., Krystynowicz, A., y col.(2002). Bacterial Cellulose. Biopolymers. vol. 5(3), pág. 40-85.
dc.identifier.citationJung, H., Jeong, J., y col.( 2010). Influence of glycerol on production and structuralphysical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource Technology. vol. 101(10), pág. 3602-3608.
dc.identifier.citationAriza, B. y Gonzalez, L.( 1997). Producción de Proteína Unicelular a partir de levaduras y melaza de caña de azúcar como sustrato. Tesis de pregrado Bacteriología. Pontificia Universidad Javeriana. Facultad de Ciencias.Departamento de Bacteriología. Bogotá. Colombia. 22-27p
dc.identifier.citationChao, Y., Miratai, M., y col.( 2001). Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50- L Airlift Reactor. Biotechnology Progress. vol. 17 pág. 781-785
dc.identifier.citationVillareal J.L .( 2002).Efecto de la Pulpa madura de la ahuyama(Cucurbita maxima duchesne) y de la cascara del banano comun (Musa sapientum L.) sobre la producción de celulosa por Acetobacter xylinum IFO. Tesis de pregrado Microbiología. Universidad Libre. Sede Barranquilla
dc.identifier.citationCzaja, W., Romanovicz, D. y Brown, R.( 2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. vol. 11, pág. 403-411.
dc.identifier.citationCastro, M.( 1993). Estudio de la melaza de caña como sustrato de la fermentación Acetobutílica. Tesis Pregrado Ingeniería Química. Universidad Nacional de Colombia. Facultad de Ingeniería. Bogotá, Colombia. 3-35p.
dc.identifier.citationTellez, D. (2004.)Caracterización de las melazas empleadas en el proceso fermentativo de la destilería San Martín- Industria de Licores del Valle. Universidad del Valle. Tesis pregrado Bacteriología. Facultad de salud. Escuela de Bacteriología y Laboratorio clínico. Santiago de Cali. Cali, Colombia. 79p.
dc.identifier.citationCzaja, N.; Krystynowics, A.; Kaweki, M.; Wysota, K.; Sakiez, S.; Wrobewsky, P.; Glik, J.; Nowak, M.y Bielicki, S.(2007). Biomedical applications of Microbial Cellulose in Burn Wound Recovery en Cellulose Molecular and Structural Biology (Brow, R. M. y Saxena, I. M.).
dc.identifier.citationKlemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. (2001). Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog. Polym. Sci. 26: 1561–1603
dc.identifier.citationBolívar A. H.J., Orozco S. C.J. (2006.) Efecto de diferentes concentraciones de extracto de pulpa de tomate sobre la producción de celulosa por Acetobacter xylinum. Tesis de Pre-Grado. Barranquilla, Colombia. Universidad Libre Barranquilla, Colombia. Facultad Ciencias de la Salud. Programa Microbiología Industrial.
dc.identifier.citationCarreño, L. (2011). Efecto de las condiciones de cultivo y purificación sobre las propiedades fisicoquímicas y de transporte en membranas de celulosa bacteriana. Tesis de Doctorado. Universidad Nacional de Colombia. Bogotá-Colombia.
dc.identifier.citationCaicedo, L., De Franca, F. Y Lopez, L. (2001). Factores para el escalado del proceso de producción de celulosa por fermentación estática. Revista Colombiana de Química. vol. 30(2), pág. 155-162.
dc.identifier.citationChawla, P., Bajaj, I., y col.(2009). Microbial Cellulose: Fermentative Production and Applications.Food Technology and Biotechnology. vol. 47(2), pág. 107-124.
dc.identifier.citationWatanabe, K. y Yamanaka, S.(1995). Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed Under Static Culture Conditions. Bioscience, Biotechnology and Biochemistry. vol. 59(1), pág. 65-68.
dc.identifier.citationHwang, Jung Wook, et al. (1999). Efects of pH and disolved oxygen on cellulose production by acetobacter xylinum BRC5 in agitated cultura. J. Biosci. Bioeng. 88, 183- 188
dc.identifier.citationAstley, O., Chanliaud, E., Y Col. (2003). Tensile deformation of bacterial cellulose composites. International Journal of Biological Macromolecules. vol. 32, pág. 28–35.
dc.identifier.citationCaicedo, L., De Franca, F., Y Col. (2003). Permeabilidad hidráulica e hinchamiento en membranas de celulosa bacteriana. Memorias, III Congreso Internacional de Biomateriales BIOMAT
dc.identifier.citationChavez, J., Martinez, S., Contreras, M., Escamilla, E.(2004). Celulosa bacteriana en Gluconacetobacter xilynum: Biosintesis y aplicaciones. Rev. Especializada en ciencias Quimico-Biologicas. Vol. 7, 18-25
dc.identifier.citationYang, Y., Park, S., Y Col. (1998). Cellulose Production by Acetobacter xylinum BRC5 under Agitated Condition. Journal of Fermentation and Bioengineering. Vol. 85(3), pág. 312-317.
dc.identifier.citationYamada, Y., Hoshino, K. and Ishikawa, T.( 1997). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of subgenus Gluconoacetobacter to the generic level. Biosci. Biotechnol. Biochem., 61, 1244-125
dc.identifier.citationJonas R, Farah LF. (1998). Production and application of microbial. cellulose. Poly. Deg. Stab. 59: 101-106.
dc.identifier.citationRoss P, Mayer R, Benziman M.( 1991). Cellulose biosynthesis and fuction in bacteria. Microbiol. Rev. 55: 35-58.
dc.identifier.citationMéndez Ortiz, Micaela Marcela; Membrillo Hernández, Jorge. (2004). Mecanismos moleculares de la síntesis de celulosa en bacterias Tip Revista Especializada en Ciencias Químico-Biológicas, vol. 7, núm. 001, pp. 26-34 Universidad Nacional Autónoma de México. México.
dc.identifier.citationDelmer DP.( 1999). Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245-276.
dc.identifier.citationLegnani, C., Vilani, C., y col. (2008.). Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films. vol. 517(3), pág. 1016-1020
dc.identifier.citationGómez-Manzo S, Arreguín-Espinosa R, Contreras-Zentella M, Escamilla-Marván E.( 2005). Las quinoproteínas alcohol deshidrogenasas en los sistemas bacterianos: distribución, clasificación, estructura y función TIP Rev Esp Cienc Quim Biol.
dc.identifier.citationMatsushita, K.; Takakai, Y.; Shinagawa, E.; Ameyama, M. y Adachi, O.( 1992). ´Ethanol oxidase respiratory chain of Acetic Acid Bacteriaµ Biosci. Biotech. Biochem. 56: 304 -310.
dc.identifier.citationBenziman, M. y Palgi, A. (1970)´Characterization and properties of the Pyruvate Phosphorilation system of Acetobacter xylinumµ Journal of Bacteriology. 104 (1): 211- 218..
dc.identifier.citationMatsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T., Sugisawa, T., Hoshino, T. & Adachi, O. (2003), 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol
dc.identifier.citationWolfe, A. J.( 2005). ´The Acetate Switchµ Microbiology and Molecular Biology Reviews. 69 (1): 12-50.
dc.identifier.citationChávez-Pacheco, J. L.; Martínez-Yee, S.; Contreras, M. L.; Gómez-Manzo, S.; Membrillo-Hernández, J., Escamilla, J. E (2005).´Partial bioenergetic characterization of Gluconoacetobacter xylinum cells released from cellulose pellicles by a novel methodologyµ Journal of Applied Microbiology. 99: 1130-1140 51.
dc.identifier.citationBailey, J., Ollis, D. T. (1997). ´Biochemical Engineering Fundamentals Mc Graw-Hill
dc.identifier.citationBlanch, H. W.; Clark, D. “Biochemical Engineering Marcel Dekker"
dc.identifier.citationYadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL.( 2010). Appl Environ Microbiol. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus 76(18):6257-65.
dc.identifier.citationMarzieh Moosavi-Nasab, Ali R. Yousef. (2010). Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup. World Academy of Science, Engineering and Technology vol 68 .
dc.identifier.citationSerafica, G., Mormino, R. Y Bungay, H.( 2002). Inclusion of solid particles in bacterial cellulose. Applied microbiol biotechnology vol. 58, pág. 756-760.
dc.identifier.citationTaylor, K.A.C.C.( 1995). Colorimetric Fructose Assay. Appl. Biochem. Biotechnol. 53 (3): 215-227.
dc.identifier.citationK, Hamilton P. (1956). Division of biochemistry, University of Minnesota, St Paul.
dc.identifier.citationCheng Hp, Wang Pm, Chen Jw, Wu Wt. (2002). Cultivation Of Acetobacter Xylinum For Bacterial Cellulose Production In A Modified Airlift Reactor. Biotechnol. Appl. Biochem. 35:125-132.
dc.identifier.citationOrozco, I., Martinez, S.( 2002). Diseño de un medio de cultivo a bajo costo para el rendimiento de celulosa producida por Acetobacter xylinum IFo. Universidad Libre de Barranquilla. Tesis de pregrado del programa de Microbiología Industrial.
dc.identifier.citationKrystynowicz A, Czaja W, Wiktorowska-J A, Gonçalves-MM, Turkiewicz M, Bielecki S. (2002). Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol (9:189-195).
dc.identifier.citationEl-Saied, H., El-Diwany, I., Basta, H., Atwa, a., & El-ghwas, D. (2008). Produc-tion and characterization of economical bacterial cellulose. BioResources, 3(4), 1196– 1217.
dc.identifier.citationHesse-Ertelt S., Heinze, T; Togawa, E. (2010).Structure elucidation of uniformly C-13- labeled bacterial celluloses from different Gluconacetobacter xylinus strains ., Journal Article Cellulose.
dc.identifier.citationShead, O.; Khan, S.; Khan, T.; Park, J. K.( 2009). P roduction of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering. 26: 1689–1692
dc.identifier.citationVerschuren P., Cardona T., and Van den Heuve J.( 2000). Location and Limitation of Cellulose Production by Acetobacter xylinum Established from Oxygen Profiles. Journal of bioscience and bioengineering Vol. 89, No. 5, 414-419.
dc.identifier.citationPhunsri A, Tammarate P, Krusong W, Tantratian S.( 2003). The liquid/air interface area and depth of liquid medium suitable for cellulose production from Acetobacter TISTR 975. J Sci Res Chula Univ; 28(1):35-43.
dc.identifier.citationShead, O.; Khan, S.; Khan, T.; Park, J. K.(2009). P roduction of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering. 26: 1689–1692.
dc.identifier.citationWeia, B.; Yanga, B.G.; Hong,F. ( 2011).Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers. 84:533–538.
dc.identifier.citationRetegi A., Gabilondo N., Peña C., Zuluaga R.,Castro C., . Gañamon P., De la Caba K., Mondragon I.(2010). Bacterial cellulose films with controlled microstructure– mechanical property relationships. Springer Science+Business Media .
dc.identifier.citationCheng Hp, Wang Pm, Chen Jw, Wu Wt.( 2002). Cultivation Of Acetobacter Xylinum For Bacterial Cellulose Production In A Modified Airlift Reactor. Biotechnol. Appl. Biochem. 35:125-132.
dc.identifier.citationMissen RW, Mims CA, Saville BA.( 1999). Introduction to Chemical Reaction Engineering and Kinetics. New York: John Wiley & Sons, Inc
dc.identifier.citation(http://www.corma.cl/_file/file_405_82590_arauco-franco_bozzalla.pdf) consultado el 12 de Noviembre de 2012
dc.identifier.citationNewman, R. H. (1998). Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp, and isolated celluloses. Holzforschung, 52, 157–159
dc.identifier.citationNoro, N.; Sungano, Y.; Shoja, M. 2004. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl. Microbiol. Biotechnol. 64: 199-205.
dc.identifier.urihttp://hdl.handle.net/10818/8314
dc.description97 páginas
dc.description.abstractLa producción de Celulosa Bacteriana en un cultivo con melaza (Max MZA) y aireación intermitente representa un importante avance para la comunidad científica. El cultivo se llevó a cabo a un pH 5,6 y a 30ºC. La incubación se realizó durante 1.5, 3, 7, 14, 21 y 28 días. Se determinaron la producción de celulosa, grosor, comprensibilidad, ufc/mL y concentración de glucosa, fructosa, y sacarosa en los medios de cultivo a diferentes tiempos. La producción de celulosa hasta los 28 días en el medio Max MZA con aireación se incrementó en un rango del 20% en relación a las obtenidas en Estático; asimismo el consumo de sustrato incidió directamente en la producción de celulosa durante el tiempo de cultivo.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectCelulosaes_CO
dc.subjectMelazaes_CO
dc.subjectProductos de la caña de azucar -- Colombiaes_CO
dc.subjectCaña de azúcares_CO
dc.titleEvaluación de la producción de celulosa por Acetobacter xylinum ifo en presencia de melaza de caña bajo condiciones estáticas y/o de flujo de aire intermitentees_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local255579
dc.identifier.localTE05993
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem