Mostrar el registro sencillo del ítem

dc.contributor.authorSun H.
dc.contributor.authorHeuillet A.
dc.contributor.authorMohr F.
dc.contributor.authorTabia H.
dc.date.accessioned2025-01-15T20:49:33Z
dc.date.available2025-01-15T20:49:33Z
dc.date.issued2024
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85209882833&doi=10.1109%2fJSTSP.2024.3501685&partnerID=40&md5=df6861bac0ada942cab80c7d6ac1fe70
dc.identifier.urihttp://hdl.handle.net/10818/63362
dc.description.abstractTransformer models have gained popularity for their exceptional performance. However, these models still face the challenge of high inference latency. To improve the computational efficiency of such models, we propose a novel differentiable pruning method called DARIO (DifferentiAble vision transformer pRunIng with low-cost prOxies). Our approach involves optimizing a set of gating parameters using differentiable, data-agnostic, scale-invariant, and low-cost performance proxies. DARIO is a data-agnostic pruning method, it does not need any classification heads during pruning. We evaluated DARIO on two popular state-of-the-art pre-trained ViT models, including both large (MAE-ViT) and small (MobileViT) sizes. Extensive experiments conducted across 40 diverse datasets demonstrated the effectiveness and efficiency of our DARIO method. DARIO not only significantly improves inference efficiency on modern hardware but also excels in preserving accuracy. Notably, DARIO has even achieved an increase in accuracy on MobileViT, despite only fine-tuning the last block and the classification head. © 2007-2012 IEEE.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherIEEE Journal on Selected Topics in Signal Processinges_CO
dc.relation.ispartofseriesIEEE Journal on Selected Topics in Signal Processing
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherNeural architecture search
dc.subject.otherNeural network compression
dc.subject.otherNeural network pruning
dc.titleDARIO: Differentiable vision transformer pruning with low-cost proxiesen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1109/JSTSP.2024.3501685


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional