Mostrar el registro sencillo del ítem

dc.contributor.authorKielhöfer L.
dc.contributor.authorMohr F.
dc.contributor.authorvan Rijn J.N.
dc.date.accessioned2024-11-12T13:42:57Z
dc.date.available2024-11-12T13:42:57Z
dc.date.issued2024
dc.identifier.issn3029743
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85192146570&doi=10.1007%2f978-3-031-58553-1_12&partnerID=40&md5=efb848e0e6833898e45f876852fead2c
dc.identifier.urihttp://hdl.handle.net/10818/62756
dc.description.abstractLearning curves are important for decision-making in supervised machine learning. They show how the performance of a machine learning model develops over a given resource. In this work, we consider learning curves that describe the performance of a machine learning model as a function of the number of data points used for training. It is often useful to extrapolate learning curves, which can be done by fitting a parametric model based on the observed values, or by using an extrapolation model trained on learning curves from similar datasets. We perform an extensive analysis comparing these two methods with different observations and prediction objectives. Depending on the setting, different extrapolation methods perform best. When a small number of initial segments of the learning curve have been observed we find that it is better to rely on learning curves from similar datasets. Once more observations have been made, a parametric model, or just the last observation, should be used. Moreover, using a parametric model is mostly useful when the exact value of the final performance itself is of interest. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)es_CO
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 14642 LNCS
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherAutomlen
dc.subject.otherLearning Curvesen
dc.subject.otherSupervised Learningen
dc.titleLearning Curve Extrapolation Methods Across Extrapolation Settingsen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1007/978-3-031-58553-1_12


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International