Mostrar el registro sencillo del ítem

dc.contributor.authorFerri S.
dc.contributor.authorGómez C.
dc.contributor.authorNeufang M.
dc.date.accessioned2024-11-12T13:42:55Z
dc.date.available2024-11-12T13:42:55Z
dc.date.issued2024
dc.identifier.issn29939
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85192735119&doi=10.1090%2fproc%2f16499&partnerID=40&md5=d58a1fa21237f4465106b33658440d41
dc.identifier.urihttp://hdl.handle.net/10818/62751
dc.description.abstractWe establish a general framework for representability of a metric group on a (well-behaved) class of Banach spaces. More precisely, let G be a topological group, and A a unital symmetric C∗-subalgebra of UC(G), the algebra of bounded uniformly continuous functions on G. Generalizing the notion of a stable metric, we study A-metrics δ, i.e., the function δ(e, ·) belongs to A; the case A = WAP(G), the algebra of weakly almost periodic functions on G, recovers stability. If the topology of G is induced by a left invariant metric d, we prove that A determines the topology of G if and only if d is uniformly equivalent to a left invariant A-metric. As an application, we show that the additive group of C[0, 1] is not reflexively representable; this is a new proof of Megrelishvili [Topological transformation groups: selected topics, Elsevier, 2007, Question 6.7] (the problem was already solved by Ferri and Galindo [Studia Math. 193 (2009), pp. 99–108] with different methods and later the results were generalized by Yaacov, Berenstein, and Ferri [Math. Z. 267 (2011), pp.129–138]). Let now G be a metric group, and assume A ⊆ LUC(G), the algebra of bounded left uniformly continuous functions on G, is a unital C∗algebra which is the uniform closure of coefficients of representations of G on members of F, where F is a class of Banach spaces closed under l2-direct sums. We prove that A determines the topology of G if and only if G embeds into the isometry group of a member of F, equipped with the weak operator topology. As applications, we obtain characterizations of unitary and reflexive representability. © 2024 American Mathematical Society.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherProceedings of the American Mathematical Societyes_CO
dc.relation.ispartofseriesProceedings of the American Mathematical Society Vol. 152 N° 6
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherTopological groupsen
dc.subject.otherUnitary and reflexive representabilityen
dc.subject.otherWeakly almost periodic functionsen
dc.titleRepresentations of groups on banach spacesen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1090/proc/16499


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International