Show simple item record

dc.contributor.advisorAcosta González, Alejandro
dc.contributor.advisorCaro Quintero, Alejandro
dc.contributor.authorBotero Rute, Lina Marcela
dc.date.accessioned2023-06-14T15:27:41Z
dc.date.available2023-06-14T15:27:41Z
dc.date.issued2023-02-21
dc.identifier.urihttp://hdl.handle.net/10818/55629
dc.description136 páginases_CO
dc.description.abstractEn la transición de la economía de recolección a la de producción, la ganadería ha sido fundamental para alcanzar la seguridad alimentaria principalmente en el mundo desarrollado. En Colombia, el 51 % de la fuente de proteína alimentaria proviene del ganado bovino, con un 67 % y 33% repartido entre leche y carne. Para el 2019, el sector nacional agropecuario y pecuario representaron el 6,74 % y 28,9 % del PIB del país, generando 810.000 empleos directos en el sector. En el 2020, se estimó un total de 28 millones de cabezas en el hato ganadero, con una extensión de 34 millones de hectáreas de pastoreo para su uso. La alimentación del ganado está dominada por el consumo de forrajes que se complementan con concentrados, debido a la amplia gama de forrajes utilizados, la ganadería extensiva tiene un alto impacto ambiental. Lo anterior muestra la enorme importancia de entender el sistema fermentativo ruminal de las razas bovinas, la diversidad taxonómica y funcional asociada a la capacidad fermentativa de su microbiota, y como la modulación de este sistema a través del desarrollo de métodos y tecnologías permiten mejorar no solo la productividad animal, sino de reducir su impacto ambiental, tema poco estudiado en el país.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEvaluación de una estrategia de cultivo microbiológico para la caracterización de la microbiota ruminal en bovinoses_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcMicrobiología veterinaria
dc.subject.armarcGanado vacuno
dc.subject.armarcAlimentos para animales
dc.subject.armarcInnovaciones tecnológicas
dcterms.publisherL. Chen et al., “Large-Scale Ruminant Genome Sequencing Provides Insights Into Their Evolution and Distinct Traits,” Science (1979), Vol. 364, No. 6446, Jun. 2019, Doi: 10.1126/Science.Aav6202.
dcterms.publisherT. J. Hackmann and J. N. Spain, “Invited Review: Ruminant Ecology And Evolution: Perspectives Useful To Ruminant Livestock Research And Production,” Journal Of Dairy Science, Vol. 93, No. 4. Pp. 1320–1334, 2010. Doi: 10.3168/Jds.2009-2071.
dcterms.publisherC. Janis, “The Evolutionary Strategy Of The Equidae And The Origins Of Rumen and Cecal Digestion,” Evolution (N Y), Vol. 30, No. 4, P. 757, 1976, Doi: 10.2307/2407816.
dcterms.publisherInnovations Of A Diversification Sequence,” Annales Zoologici Fennici, Vol. 51, No. 1–2, Pp. 80–94, 2014, Doi: 10.5735/086.051.0210.
dcterms.publisherJ. García and M. Gingins, “Conferencia: Anatomía Y Fisiología Del Aparato Digestivo De Los Rumiantes,” Dpto. Zootecnia, Facultad De Agricultura Y Veterinaria Uba, Pp. 1–2, 1969.
dcterms.publisherP. N. Hobson and C. S. Steward, The Rumen Microbial Ecosystem. Blaclde Academic & Professional, 1997. Doi: 10.1007/978-94-009-1453-7.
dcterms.publisherS. Ghazanfar and A. Azim, “Metagenomics and Its Application In Rumen Ecosystem: Potential Biotechnological Prospects,” Pakistan Journal Of Nutrition, Vol. 8, No. 8. Pp. 1309–1315, 2009. Doi: 10.3923/Pjn.2009.1309.1315.
dcterms.publisherT. G. Nagaraja, Rumenology. 2016. Doi: 10.1007/978-3-319-30533-2.
dcterms.publisherC. P. Rosewarne, P. B. Pope, J. L. Cheung, And M. Morrison, “Analysis Of The Bovine Rumen Microbiome Reveals A Diversity Of Sus-Like Polysaccharide Utilization Loci From The Bacterial Phylum Bacteroidetes,” Journal Of Industrial Microbiology And Biotechnology, Vol. 41, No. 3, Pp. 601–606, 2014, Doi: 10.1007/S10295-013-1395-Y.
dcterms.publisherM. P. Bryant, N. Small, C. Bouma, and I. Robinson, “Studies On The Composition Of The Ruminal Flora And Fauna Of Young Calves,” Journal Of Dairy Science, Vol. 41, No. 12, Pp. 1747–1767, 1958, Doi: 10.3168/Jds.S0022-0302(58)91160-3.
dcterms.publisherN. Kenters, G. Henderson, J. Jeyanathan, S. Kittelmann, and P. H. Janssen, “Isolation Of Previously Uncultured Rumen Bacteria By Dilution To Extinction Using A New Liquid Culture Medium,” Journal Of Microbiological Methods, Vol. 84, No. 1, Pp. 52–60, 2011, Doi: 10.1016/J.Mimet.2010.10.011.
dcterms.publisherS. Mao, M. Zhang, J. Liu, And W. Zhu, “Characterising The Bacterial Microbiota Across The Gastrointestinal Tracts Of Dairy Cattle: Membership And Potential Function,” Scientific Reports, Vol. 5, No. April, Pp. 1–14, 2015, Doi: 10.1038/Srep16116
dcterms.publisherA. K. Puniya, R. Singh, And D. N. Kamra, Rumen Microbiology: From Evolution To Revolution. 2015. Doi: 10.1007/978-81-322-2401-3.
dcterms.publisherG. Henderson, F. Cox, S. Ganesh, A. Jonker, And W. Young, “Rumen Microbial Community Composition Varies With Diet And Host , But A Core Microbiome Is Found Across A Wide Geographical Range,” No. April, 2015, Doi: 10.1038/Srep14567.
dcterms.publisherW. M. Craig, G. A Broderick, And D. B. Ricker, “Quantitation Of Microorganisms Associated With The Particulate Phase Of Ruminal Ingesta.,” J Nutr, Vol. 117, No. 1, Pp. 56–62, 1987.
dcterms.publisherAndrés. Londoño-Zapata, Jaime. Fernández-Correa, Licet. Molina-Guzmán, Diana. Polanco-Echeverry, And Lina. Gutiérrez-Builes, “Cuantificación De Bacterias Celulolíticas Anaerobias Provenientes Del Rumen De Ganado Bovino : Comparación De Tres Técnicas.,” Hechos Microbiol., Vol. 2, No. 1, Pp. 51–59, 2011.
dcterms.publisherA. Söllinger et al., “Holistic Assessment Of Rumen Microbiome Dynamics Through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy During Key Steps Of Anaerobic Feed Degradation,” Msystems, Vol. 3, No. 4, Pp. E00038-18, 2018, Doi: 10.1128/Msystems.00038-18.
dcterms.publisherD. E. Akin And W. S. Borneman, “Role Of Rumen Fungi In Fiber Degradation,” Journal Of Dairy Science, Vol. 73, No. 10, Pp. 3023–3032, 1990.
dcterms.publisherI. B. Heath, T. Bauchop, And R. A. Skipp, “Assignment Of The Rumen Anaerobe Neocallimastix Frontalis To The Spizellomycetales (Chytridiomycetes) On The Basis Of Its Polyflagellate Zoospore Ultrastructure,” Canadian Journal Of Botany, Vol. 61, No. 1, Pp. 295–307, Jan. 1983, Doi: 10.1139/B83-033.
dcterms.publisherJ. J. Gold, I. Brent Heath, And T. Bauchop, “Ultrastructural Description Of A New Chytrid Genus Of Caecum Anaerobe, Caecomyces Equi Gen. Nov., Sp. Nov., Assigned To The Neocallimasticaceae,” Biosystems, Vol. 21, No. 3–4, Pp. 403–415, Jan. 1988, Doi: 10.1016/0303-2647(88)90039-1
dcterms.publisherR. A. Hanafy, M. S. Elshahed, And N. H. Youssef, “Feramyces Austinii , Gen. Nov., Sp. Nov., An Anaerobic Gut Fungus From Rumen And Fecal Samples Of Wild Barbary Sheep And Fallow Deer,” Mycologia, Vol. 0, No. 0, Pp. 1–13, 2018, Doi: 10.1080/00275514.2018.1466610
dcterms.publisherR. A. Hanafy, M. S. Elshahed, A. S. Liggenstoffer, G. W. Griffith, And N. H. Youssef, “Pecoramyces Ruminantium, Gen. Nov., Sp. Nov., An Anaerobic Gut Fungus From The Feces Of Cattle And Sheep,” Mycologia, Vol. 109, No. 2, Pp. 231–243, 2017, Doi: 10.1080/00275514.2017.1317190.
dcterms.publisherR. A. Hanafy et al., “Seven New Neocallimastigomycota Genera From Fecal Samples Of Wild, Zoo-Housed, And Domesticated Herbivores: Description Of Ghazallomyces Constrictus Gen. Nov., Sp. Nov., Aklioshbomyces Papillarum Gen. Nov., Sp. Nov., Agriosomyces Longus Gen. Nov., Sp. Nov,” Biorxiv, P. 642694, 2019, Doi: 10.1101/642694.
dcterms.publisherR. A. Hanafy, N. H. Youssef, And M. S. Elshahed, “Paucimyces Polynucleatus Gen. Nov, Sp. Nov., A Novel Polycentric Genus Of Anaerobic Gut Fungi From The Faeces Of A Wild Blackbuck Antelope,” International Journal Of Systematic And Evolutionary Microbiology, Vol. 71, No. 6, P. 004832, Jun. 2021, Doi: 10.1099/Ijsem.0.004832.
dcterms.publisherM. Stabel et al., “Aestipascuomyces Dupliciliberans Gen. Nov, Sp. Nov., The First Cultured Representative Of The Uncultured Sk4 Clade From Aoudad Sheep And Alpaca,” Microorganisms, Vol. 8, No. 11, Pp. 1–17, Nov. 2020, Doi: 10.3390/Microorganisms8111734.
dcterms.publisherA. Breton, A. Bernalier, M. Dusser, G. Fonty, B. Gaillard-Martinie, And J. Guillot, “Anaeromyces Mucronatus Nov. Gen., Nov. Sp. A New Strictly Anaerobic Rumen Fungus With Polycentric Thallus,” Fems Microbiology Letters, Vol. 70, No. 2, Pp. 177–182, Jul. 2006, Doi: 10.1111/J.1574-6968.1990.Tb13974.X.
dcterms.publisherD. J. S. Barr, H. Kudo, K. D. Jakober, And K.-J. Cheng, “Morphology And Development Of Rumen Fungi: Neocallimastix Sp., Piromyces Communis , And Orpinomyces Bovis Gen.Nov., Sp.Nov.,” Canadian Journal Of Botany, Vol. 67, No. 9, Pp. 2815–2824, Sep. 1989, Doi: 10.1139/B89-361.
dcterms.publisherS. S. Dagar et al., “A New Anaerobic Fungus (Oontomyces Anksri Gen. Nov., Sp. Nov.) From The Digestive Tract Of The Indian Camel (Camelus Dromedarius),” Fungal Biology, Vol. 119, No. 8, Pp. 731–737, Aug. 2015, Doi: 10.1016/J.Funbio.2015.04.005.
dcterms.publisherT. M. Callaghan et al., “Buwchfawromyces Eastonii Gen. Nov., Sp. Nov.: A New Anaerobic Fungus (Neocallimastigomycota) Isolated From Buffalo Faeces,” Mycokeys, Vol. 9, Pp. 11–28, 2015, Doi: 10.3897/Mycokeys.9.9032.
dcterms.publisherA. Joshi, V. B. Lanjekar, P. K. Dhakephalkar, T. M. Callaghan, G. W. Griffith, And S. S. Dagar, “Liebetanzomyces Polymorphus Gen. et Sp. Nov., A New Anaerobic Fungus (Neocallimastigomycota) Isolated From The Rumen Of A Goat,” Mycokeys, Vol. 40, Pp. 89–110, 2018, Doi: 10.3897/Mycokeys.40.28337.
dcterms.publisherE. Ozkose, B. J. Thomas, D. R. Davies, G. W. Griffith, And M. K. Theodorou, “Cyllamyces Aberensis Gen.Nov. Sp.Nov., A New Anaerobic Gut Fungus With Branched Sporangiophores Isolated From Cattle,” Canadian Journal Of Botany, Vol. 79, No. 6, Pp. 666–673, Jun. 2001, Doi: 10.1139/B01-047.
dcterms.publisherM. Ferrer et al., “Novel Hydrolase Diversity Retrieved From A Metagenome Library Of Bovine Rumen Microflora,” Environmental Microbiology, Vol. 7, No. 12, Pp. 1996–2010, 2005, Doi: 10.1111/J.1462-2920.2005.00920.X.
dcterms.publisherD. D. Millen, M. D. B. Arrigoni, And R. D. L. Pacheco, Rumenology. Switzerland: Springer Nature, 2016.
dcterms.publisherR. Danielsson et al., “Methane Production In Dairy Cows Correlates With Rumen Methanogenic And Bacterial Community Structure,” Frontiers In Microbiology, Vol. 8, No. Feb, Pp. 1–15, 2017, Doi: 10.3389/Fmicb.2017.00226.
dcterms.publisherD. P. Morgavi, C. Martin, J. P. Jouany, And M. J. Ranilla, “Rumen Protozoa And Methanogenesis: Not A Simple Cause–Effect Relationship,” British Journal Of Nutrition, Vol. 107, No. 3, Pp. 388–397, Feb. 2012, Doi: 10.1017/S0007114511002935.
dcterms.publisherC. L. Williams, B. J. Thomas, N. R. Mcewan, P. Rees Stevens, C. J. Creevey, And S. A. Huws, “Rumen Protozoa Play A Significant Role In Fungal Predation And Plant Carbohydrate Breakdown,” Frontiers In Microbiology, Vol. 11, P. 720, Apr. 2020, Doi: 10.3389/Fmicb.2020.00720/Bibtex.
dcterms.publisherR. Solomon et al., “Protozoa Populations Are Ecosystem Engineers That Shape Prokaryotic Community Structure And Function Of The Rumen Microbial Ecosystem,” Isme J, Vol. 16, No. 4, Pp. 1187–1197, Apr. 2022, Doi: 10.1038/S41396-021-01170-Y.
dcterms.publisherR. A. Gilbert et al., “Rumen Virus Populations: Technological Advances Enhancing Current Understanding,” Frontiers In Microbiology, Vol. 11, No. March, Pp. 1–26, 2020, Doi: 10.3389/Fmicb.2020.00450.
dcterms.publisherJ. Overmann, B. Abt, And J. Sikorski, “Present And Future Of Culturing Bacteria,” Annual Review Of Microbiology, Vol. 71, No. 1, Pp. 711–730, 2017, Doi: 10.1146/Annurev-Micro-090816-093449.
dcterms.publisherNagaraja T. G., “A Microbiologist ’ S View On Improving Nutrient Utilization In Ruminants,” Proc 23rd Annual Florida Ruminant Nutrition Symposium, Pp. 135–161, 2012.
dcterms.publisherR. Sharma, Y. Nimonkar, A. Sharma, R. S. Rathore, And O. Prakash, “Concept Of Microbial Preservation: Past, Present And Future,” 2018, Pp. 35–54. Doi: 10.1007/978-3-319-96971-8_2.
dcterms.publisherJ. C. Lagier, P. Hugon, S. Khelaifia, P. E. Fournier, B. La Scola, And D. Raoult, “The Rebirth Of Culture In Microbiology Through The Example Of Culturomics To Study Human Gut Microbiota,” Clin Microbiol Rev, Vol. 28, No. 1, Pp. 237–264, Jan. 2015, Doi: 10.1128/Cmr.00014-14.
dcterms.publisherJ. C. Lagier et al., “Culture Of Previously Uncultured Members Of The Human Gut Microbiota By Culturomics,” Nature Microbiology 2016 1:12, Vol. 1, No. 12, Pp. 1–8, Nov. 2016, Doi: 10.1038/Nmicrobiol.2016.203.
dcterms.publisherT. Zehavi, M. Probst, and I. Mizrahi, “Insights Into The Culturomics Of The Rumen Microbiome,” Frontiers In Microbiology, Vol. 9, No. August, Pp. 1–10, 2018, Doi: 10.3389/Fmicb.2018.01999.
dcterms.publisherJ. L. Jany and G. Barbier, “Culture-Independent Methods For Identifying Microbial Communities In Cheese,” Food Microbiology, Vol. 25, No. 7, Pp. 839–848, 2008, Doi: 10.1016/J.Fm.2008.06.003.
dcterms.publisherB. J. W. M. Leod And A. Leetwer, “A Method For Plate Culture Of Anaerobic Bacteria,” Journal Of Pathology, Vol. 17, Pp. 454–457, 1912.
dcterms.publisherR. E. Hungate, “Chapter Iv A Roll Tube Method For Cultivation Of Strict Anaerobes,” Methods In Microbiology, Vol. 3, No. Part B, Pp. 117–132, 1969, Doi: 10.1016/S0580-9517(08)70503-8.
dcterms.publisherM. L. Kalmokoff and R. M. Teather, “Isolation And Characterization Of A Bacteriocin (Butyrivibriocin Ar10) From The Ruminal Anaerobe Butyrivibrio Fibrisolvens Ar10: Evidence In Support Of The Widespread Occurrence Of Bacteriocin-Like Activity Among Ruminal Isolates Of B. Fibrisolvens,” Applied And Environmental Microbiology, Vol. 63, No. 2, Pp. 394–402, 1997.
dcterms.publisherF. Rodríguez et al., Manual De Laboratorio Para El Estudio De Microorganismos Anaerobios Obligados. Corpoica, 2011.
dcterms.publisherS. Koike et al., “Molecular Monitoring And Isolation Of Previously Uncultured Bacterial Strains From The Sheep Rumen,” Applied And Environmental Microbiology, Vol. 76, No. 6, Pp. 1887–1894, 2010, Doi: 10.1128/Aem.02606-09.
dcterms.publisherG. W. Griffith, E. Ozkose, M. K. Theodorou, And D. R. Davies, “Diversity Of Anaerobic Fungal Populations In Cattle Revealed By Selective Enrichment Culture Using Different Carbon Sources,” Fungal Ecology, Vol. 2, No. 2, Pp. 87–97, 2009, Doi: 10.1016/J.Funeco.2009.01.005
dcterms.publisherK. Nakamura et al., “A Six-Well Plate Method: Less Laborious And Effective Method For Cultivation Of Obligate Anaerobic Microorganisms,” Microbes And Environments, Vol. 26, No. 4, Pp. 301–306, 2011, Doi: 10.1264/Jsme2.Me11120.
dcterms.publisherT. Nyonyo, T. Shinkai, And M. Mitsumori, “Improved Culturability Of Cellulolytic Rumen Bacteria And Phylogenetic Diversity Of Culturable Cellulolytic And Xylanolytic Bacteria Newly Isolated From The Bovine Rumen,” Fems Microbiology Ecology, Vol. 88, No. 3, Pp. 528–537, 2014, Doi: 10.1111/1574-6941.12318.
dcterms.publisherC. Su, L. Lei, Y. Duan, K. Q. Zhang, And J. Yang, “Culture-Independent Methods For Studying Environmental Microorganisms: Methods, Application, And Perspective,” Applied Microbiology And Biotechnology, Vol. 93, No. 3, Pp. 993–1003, 2012, Doi: 10.1007/S00253-011-3800-7.
dcterms.publisherJ. Overmann, B. Abt, And J. Sikorski, “Present And Future Of Culturing Bacteria,” Annual Review Of Microbiology, Vol. 71, No. 1, Pp. 711–730, Sep. 2017, Doi: 10.1146/Annurev-Micro-090816-093449
dcterms.publisherM. O. A. Sommer, “Advancing Gut Microbiome Research Using Cultivation,” Current Opinion In Microbiology, Vol. 27, Pp. 127–132, 2015, Doi: 10.1016/J.Mib.2015.08.004.
dcterms.publisherS. Kittelmann, G. E. Naylor, J. P. Koolaard, And P. H. Janssen, “A Proposed Taxonomy Of Anaerobic Fungi (Class Neocallimastigomycetes) Suitable For Large-Scale Sequence-Based Community Structure Analysis,” Plos One, Vol. 7, No. 5, Pp. 1–13, 2012, Doi: 10.1371/Journal.Pone.0036866.
dcterms.publisherR. Seshadri et al., “Cultivation And Sequencing Of Rumen Microbiome Members From The Hungate1000 Collection,” Nature Biotechnology, Vol. 36, No. 4, Pp. 359–367, 2018, Doi: 10.1038/Nbt.4110.
dcterms.publisherS. Koike And Y. Kobayashi, “Fibrolytic Rumen Bacteria: Their Ecology And Functions,” Asian-Australasian Journal Of Animal
dcterms.publisherH. C. Mantovani, H. Hu, R. W. Warobo, And J. B. Russell, “Bovicin Hc5, A Bacteriocin From Streptococcus Bovis Hc5,” Microbiology (N Y), Vol. 148, No. 11, Pp. 3347–3352, 2002, Doi: 10.1099/00221287-148-11-3347.
dcterms.publisherR. E. Mueller, E. L. Iannotti, And J. M. Asplund, “Isolation And Identification Of Adherent Epimural Bacteria During Succession In Young Lambs,” Applied And Environmental Microbiology, Vol. 47, No. 4, Pp. 724–730, 1984.
dcterms.publisherF. Quartinello et al., “Together Is Better: The Rumen Microbial Community As Biological Toolbox For Degradation Of Synthetic Polyesters,” Frontiers In Bioengineering And Biotechnology, Vol. 9, No. July, Pp. 1–11, 2021, Doi: 10.3389/Fbioe.2021.684459.
dcterms.publisherE. Duque Et al., “Ruminal Metagenomic Libraries As A Source Of Relevant Hemicellulolytic Enzymes For Biofuel Production,” Microbial Biotechnology, Vol. 11, No. 4, Pp. 781–787, 2018, Doi: 10.1111/1751-7915.13269.
dcterms.publisherL. B. Oyama et al., “The Rumen Microbiome: An Underexplored Resource For Novel Antimicrobial Discovery,” Npj Biofilms And Microbiomes, Vol. 3, No. 1, Pp. 1–9, 2017, Doi: 10.1038/S41522-017-0042-1.
dcterms.publisherL. B. Oyama et Al., “Buwchitin: A Ruminal Peptide With Antimicrobial Potential Against Enterococcus Faecalis,” Frontiers In Chemistry, Vol. 5, No. July, Pp. 1–12, 2017, Doi: 10.3389/Fchem.2017.00051
dcterms.publisherC. González Almario et al., Historia De Los Bancos De Germoplasma De Microorganismos Agrosavia (Bgm-A). Corporación Colombiana De Investigación Agropecuaria (Agrosavia), 2020. Doi: 10.21930/Agrosavia.Brochure.7403633.
dcterms.publisherJ. C. Ovalle Masmela, L. M. Botero Rute, F. Rodriguez Villamizar, R. Herrera León, And H. R. Jimenez Sabogal, “Colección De Microorganismos Con Interés En Nutrición Animal,” Corporación Colombiana De Investigación Agropecuaria - Agrosavia. Dataset/Occurrence, 2021. Https://Doi.Org/10.15472/Dpbwjh (Accessed Aug. 07, 2022).
dcterms.publisherFedegan, “Plan Estratégico De La Ganadería Colombiana 2019,” Fedegan, 2006. Http://Www.Fedegan.Org.Co/Plan-Estrategico-De-La-Ganaderia-Colombiana-2019
dcterms.publisherR. Hernández, H. Jimenez, C. Vargas-Garcia, A. Caro-Quintero, And A. Reyes, “Disentangling The Complexity Of The Rumen Microbial Diversity Through Fractionation Using A Sucrose Density Gradient,” Frontiers In Microbiology, Vol. 0, P. 1883, Jul. 2021, Doi: 10.3389/Fmicb.2021.664754
dcterms.publisherM. Kim, M. Morrison, And Z. Yu, “Status Of The Phylogenetic Diversity Census Of Ruminal Microbiomes,” Fems Microbiology Ecology, Vol. 76, No. 1, Pp. 49–63, 2011, Doi: 10.1111/J.1574-6941.2010.01029.X.
dcterms.publisherZ. Yu, M. Yu, And M. Morrison, “Improved Serial Analysis Of V1 Ribosomal Sequence Tags (Sarst-V1) Provides A Rapid, Comprehensive, Sequence-Based Characterization Of Bacterial Diversity And Community Composition,” Environmental Microbiology, Vol. 8, No. 4, Pp. 603–611, 2006, Doi: 10.1111/J.1462-2920.2005.00933.X.
dcterms.publisherR. D. Stewart et al., “Assembly Of 913 Microbial Genomes From Metagenomic Sequencing Of The Cow Rumen,” Nature Communications, Vol. 9, No. 1, Pp. 1–11, 2018, Doi: 10.1038/S41467-018-03317-6.
dcterms.publisherR. Hernández, M. Chaib De Mares, H. Jimenez, A. Reyes, And A. Caro-Quintero, “Functional And Phylogenetic Characterization Of Bacteria In Bovine Rumen Using Fractionation Of Ruminal Fluid,” Frontiers In Microbiology, Vol. 13, P. 453, Mar. 2022, Doi: 10.3389/Fmicb.2022.813002/Bibtex
dcterms.publisherR. Atlas, Handbook Of Microbiological Media, Fourth Edition. 2010. Doi: 10.1201/Ebk1439804063.
dcterms.publisherA. L. Goodman et al., “Extensive Personal Human Gut Microbiota Culture Collections Characterized And Manipulated In Gnotobiotic Mice,” Proceedings Of The National Academy Of Sciences, Vol. 108, No. 15, Pp. 6252–6257, 2011, Doi: 10.1073/Pnas.1102938108.
dcterms.publisherJ. J. Faith et al., “The Long-Term Stability Of The Human Gut Microbiota,” Science (1979), Vol. 341, No. 6141, 2013, Doi: 10.1126/Science.1237439.
dcterms.publisherJ. G. Caporaso et al., “Ultra-High-Throughput Microbial Community Analysis On The Illumina Hiseq And Miseq Platforms,” Isme Journal, Vol. 6, No. 8, Pp. 1621–1624, 2012, Doi: 10.1038/Ismej.2012.8.
dcterms.publisherE. Bolyen et al., “Reproducible, Interactive, Scalable And Extensible Microbiome Data Science Using Qiime 2,” Nature Biotechnology, Vol. 37, No. 8, Pp. 852–857, 2019, Doi: 10.1038/S41587-019-0209-9.
dcterms.publisherC. J. Creevey, W. J. Kelly, G. Henderson, And S. C. Leahy, “Determining The Culturability Of The Rumen Bacterial Microbiome,” Microbial Biotechnology, Vol. 7, No. 5, Pp. 467–479, 2014, Doi: 10.1111/1751-7915.12141.
dcterms.publisherS. Deusch, A. Camarinha-Silva, J. Conrad, U. Beifuss, M. Rodehutscord, And J. Seifert, “A Structural And Functional Elucidation Of The Rumen Microbiome Influenced By Various Diets And Microenvironments,” Frontiers In Microbiology, Vol. 8, No. Aug, P. 1605, 2017, Doi: 10.3389/Fmicb.2017.01605.
dcterms.publisherM. Kim, M. Morrison, And Z. Yu, “Phylogenetic Diversity Of Bacterial Communities In Bovine Rumen As Affected By Diets And Microenvironments,” Folia Microbiologica, Vol. 56, No. 5, Pp. 453–458, 2011, Doi: 10.1007/S12223-011-0066-5.
dcterms.publisherD. Aphale, A. Natu, S. Laldas, And A. Kulkarni, “Administration Of Streptococcus Bovis Isolated From Sheep Rumen Digesta On Rumen Function And Physiology As Evaluated In A Rumen Simulation Technique System,” Veterinary World, Vol. 12, No. 9, Pp. 1362–1371, 2019, Doi: 10.14202/Vetworld.2019.1362-1371.
dcterms.publisherS. Kumar et al., “Sharpea And Kandleria Are Lactic Acid Producing Rumen Bacteria That Do Not Change Their Fermentation Products When Co-Cultured With A Methanogen,” Anaerobe, Vol. 54, Pp. 31–38, Dec. 2018, Doi: 10.1016/J.Anaerobe.2018.07.008
dcterms.publisherL. A. Prado Barragán, J. J. B. Figueroa, L. V. Rodríguez Durán, C. N. Aguilar González, And C. Hennigs, “Fermentative Production Methods,” In Biotransformation Of Agricultural Waste And By-Products: The Food, Feed, Fibre, Fuel (4f) Economy, Elsevier, 2016, Pp. 189–217. Doi: 10.1016/B978-0-12-803622-8.00007-0.
dcterms.publisherD. O. Krause et al., “Opportunities To Improve Fiber Degradation In The Rumen: Microbiology, Ecology, And Genomics,” Fems Microbiology Reviews, Vol. 27, No. 5, Pp. 663–693, 2003, Doi: 10.1016/S0168-6445(03)00072-X.
dcterms.publisherK. Kuoppala, S. Ahvenjärvi, M. Rinne, And A. Vanhatalo, “Effects Of Feeding Grass Or Red Clover Silage Cut At Two Maturity Stages In Dairy Cows. 2. Dry Matter Intake And Cell Wall Digestion Kinetics,” Journal Of Dairy Science, Vol. 92, No. 11, Pp. 5634–5644, 2009, Doi: 10.3168/Jds.2009-2250.
dcterms.publisherI. A. Kagan, B. M. Goff, And M. D. Flythe, “Soluble Phenolic Compounds In Different Cultivars Of Red Clover And Alfalfa, And Their Implication For Protection Against Proteolysis And Ammonia Production In Ruminants,” Natural Product Communications, Vol. 10, No. 7, Pp. 1263–1267, 2015, Doi: 10.1177/1934578x1501000732
dcterms.publisherJ. L. Rychlik And J. B. Russell, “Mathematical Estimations Of Hyper-Ammonia Producing Ruminal Bacteria And Evidence For Bacterial Antagonism That Decreases Ruminal Ammonia Production1,” Fems Microbiology Ecology, Vol. 32, No. 2, Pp. 121–128, 2006, Doi: 10.1111/J.1574-6941.2000.Tb00706.X.
dcterms.publisherJ. Zhou And D. Ning, “Stochastic Community Assembly: Does It Matter In Microbial Ecology?,” Microbiology And Molecular Biology Reviews, Vol. 81, No. 4, Dec. 2017, Doi: 10.1128/Mmbr.00002-17.
dcterms.publisherL. Diaz-Garcia et al., “Dilution-To-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop A Minimal And Versatile Lignocellulolytic Bacterial Consortium,” Applied And Environmental Microbiology, Vol. 87, No. 2, Pp. 1–15, Jan. 2020, Doi: 10.1128/Aem.02427-20
dcterms.publisherC. Lozupone, M. E. Lladser, D. Knights, J. Stombaugh, And R. Knight, “Unifrac: An Effective Distance Metric For Microbial Community Comparison,” Isme Journal, Vol. 5, No. 2. Pp. 169–172, 2011. Doi: 10.1038/Ismej.2010.133.
dcterms.publisherR. B. Franklin, J. L. Garland, C. H. Bolster, And A. L. Mills, “Impact Of Dilution On Microbial Community Structure And Functional Potential: Comparison Of Numerical Simulations And Batch Culture Experiments,” Applied And Environmental Microbiology, Vol. 67, No. 2, Pp. 702–712, 2001, Doi: 10.1128/Aem.67.2.702-712.2001.
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional