Mostrar el registro sencillo del ítem
Clonación y expresión heteróloga del gen de lipasa lpsa01 de pseudomonas aeruginosa psa-01 aislada de frutos de palma aceitera
dc.contributor.advisor | Prieto Correa, Rosa Erlide | |
dc.contributor.advisor | Jiménez Junca, Carlos | |
dc.contributor.author | Salazar Mora, Jessica Mercedes | |
dc.date.accessioned | 2019-11-27T15:34:31Z | |
dc.date.available | 2019-11-27T15:34:31Z | |
dc.date.issued | 2019-10-22 | |
dc.identifier.uri | http://hdl.handle.net/10818/38401 | |
dc.description | 69 páginas | es_CO |
dc.description.abstract | Las lipasas de origen microbiano son biocatalizadores versátiles de gran potencial de aplicación a nivel industrial. El grupo de Investigación de Procesos Agroindustriales (GIPA) de la Universidad de la Sabana ha aislado, caracterizado y purificado parcialmente la lipasa LSPSA-01 de Pseudomonas aeruginosa PSA-01, la cual se ha encontrado promisoria para la catálisis de reacciones de esterificación para la producción de biodiesel desde aceite de palma y metanol 1. Esta lipasa mostró buena actividad a 58°C, tolerancia a pH alcalinos y no perdió su actividad en solventes tales como hexano, heptano, DMSO y etanol 2. Por las propiedades mencionadas y en búsqueda de mejorar los rendimientos de producción de la lipasa LSPSA-01, para su posterior purificación y caracterización bioquímica. El presente trabajo tiene por objetivo obtener la lipasa LPSA01 mediante estrategias de producción heteróloga, para evaluar su actividad y rendimientos de producción. El gen de la lipasa, lipA (936 bp) y el gen de la foldasa, lipH (867 bp) de Pseudomonas aeruginosa PSA01 se identificaron y se secuenciaron, encontrándose idénticos en un 99% y 100% con los genes de lipA y lipH, de P. aeruginosa PAO1, P. aeruginosa LST03 y P. aeruginosa CS-2, respectivamente. Se construyó exitosamente el sistema de expresión Escherichia coli SHuffle/pET29a-lipA. La actividad de lipasa obtenida con este sistema se encontró para el cultivo inducido a una densidad óptica de 0.4 Abs a 600 nm, con una concentración de IPTG de 0.4mM y temperatura de expresión 25°C, en la fracción soluble de lisis, la cual correspondió a 8000 U/L. La LipA activa se logró obtener sin la coexpresión de LipH, sin embargo, la mayor concentración de lipasa recombinante se acumula en cuerpos de inclusión inactiva. | es_CO |
dc.description.abstract | Microbial lipases are versatile biocatalyst with great industrial potential. The Agroindustrial Processes research group from the University of La Sabana has isolated, partially purified and characterized the LSPSA-01 lipase from Pseudomonas aeruginosa PSA-01. The enzyme was found to be suitable for the catalysis of esterification reactions for the biodiesel production from palm oil and methanol 1 . The lipase showed desirable activity at 58°C and was stable at alkaline pH. The lipase remains active in the presence of hexane, heptane, DMSO and ethanol 2 . Therefore, in order to increase the yield of production of the enzyme for later purification and characterization, and efficient heterologous expression system is desirable. The lipase gene, lipA (936 bp) and the foldase gene, lipH (867 bp) of Pseudomonas aeruginosa PSA01 were sequenced and resulted 99% and 100% identical with the lipA and lipH genes from P. aeruginosa PAO1, P. aeruginosa LST03 and P. aeruginosa CS-2, respectively. In this study, we report the construction of the Escherichia coli SHuffle / pET29a-lipA expression system and the subsequent production of the lipase. The lipase activity was found in the soluble fraction of cell lysis, which corresponded to 8000 U / L. Active LipA was obtained without the coexpression of LipH, for the culture induced at an optical density of 0.4Abs at 600 nm, with an IPTG concentration of 0.4mM and an expression temperature of 25 °C, offering promising strategies for overproduction. However, the highest concentration of recombinant lipase accumulates in inactive inclusion bodies. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Pseudomonas aeruginosa | es_CO |
dc.subject | Lipasa | es_CO |
dc.subject | Escherichia coli SHuffle | es_CO |
dc.title | Clonación y expresión heteróloga del gen de lipasa lpsa01 de pseudomonas aeruginosa psa-01 aislada de frutos de palma aceitera | es_CO |
dc.title.alternative | Cloning and heterologous expression of the lipase LPSA01 gene from Pseudomonas aeruginosa PSA-01 isolated from african palm fruit. | en |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 275218 | |
dc.identifier.local | TE10453 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | Perdomo Cabrejo, J. M. P., Diaz Barrera, L. E. & Prieto-correa, R. E. Applied Biocatalysis with an Organic Resistant Partially Purified Lipase from P . aeruginosa During FAME Production. open Catal. J. 8, 1–10 (2015). | eng |
dcterms.references | Perdomo Cabrejo, J. M. Determinación de los parámetros de trabajo de la lipasa de Pseudomonas aeruginosa aislada del fruto de la palma aceitera para su uso como biocatalizador en la producción de biodiésel. (Universidad de la Sabana, 2012) | spa |
dcterms.references | Erickson, B., Nelson, J. E. & Winters, P. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnolgy J. 7, 176–185 (2012). | eng |
dcterms.references | Gurung, N., Ray, S., Bose, S., Rai, V. & K, W. F. A Broader View : Microbial Enzymes and Their Relevance in Industries , Medicine , and Beyond enzyme and its use were well known to the mankind but. Biomed. Res. Int. 2013, 1–18 (2013). | eng |
dcterms.references | Brahmachari, G. Lipase-Catalyzed Organic Transformations. Biotechnology of Microbial Enzymes (Elsevier Inc., 2017). doi:10.1016/B978-0-12-803725-6.00013-3 | eng |
dcterms.references | Sanchez, S. & Demain, A. L. Chapter 1 – Useful Microbial Enzymes—An Introduction. in Biotechnology of Microbial Enzymes 2017, 1–11 (Elsevier Inc., 2017). | eng |
dcterms.references | MarketsAndMarkets. Lipase Market by Source (Microbial Lipases, Animal Lipases), Application (Animal Feed, Dairy, Bakery, Confectionery, Others), & by Geography (North America, Europe, Asia-Pacific, Latin America, RoW) - Global Forecast to 2020. (2015). Available at: http://www.marketsandmarkets.com/Market-Reports/lipase-market205981206.html. | eng |
dcterms.references | Group, F. World Enzyme Report. (2014) | eng |
dcterms.references | Aarthy, M., Saravanan, P., Gowthaman, M. K., Rose, C. & Kamini, N. R. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chem. Eng. Res. Des. 92, 1591–1601 (2014). | eng |
dcterms.references | Bose, A. & Keharia, H. Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal. Agric. Biotechnol. 2, 255–266 (2013). | eng |
dcterms.references | Gaur, R. & Khare, S. K. Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. Biocatal. Biotransformation 29, 161–171 (2011). | eng |
dcterms.references | González, I. N. et al. Enzimas lipoliticas bacterianas: propiedades, clasificación, estructura, aplicaciones tecnológicas y aspectos legales. An. Vet. Murcia 28, 45–65 (2012) | eng |
dcterms.references | Priji et al., P. Microbial Lipases - Properties and Applications. J. Microbiol. Biotechnol. Food Sci. 6, 799–807 (2016). | eng |
dcterms.references | Salihu, A. & Alam, M. Z. Solvent tolerant lipases: A review. Process Biochem. 50, 86–96 (2015). | eng |
dcterms.references | Andualema, B. & Gessesse, A. Microbial lipases and their industrial applications: Review. Biotechnology 11, 100–118 (2012). | eng |
dcterms.references | Christopher, L. P., Kumar, H., Zambare, V. P., Hemanathan Kumar & Zambare, V. P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 119, 497–520 (2014). | eng |
dcterms.references | Daiha, K. de G., Angeli, R., de Oliveira, S. D. & Almeida, R. V. Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting. PLoS One 10, e0131624 (2015) | eng |
dcterms.references | Kumar, A., Dhar, K., Kanwar, S. S. & Arora, P. K. Lipase catalysis in organic solvents : advantages and applications. Biol. Proced. Online 1–12 (2016). doi:10.1186/s12575-016- 0033-2 | eng |
dcterms.references | Valetti, F. & Gilardi, G. Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis. Biomolecules 3, 778–811 (2013). | eng |
dcterms.references | Doukyu, N. & Ogino, H. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270–282 (2010). | eng |
dcterms.references | Reetz, M. T., Soni, P., Fernández, L., Gumulya, Y. & Carballeira, J. D. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun. 46, 8657 (2010). | eng |
dcterms.references | Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R. & Azevedo, V. Up-To-Date Insight on Industrial Enzymes Applications and Global Market. J. Bioprocess. Biotech. S4, 1–10 (2012). | eng |
dcterms.references | Kobayashi, S. Lipase-catalyzed polyester synthesis--a green polymer chemistry. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 86, 338–365 (2010). | eng |
dcterms.references | Kazlauskas, R. J. & Bornscheuer, U. T. Finding better protein engineering strategies. Nat. Chem. Biol. 5, 526–9 (2009). | eng |
dcterms.references | Schmidt, M., Baumann, M., Henke, E., Konarzycka-Bessler, M. & Bornscheuer, U. T. Directed evolution of lipases and esterases. Methods Enzymol. 388, 199–207 (2004). | eng |
dcterms.references | Bornscheuer, U. T., Bessler, C., Srinivas, R. & Hari Krishna, S. Optimizing lipases and related enzymes for efficient application. Trends Biotechnol. 20, 433–437 (2002). | eng |
dcterms.references | Nestl, B. M., Nebel, B. a & Hauer, B. Recent progress in industrial biocatalysis. Curr. Opin. Chem. Biol. 15, 187–93 (2011) | eng |
dcterms.references | Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012) | eng |
dcterms.references | Turki, S. Towards the development of systems for high-yield production of microbial lipases. Biotechnol. Lett. 35, 1551–60 (2013) | eng |
dcterms.references | Anobom, C. D. et al. From Structure to Catalysis : Recent Developments in the Biotechnological Applications of Lipases. 2014, (2014). | eng |
dcterms.references | Ribeiro, B. D., de Castro, A. M., Coelho, M. A. Z. & Freire, D. M. G. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011, 615803 (2011). | eng |
dcterms.references | Javed, S. et al. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. (2017). doi:10.1016/j.pbiomolbio.2017.07.014 | eng |
dcterms.references | Gaur, R., Gupta, A. & Khare, S. K. K. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem. 43, 1040–1046 (2008). | eng |
dcterms.references | Izrael-Zivkovic, L. T., Gojgic-Cvijovic, G. D., Gopcevic, K. R., Vrvic, M. M. & Karadzic, I. M. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853. J. Basic Microbiol. 49, 452–62 (2009) | eng |
dcterms.references | Grbavčić, S. et al. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour. Technol. 102, 11226–33 (2011). | eng |
dcterms.references | Bisht, D., Yadav, S. K. & Darmwal, N. S. An oxidant and organic solvent tolerant alkaline lipase by P . aeruginosa mutant : Downstream processing and biochemical characterization. 1314, 1305–1314 (2013). | eng |
dcterms.references | Sulochana, M. B., Arunashreee, R., Mohan Reddy, K., Parameshwar, A. . & Jayachandra, S. . Isolation , Characterization and Purification of Lipase and Its Gene from Pseudomonas Sp . Ras-4. J. Chem. Biol. Phys. Sci. 5, 489–497 (2015) | eng |
dcterms.references | Liebeton, K. et al. Directed evolution of an enantioselective lipase. Chem. Biol. 7, 709–718 (2000). | eng |
dcterms.references | Rosenau, F. & Jaeger, K.-E. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023–1032 (2000). | eng |
dcterms.references | Mobarak-Qamsari, E., Kasra-Kermanshahi, R. & Moosavi-Nejad, Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran. J. Microbiol. 3, 92–8 (2011). | eng |
dcterms.references | Kawata, T. & Ogino, H. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol. Prog. 25, 1605–11 (2009) | eng |
dcterms.references | Rosenau, F., Tommassen, J. & Jaeger, K. E. Lipase-specific foldases. ChemBioChem 5, 152– 161 (2004). | eng |
dcterms.references | Madan, B. & Mishra, P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl. Microbiol. Biotechnol. 85, 597–604 (2010). | eng |
dcterms.references | Oshima-Hirayama, N., Yoshikawa, K., Nishioka, T. & Oda, J. Lipase from Pseudomonas aeruginosa. (1993). | eng |
dcterms.references | Ogino, H. et al. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11, 809–17 (2007). | eng |
dcterms.references | Ogino, H. et al. Refolding of a recombinant organic solvent-stable lipase, which is overexpressed and forms an inclusion body, and activation with lipase-specific foldase. Biochem. Eng. J. 40, 507–511 (2008). | eng |
dcterms.references | Ogino, H., Inoue, S., Yasuda, M. & Doukyu, N. Hyper-activation of foldase-dependent lipase with lipase-specific foldase. J. Biotechnol. 166, 20–4 (2013) | eng |
dcterms.references | Liebeton, K., Zacharias, A. & Jaeger, K. E. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. J. Bacteriol. 183, 597–603 (2001). | eng |
dcterms.references | Peng, R., Lin, J. & Wei, D. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase. Appl. Biochem. Biotechnol. 165, 926–37 (2011). | eng |
dcterms.references | Wu, X. et al. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnol. 12, 58 (2012). | eng |
dcterms.references | Pauwels, K., Molle, I. Van, Tommassen, J. & Gelder, P. Van. MicroReview Chaperoning Anfinsen : the steric foldases. 64, 917–922 (2007). | eng |
dcterms.references | Uscátegui, Y., Jiménez-Junca, C., Suárez, C. & Prieto-Correa, E. Evaluación de la inducción de enzimas lipolíticas a partir de una Pseudomona aeruginosa aislada del fruto de palma Africana (Elaeis guineensis). Vitae 19, 280–286 (2012). | spa |
dcterms.references | Bornscheuer, U. T. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73–81 (2002). | eng |
dcterms.references | Jaeger, K.-E. & Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397 (2002). | eng |
dcterms.references | Gupta, R., Gupta, N. & Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–81 (2004). | eng |
dcterms.references | Khan, M. & Kumar, A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome. J. Mol. Graph. Model. 70, 212–225 (2016). | eng |
dcterms.references | Carr, P. D. & Ollis, D. L. Alpha/beta hydrolase fold: an update. Protein Pept. Lett. 16, 1137– 1148 (2009). | eng |
dcterms.references | Nardini, M., Lang, D. a., Liebeton, K., Jaeger, K. E. & Dijkstra, B. W. Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J. Biol. Chem. 275, 31219–25 (2000). | eng |
dcterms.references | Jaeger, K. E., Dijkstra, B. W. & Reetz, M. T. Bacterial biocatalysts: molecular biology, threedimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315–51 (1999) | eng |
dcterms.references | Arpigny, J. L. et al. Bacterial lipolytic enzymes : classification and properties. 183, 177–183 (1999). | eng |
dcterms.references | . Hobson, a H. et al. Activation of a bacterial lipase by its chaperone. Proc. Natl. Acad. Sci. U. S. A. 90, 5682–5686 (1993). | eng |
dcterms.references | Chesterfield, D. M., Rogers, P. L., Al-Zaini, E. O. & Adesina, A. A. Production of biodiesel via ethanolysis of waste cooking oil using immobilised lipase. Chem. Eng. J. 207–208, 701–710 (2012) | eng |
dcterms.references | Basri, M., Kassim, M. A., Mohamad, R. & Ariff, A. B. Optimization and kinetic study on the synthesis of palm oil ester using Lipozyme TL IM. J. Mol. Catal. B Enzym. 85–86, 214–219 (2013). | eng |
dcterms.references | El Khattabi, M., Ockhuijsen, C., Bitter, W., Jaeger, K. E. & Tommassen, J. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Mol. Gen. Genet. 261, 770–776 (1999) | eng |
dcterms.references | Bleves, S. et al. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–43 (2010). | eng |
dcterms.references | Ruiz Martínez, L. Pseudomonas aeruginosa : Aportación al conocimiento de su estructura y al de los mecanismos que contribuyen a su resistencia a lo antimicrobianos. (2007). | spa |
dcterms.references | Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–64 (2000). | eng |
dcterms.references | Wu, W., Jin, Y., Bai, F. & Jin, S. Pseudomonas aeruginosa. Molecular Medical Microbiology (Elsevier Ltd, 2015). doi:10.1016/B978-0-12-397169-2.00041-X | eng |
dcterms.references | Abdou, L., Chou, H. H.-T., Haas, D. & Lu, C. C.-D. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J. Bacteriol. 193, 2784–92 (2011) | eng |
dcterms.references | Lee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. 6, 26–41 (2015). | eng |
dcterms.references | Lee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. 6, 26–41 (2015). | eng |
dcterms.references | Williams, P. & Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191 (2009) | eng |
dcterms.references | Balasubramanian, D., Murugapiran, S. K., Schneper, L., Yang, X. & Tatke, G. Transcriptional Regulatory Network in Pseudomonas aeruginosa. (2014) | eng |
dcterms.references | Palleroni, N. J. Pseudomonas. Bergey’s Man. Syst. Archaea Bact. 58–69 (1981). doi:10.1002/9781118960608.gbm01210. | eng |
dcterms.references | Eid, D., El-naggar, W., Barwa, R. & El-Sokkary, M. A. Phenotypic and genotypic characterization of some virulence factors in Pseudomonas aeruginosa strains isolated from different clinical sources in Mansoura University Hospitals . (2012). | eng |
dcterms.references | Grosso-Becerra, M.-V. et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15, 318 (2014). | eng |
dcterms.references | Jaeger, K.-E. E. & Reetz, M. T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396–403 (1998) | eng |
dcterms.references | Rabin, H. R. et al. Pulmonary exacerbations in cystic fibrosis. Pediatr. Pulmonol. 37, 400–6 (2004). | eng |
dcterms.references | Rajendran, A., Palanisamy, A. & Thangavelu, V. Lipase catalyzed ester synthesis for food processing industries. Brazilian Arch. Biol. Technol. 52, 207–219 (2009). | eng |
dcterms.references | Cao, Q. et al. A Novel Signal Transduction Pathway that Modulates rhl Quorum Sensing and Bacterial Virulence in Pseudomonas aeruginosa. PLoS Pathog. 10, e1004340 (2014). | eng |
dcterms.references | Heurlier, K. et al. Positive Control of Swarming , Rhamnolipid Synthesis , and Lipase Production by the Posttranscriptional RsmA / RsmZ System in Pseudomonas aeruginosa PAO1 Positive Control of Swarming , Rhamnolipid Synthesis , and Lipase Production by the Posttranscription. J. Bacteriol. 186, 2936–2945 (2004) | eng |
dcterms.references | van Delden, C., Comte, R. & Bally, A. M. Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 183, 5376–84 (2001). | eng |
dcterms.references | Misset, O. et al. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Eng. 7, 523–529 (1994). | eng |
dcterms.references | Beas, C., Ortuño, D. & Armendáriz, J. Biología Molecular. Fundamentos y Aplicaciones. (2009) | spa |
dcterms.references | Brown, T. Gene Cloning and DNA Analysis. (2010). | eng |
dcterms.references | Maddocks, S. & Jenkins, R. Using PCR for Cloning and Protein Expression. in Understanding PCR 61–71 (2017). doi:10.1016/B978-0-12-802683-0.00006-X | eng |
dcterms.references | Batista, M. B. & Müller-santos, M. Microbial Models: From Environmental to Industrial Sustainability. Microbial Models: From Environmental to Industrial Sustainability (2016). doi:10.1007/978-981-10-2555-6 | eng |
dcterms.references | Singha, T. K. et al. Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: A review. Process Biochem. 55, 17–31 (2017). | eng |
dcterms.references | Stanbury, P. F., Whitaker, A. & J. Hall, S. Chapter 12 – The production of heterologous proteins. in Principles of Fermentation Technology (Third Edition) 1, 725–775 (2017). | eng |
dcterms.references | Fisher, D. I., Mayr, L. M. & Roth, R. G. Expression Systems. in Encyclopedia of Cell Biology 248, 54–65 (Elsevier, 2016). | eng |
dcterms.references | Yin, J., Li, G., Ren, X. & Herrler, G. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol. 127, 335–47 (2007). | eng |
dcterms.references | Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30, 1102–7 (2012). | eng |
dcterms.references | Overton, T. W. Recombinant protein production in bacterial hosts. Drug Discov. Today 19, 590–601 (2014). | eng |
dcterms.references | Rosano, G. L. G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli : advances and challenges. Front. Microbiol. 5, 1–17 (2014). | eng |
dcterms.references | Sørensen, H. P. & Mortensen, K. K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115, 113–128 (2005) | eng |
dcterms.references | Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 753 (2012). | eng |
dcterms.references | Loeschcke, A. & Thies, S. Pseudomonas putida—a versatile host for the production of natural products. Appl. Microbiol. Biotechnol. 99, 6197–214 (2015). | eng |
dcterms.references | García-Fruitós, E. Inclusion bodies: a new concept. Microb. Cell Fact. 9, 80 (2010). | eng |
dcterms.references | Tsumoto, K., Ejima, D., Kumagai, I. & Arakawa, T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8 (2003). | eng |
dcterms.references | Gaberc-porekar, V., Fonda, I. & Podobnik, B. Production of Nonclassical Inclusion Bodies from Which Correctly. 632–639 (2005). | eng |
dcterms.references | Duong-Ly, K. C. & Gabelli, S. B. Explanatory chapter: Troubleshooting recombinant protein expression: General. Methods in Enzymology 541, (Elsevier Inc., 2014). | eng |
dcterms.references | Singh, A., Upadhyay, V. & Panda, A. K. Solubilization and refolding of inclusion body proteins. Insoluble Proteins Methods Protoc. 99, 283–291 (2014) | eng |
dcterms.references | Uscátegui, Y., Jiménez-Junca, C., Suárez, C., Prieto-Correa, E. & Uscátegui M., JiménezJunca, Suárez M., P.-C. EVALUATION OF THE INDUCTION OF LIPOLYTIC ENZYMES FROM A Pseudomona aeruginosa ISOLATED FROM AFRICAN PALM FRUIT (Elaeis guineensis). Viate 19, 280–286 (2012). | eng |
dcterms.references | Peng, R., Lin, J. & Wei, D. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl. Biochem. Biotechnol. 162, 733–743 (2010). | eng |
dcterms.references | Green, M. R. & Sambrook, J. Molecular Cloning A Laboratory Manual.pdf. (Cold Spring Harbor Laboratory Press, 2012). | eng |
dcterms.references | Akbari, N. et al. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr. Purif. 70, 75–80 (2010). | eng |
dcterms.references | Choi, J. H. & Lee, S. Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–35 (2004). | eng |
dcterms.references | Ren, G., Ke, N. & Berkmen, M. Use of the SHuffle Strains in Production of Proteins. Curr. Protoc. Protein Sci. 5.26.1-5.26.21 (2016). doi:10.1002/cpps.11 | eng |
dcterms.references | Baharum, S. N., Rahman, R. N. Z. R. A., Basri, M. & Salleh, A. B. Chaperone-dependent gene expression of organic solvent-tolerant lipase from Pseudomonas aeruginosa strain S5. Process Biochem. 45, 346–354 (2010) | eng |
dcterms.references | Kojima, Y., Kobayashi, M. & Shimizu, S. A Novel Lipase from Pseudomonas fluorescens HU3 80 : Gene Cloning , Overproduction , Renkuration-Activation , Two-Step Purification , and Characterization. J. Biosci. Bioeng. 96, 242–249 (2003). | eng |
dcterms.references | Selvin, J., Kennedy, J., Lejon, D. P. H., Kiran, S. & Dobson, A. D. W. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb. Cell Fact. 11, 72 (2012) | eng |
dcterms.references | Quyen, T. D., Vu, C. H., Le, G. T. T., Thi, G. & Le, T. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. Microb. Cell Fact. 11, 29 (2012). | eng |
dcterms.references | Jaeger, K. E. et al. Bacterial lipases. FEMS Microbiol. Rev. 15, 29–63 (1994). | eng |
dcterms.references | Zha, D., Zhang, H. H. H. H., Zhang, H. H. H. H., Xu, L. & Yan, Y. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation. Biochimie 105, 165–171 (2014). | eng |
dcterms.references | Akbari, N., Khajeh, K., Ghaemi, N. & Salemi, Z. Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expr. Purif. 70, 254–259 (2010) | eng |
dcterms.references | Svendsen, A. Enzyme functionality : design, engineering, and screening. (Marcel Dekker, 2004). | eng |
dcterms.references | Nars, G. et al. Production of stable isotope labelled lipase Lip2 from Yarrowia lipolytica for NMR: Investigation of several expression systems. Protein Expr. Purif. 101, 14–20 (2014). | eng |
dcterms.references | Nagradova, N. Enzymes catalyzing protein folding and their cellular functions. Curr. Protein Pept. Sci. 8, 273–82 (2007). | eng |