Mostrar el registro sencillo del ítem

dc.contributor.advisorPrieto Correa, Rosa Erlide
dc.contributor.advisorJiménez Junca, Carlos
dc.contributor.authorSalazar Mora, Jessica Mercedes
dc.date.accessioned2019-11-27T15:34:31Z
dc.date.available2019-11-27T15:34:31Z
dc.date.issued2019-10-22
dc.identifier.urihttp://hdl.handle.net/10818/38401
dc.description69 páginases_CO
dc.description.abstractLas lipasas de origen microbiano son biocatalizadores versátiles de gran potencial de aplicación a nivel industrial. El grupo de Investigación de Procesos Agroindustriales (GIPA) de la Universidad de la Sabana ha aislado, caracterizado y purificado parcialmente la lipasa LSPSA-01 de Pseudomonas aeruginosa PSA-01, la cual se ha encontrado promisoria para la catálisis de reacciones de esterificación para la producción de biodiesel desde aceite de palma y metanol 1. Esta lipasa mostró buena actividad a 58°C, tolerancia a pH alcalinos y no perdió su actividad en solventes tales como hexano, heptano, DMSO y etanol 2. Por las propiedades mencionadas y en búsqueda de mejorar los rendimientos de producción de la lipasa LSPSA-01, para su posterior purificación y caracterización bioquímica. El presente trabajo tiene por objetivo obtener la lipasa LPSA01 mediante estrategias de producción heteróloga, para evaluar su actividad y rendimientos de producción. El gen de la lipasa, lipA (936 bp) y el gen de la foldasa, lipH (867 bp) de Pseudomonas aeruginosa PSA01 se identificaron y se secuenciaron, encontrándose idénticos en un 99% y 100% con los genes de lipA y lipH, de P. aeruginosa PAO1, P. aeruginosa LST03 y P. aeruginosa CS-2, respectivamente. Se construyó exitosamente el sistema de expresión Escherichia coli SHuffle/pET29a-lipA. La actividad de lipasa obtenida con este sistema se encontró para el cultivo inducido a una densidad óptica de 0.4 Abs a 600 nm, con una concentración de IPTG de 0.4mM y temperatura de expresión 25°C, en la fracción soluble de lisis, la cual correspondió a 8000 U/L. La LipA activa se logró obtener sin la coexpresión de LipH, sin embargo, la mayor concentración de lipasa recombinante se acumula en cuerpos de inclusión inactiva.es_CO
dc.description.abstractMicrobial lipases are versatile biocatalyst with great industrial potential. The Agroindustrial Processes research group from the University of La Sabana has isolated, partially purified and characterized the LSPSA-01 lipase from Pseudomonas aeruginosa PSA-01. The enzyme was found to be suitable for the catalysis of esterification reactions for the biodiesel production from palm oil and methanol 1 . The lipase showed desirable activity at 58°C and was stable at alkaline pH. The lipase remains active in the presence of hexane, heptane, DMSO and ethanol 2 . Therefore, in order to increase the yield of production of the enzyme for later purification and characterization, and efficient heterologous expression system is desirable. The lipase gene, lipA (936 bp) and the foldase gene, lipH (867 bp) of Pseudomonas aeruginosa PSA01 were sequenced and resulted 99% and 100% identical with the lipA and lipH genes from P. aeruginosa PAO1, P. aeruginosa LST03 and P. aeruginosa CS-2, respectively. In this study, we report the construction of the Escherichia coli SHuffle / pET29a-lipA expression system and the subsequent production of the lipase. The lipase activity was found in the soluble fraction of cell lysis, which corresponded to 8000 U / L. Active LipA was obtained without the coexpression of LipH, for the culture induced at an optical density of 0.4Abs at 600 nm, with an IPTG concentration of 0.4mM and an expression temperature of 25 °C, offering promising strategies for overproduction. However, the highest concentration of recombinant lipase accumulates in inactive inclusion bodies.en
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectPseudomonas aeruginosaes_CO
dc.subjectLipasaes_CO
dc.subjectEscherichia coli SHufflees_CO
dc.titleClonación y expresión heteróloga del gen de lipasa lpsa01 de pseudomonas aeruginosa psa-01 aislada de frutos de palma aceiteraes_CO
dc.title.alternativeCloning and heterologous expression of the lipase LPSA01 gene from Pseudomonas aeruginosa PSA-01 isolated from african palm fruit.en
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local275218
dc.identifier.localTE10453
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesPerdomo Cabrejo, J. M. P., Diaz Barrera, L. E. & Prieto-correa, R. E. Applied Biocatalysis with an Organic Resistant Partially Purified Lipase from P . aeruginosa During FAME Production. open Catal. J. 8, 1–10 (2015).eng
dcterms.referencesPerdomo Cabrejo, J. M. Determinación de los parámetros de trabajo de la lipasa de Pseudomonas aeruginosa aislada del fruto de la palma aceitera para su uso como biocatalizador en la producción de biodiésel. (Universidad de la Sabana, 2012)spa
dcterms.referencesErickson, B., Nelson, J. E. & Winters, P. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnolgy J. 7, 176–185 (2012).eng
dcterms.referencesGurung, N., Ray, S., Bose, S., Rai, V. & K, W. F. A Broader View : Microbial Enzymes and Their Relevance in Industries , Medicine , and Beyond enzyme and its use were well known to the mankind but. Biomed. Res. Int. 2013, 1–18 (2013).eng
dcterms.referencesBrahmachari, G. Lipase-Catalyzed Organic Transformations. Biotechnology of Microbial Enzymes (Elsevier Inc., 2017). doi:10.1016/B978-0-12-803725-6.00013-3eng
dcterms.referencesSanchez, S. & Demain, A. L. Chapter 1 – Useful Microbial Enzymes—An Introduction. in Biotechnology of Microbial Enzymes 2017, 1–11 (Elsevier Inc., 2017).eng
dcterms.referencesMarketsAndMarkets. Lipase Market by Source (Microbial Lipases, Animal Lipases), Application (Animal Feed, Dairy, Bakery, Confectionery, Others), & by Geography (North America, Europe, Asia-Pacific, Latin America, RoW) - Global Forecast to 2020. (2015). Available at: http://www.marketsandmarkets.com/Market-Reports/lipase-market205981206.html.eng
dcterms.referencesGroup, F. World Enzyme Report. (2014)eng
dcterms.referencesAarthy, M., Saravanan, P., Gowthaman, M. K., Rose, C. & Kamini, N. R. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chem. Eng. Res. Des. 92, 1591–1601 (2014).eng
dcterms.referencesBose, A. & Keharia, H. Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal. Agric. Biotechnol. 2, 255–266 (2013).eng
dcterms.referencesGaur, R. & Khare, S. K. Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. Biocatal. Biotransformation 29, 161–171 (2011).eng
dcterms.referencesGonzález, I. N. et al. Enzimas lipoliticas bacterianas: propiedades, clasificación, estructura, aplicaciones tecnológicas y aspectos legales. An. Vet. Murcia 28, 45–65 (2012)eng
dcterms.referencesPriji et al., P. Microbial Lipases - Properties and Applications. J. Microbiol. Biotechnol. Food Sci. 6, 799–807 (2016).eng
dcterms.referencesSalihu, A. & Alam, M. Z. Solvent tolerant lipases: A review. Process Biochem. 50, 86–96 (2015).eng
dcterms.referencesAndualema, B. & Gessesse, A. Microbial lipases and their industrial applications: Review. Biotechnology 11, 100–118 (2012).eng
dcterms.referencesChristopher, L. P., Kumar, H., Zambare, V. P., Hemanathan Kumar & Zambare, V. P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 119, 497–520 (2014).eng
dcterms.referencesDaiha, K. de G., Angeli, R., de Oliveira, S. D. & Almeida, R. V. Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting. PLoS One 10, e0131624 (2015)eng
dcterms.referencesKumar, A., Dhar, K., Kanwar, S. S. & Arora, P. K. Lipase catalysis in organic solvents : advantages and applications. Biol. Proced. Online 1–12 (2016). doi:10.1186/s12575-016- 0033-2eng
dcterms.referencesValetti, F. & Gilardi, G. Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis. Biomolecules 3, 778–811 (2013).eng
dcterms.referencesDoukyu, N. & Ogino, H. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270–282 (2010).eng
dcterms.referencesReetz, M. T., Soni, P., Fernández, L., Gumulya, Y. & Carballeira, J. D. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun. 46, 8657 (2010).eng
dcterms.referencesSarrouh, B., Santos, T. M., Miyoshi, A., Dias, R. & Azevedo, V. Up-To-Date Insight on Industrial Enzymes Applications and Global Market. J. Bioprocess. Biotech. S4, 1–10 (2012).eng
dcterms.referencesKobayashi, S. Lipase-catalyzed polyester synthesis--a green polymer chemistry. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 86, 338–365 (2010).eng
dcterms.referencesKazlauskas, R. J. & Bornscheuer, U. T. Finding better protein engineering strategies. Nat. Chem. Biol. 5, 526–9 (2009).eng
dcterms.referencesSchmidt, M., Baumann, M., Henke, E., Konarzycka-Bessler, M. & Bornscheuer, U. T. Directed evolution of lipases and esterases. Methods Enzymol. 388, 199–207 (2004).eng
dcterms.referencesBornscheuer, U. T., Bessler, C., Srinivas, R. & Hari Krishna, S. Optimizing lipases and related enzymes for efficient application. Trends Biotechnol. 20, 433–437 (2002).eng
dcterms.referencesNestl, B. M., Nebel, B. a & Hauer, B. Recent progress in industrial biocatalysis. Curr. Opin. Chem. Biol. 15, 187–93 (2011)eng
dcterms.referencesBornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012)eng
dcterms.referencesTurki, S. Towards the development of systems for high-yield production of microbial lipases. Biotechnol. Lett. 35, 1551–60 (2013)eng
dcterms.referencesAnobom, C. D. et al. From Structure to Catalysis : Recent Developments in the Biotechnological Applications of Lipases. 2014, (2014).eng
dcterms.referencesRibeiro, B. D., de Castro, A. M., Coelho, M. A. Z. & Freire, D. M. G. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011, 615803 (2011).eng
dcterms.referencesJaved, S. et al. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. (2017). doi:10.1016/j.pbiomolbio.2017.07.014eng
dcterms.referencesGaur, R., Gupta, A. & Khare, S. K. K. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem. 43, 1040–1046 (2008).eng
dcterms.referencesIzrael-Zivkovic, L. T., Gojgic-Cvijovic, G. D., Gopcevic, K. R., Vrvic, M. M. & Karadzic, I. M. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853. J. Basic Microbiol. 49, 452–62 (2009)eng
dcterms.referencesGrbavčić, S. et al. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour. Technol. 102, 11226–33 (2011).eng
dcterms.referencesBisht, D., Yadav, S. K. & Darmwal, N. S. An oxidant and organic solvent tolerant alkaline lipase by P . aeruginosa mutant : Downstream processing and biochemical characterization. 1314, 1305–1314 (2013).eng
dcterms.referencesSulochana, M. B., Arunashreee, R., Mohan Reddy, K., Parameshwar, A. . & Jayachandra, S. . Isolation , Characterization and Purification of Lipase and Its Gene from Pseudomonas Sp . Ras-4. J. Chem. Biol. Phys. Sci. 5, 489–497 (2015)eng
dcterms.referencesLiebeton, K. et al. Directed evolution of an enantioselective lipase. Chem. Biol. 7, 709–718 (2000).eng
dcterms.referencesRosenau, F. & Jaeger, K.-E. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023–1032 (2000).eng
dcterms.referencesMobarak-Qamsari, E., Kasra-Kermanshahi, R. & Moosavi-Nejad, Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran. J. Microbiol. 3, 92–8 (2011).eng
dcterms.referencesKawata, T. & Ogino, H. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol. Prog. 25, 1605–11 (2009)eng
dcterms.referencesRosenau, F., Tommassen, J. & Jaeger, K. E. Lipase-specific foldases. ChemBioChem 5, 152– 161 (2004).eng
dcterms.referencesMadan, B. & Mishra, P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl. Microbiol. Biotechnol. 85, 597–604 (2010).eng
dcterms.referencesOshima-Hirayama, N., Yoshikawa, K., Nishioka, T. & Oda, J. Lipase from Pseudomonas aeruginosa. (1993).eng
dcterms.referencesOgino, H. et al. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11, 809–17 (2007).eng
dcterms.referencesOgino, H. et al. Refolding of a recombinant organic solvent-stable lipase, which is overexpressed and forms an inclusion body, and activation with lipase-specific foldase. Biochem. Eng. J. 40, 507–511 (2008).eng
dcterms.referencesOgino, H., Inoue, S., Yasuda, M. & Doukyu, N. Hyper-activation of foldase-dependent lipase with lipase-specific foldase. J. Biotechnol. 166, 20–4 (2013)eng
dcterms.referencesLiebeton, K., Zacharias, A. & Jaeger, K. E. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. J. Bacteriol. 183, 597–603 (2001).eng
dcterms.referencesPeng, R., Lin, J. & Wei, D. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase. Appl. Biochem. Biotechnol. 165, 926–37 (2011).eng
dcterms.referencesWu, X. et al. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnol. 12, 58 (2012).eng
dcterms.referencesPauwels, K., Molle, I. Van, Tommassen, J. & Gelder, P. Van. MicroReview Chaperoning Anfinsen : the steric foldases. 64, 917–922 (2007).eng
dcterms.referencesUscátegui, Y., Jiménez-Junca, C., Suárez, C. & Prieto-Correa, E. Evaluación de la inducción de enzimas lipolíticas a partir de una Pseudomona aeruginosa aislada del fruto de palma Africana (Elaeis guineensis). Vitae 19, 280–286 (2012).spa
dcterms.referencesBornscheuer, U. T. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73–81 (2002).eng
dcterms.referencesJaeger, K.-E. & Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397 (2002).eng
dcterms.referencesGupta, R., Gupta, N. & Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–81 (2004).eng
dcterms.referencesKhan, M. & Kumar, A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome. J. Mol. Graph. Model. 70, 212–225 (2016).eng
dcterms.referencesCarr, P. D. & Ollis, D. L. Alpha/beta hydrolase fold: an update. Protein Pept. Lett. 16, 1137– 1148 (2009).eng
dcterms.referencesNardini, M., Lang, D. a., Liebeton, K., Jaeger, K. E. & Dijkstra, B. W. Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J. Biol. Chem. 275, 31219–25 (2000).eng
dcterms.referencesJaeger, K. E., Dijkstra, B. W. & Reetz, M. T. Bacterial biocatalysts: molecular biology, threedimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315–51 (1999)eng
dcterms.referencesArpigny, J. L. et al. Bacterial lipolytic enzymes : classification and properties. 183, 177–183 (1999).eng
dcterms.references. Hobson, a H. et al. Activation of a bacterial lipase by its chaperone. Proc. Natl. Acad. Sci. U. S. A. 90, 5682–5686 (1993).eng
dcterms.referencesChesterfield, D. M., Rogers, P. L., Al-Zaini, E. O. & Adesina, A. A. Production of biodiesel via ethanolysis of waste cooking oil using immobilised lipase. Chem. Eng. J. 207–208, 701–710 (2012)eng
dcterms.referencesBasri, M., Kassim, M. A., Mohamad, R. & Ariff, A. B. Optimization and kinetic study on the synthesis of palm oil ester using Lipozyme TL IM. J. Mol. Catal. B Enzym. 85–86, 214–219 (2013).eng
dcterms.referencesEl Khattabi, M., Ockhuijsen, C., Bitter, W., Jaeger, K. E. & Tommassen, J. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Mol. Gen. Genet. 261, 770–776 (1999)eng
dcterms.referencesBleves, S. et al. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–43 (2010).eng
dcterms.referencesRuiz Martínez, L. Pseudomonas aeruginosa : Aportación al conocimiento de su estructura y al de los mecanismos que contribuyen a su resistencia a lo antimicrobianos. (2007).spa
dcterms.referencesStover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–64 (2000).eng
dcterms.referencesWu, W., Jin, Y., Bai, F. & Jin, S. Pseudomonas aeruginosa. Molecular Medical Microbiology (Elsevier Ltd, 2015). doi:10.1016/B978-0-12-397169-2.00041-Xeng
dcterms.referencesAbdou, L., Chou, H. H.-T., Haas, D. & Lu, C. C.-D. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J. Bacteriol. 193, 2784–92 (2011)eng
dcterms.referencesLee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. 6, 26–41 (2015).eng
dcterms.referencesLee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. 6, 26–41 (2015).eng
dcterms.referencesWilliams, P. & Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191 (2009)eng
dcterms.referencesBalasubramanian, D., Murugapiran, S. K., Schneper, L., Yang, X. & Tatke, G. Transcriptional Regulatory Network in Pseudomonas aeruginosa. (2014)eng
dcterms.referencesPalleroni, N. J. Pseudomonas. Bergey’s Man. Syst. Archaea Bact. 58–69 (1981). doi:10.1002/9781118960608.gbm01210.eng
dcterms.referencesEid, D., El-naggar, W., Barwa, R. & El-Sokkary, M. A. Phenotypic and genotypic characterization of some virulence factors in Pseudomonas aeruginosa strains isolated from different clinical sources in Mansoura University Hospitals . (2012).eng
dcterms.referencesGrosso-Becerra, M.-V. et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15, 318 (2014).eng
dcterms.referencesJaeger, K.-E. E. & Reetz, M. T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396–403 (1998)eng
dcterms.referencesRabin, H. R. et al. Pulmonary exacerbations in cystic fibrosis. Pediatr. Pulmonol. 37, 400–6 (2004).eng
dcterms.referencesRajendran, A., Palanisamy, A. & Thangavelu, V. Lipase catalyzed ester synthesis for food processing industries. Brazilian Arch. Biol. Technol. 52, 207–219 (2009).eng
dcterms.referencesCao, Q. et al. A Novel Signal Transduction Pathway that Modulates rhl Quorum Sensing and Bacterial Virulence in Pseudomonas aeruginosa. PLoS Pathog. 10, e1004340 (2014).eng
dcterms.referencesHeurlier, K. et al. Positive Control of Swarming , Rhamnolipid Synthesis , and Lipase Production by the Posttranscriptional RsmA / RsmZ System in Pseudomonas aeruginosa PAO1 Positive Control of Swarming , Rhamnolipid Synthesis , and Lipase Production by the Posttranscription. J. Bacteriol. 186, 2936–2945 (2004)eng
dcterms.referencesvan Delden, C., Comte, R. & Bally, A. M. Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 183, 5376–84 (2001).eng
dcterms.referencesMisset, O. et al. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Eng. 7, 523–529 (1994).eng
dcterms.referencesBeas, C., Ortuño, D. & Armendáriz, J. Biología Molecular. Fundamentos y Aplicaciones. (2009)spa
dcterms.referencesBrown, T. Gene Cloning and DNA Analysis. (2010).eng
dcterms.referencesMaddocks, S. & Jenkins, R. Using PCR for Cloning and Protein Expression. in Understanding PCR 61–71 (2017). doi:10.1016/B978-0-12-802683-0.00006-Xeng
dcterms.referencesBatista, M. B. & Müller-santos, M. Microbial Models: From Environmental to Industrial Sustainability. Microbial Models: From Environmental to Industrial Sustainability (2016). doi:10.1007/978-981-10-2555-6eng
dcterms.referencesSingha, T. K. et al. Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: A review. Process Biochem. 55, 17–31 (2017).eng
dcterms.referencesStanbury, P. F., Whitaker, A. & J. Hall, S. Chapter 12 – The production of heterologous proteins. in Principles of Fermentation Technology (Third Edition) 1, 725–775 (2017).eng
dcterms.referencesFisher, D. I., Mayr, L. M. & Roth, R. G. Expression Systems. in Encyclopedia of Cell Biology 248, 54–65 (Elsevier, 2016).eng
dcterms.referencesYin, J., Li, G., Ren, X. & Herrler, G. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol. 127, 335–47 (2007).eng
dcterms.referencesChen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30, 1102–7 (2012).eng
dcterms.referencesOverton, T. W. Recombinant protein production in bacterial hosts. Drug Discov. Today 19, 590–601 (2014).eng
dcterms.referencesRosano, G. L. G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli : advances and challenges. Front. Microbiol. 5, 1–17 (2014).eng
dcterms.referencesSørensen, H. P. & Mortensen, K. K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115, 113–128 (2005)eng
dcterms.referencesLobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 753 (2012).eng
dcterms.referencesLoeschcke, A. & Thies, S. Pseudomonas putida—a versatile host for the production of natural products. Appl. Microbiol. Biotechnol. 99, 6197–214 (2015).eng
dcterms.referencesGarcía-Fruitós, E. Inclusion bodies: a new concept. Microb. Cell Fact. 9, 80 (2010).eng
dcterms.referencesTsumoto, K., Ejima, D., Kumagai, I. & Arakawa, T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8 (2003).eng
dcterms.referencesGaberc-porekar, V., Fonda, I. & Podobnik, B. Production of Nonclassical Inclusion Bodies from Which Correctly. 632–639 (2005).eng
dcterms.referencesDuong-Ly, K. C. & Gabelli, S. B. Explanatory chapter: Troubleshooting recombinant protein expression: General. Methods in Enzymology 541, (Elsevier Inc., 2014).eng
dcterms.referencesSingh, A., Upadhyay, V. & Panda, A. K. Solubilization and refolding of inclusion body proteins. Insoluble Proteins Methods Protoc. 99, 283–291 (2014)eng
dcterms.referencesUscátegui, Y., Jiménez-Junca, C., Suárez, C., Prieto-Correa, E. & Uscátegui M., JiménezJunca, Suárez M., P.-C. EVALUATION OF THE INDUCTION OF LIPOLYTIC ENZYMES FROM A Pseudomona aeruginosa ISOLATED FROM AFRICAN PALM FRUIT (Elaeis guineensis). Viate 19, 280–286 (2012).eng
dcterms.referencesPeng, R., Lin, J. & Wei, D. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl. Biochem. Biotechnol. 162, 733–743 (2010).eng
dcterms.referencesGreen, M. R. & Sambrook, J. Molecular Cloning A Laboratory Manual.pdf. (Cold Spring Harbor Laboratory Press, 2012).eng
dcterms.referencesAkbari, N. et al. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr. Purif. 70, 75–80 (2010).eng
dcterms.referencesChoi, J. H. & Lee, S. Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–35 (2004).eng
dcterms.referencesRen, G., Ke, N. & Berkmen, M. Use of the SHuffle Strains in Production of Proteins. Curr. Protoc. Protein Sci. 5.26.1-5.26.21 (2016). doi:10.1002/cpps.11eng
dcterms.referencesBaharum, S. N., Rahman, R. N. Z. R. A., Basri, M. & Salleh, A. B. Chaperone-dependent gene expression of organic solvent-tolerant lipase from Pseudomonas aeruginosa strain S5. Process Biochem. 45, 346–354 (2010)eng
dcterms.referencesKojima, Y., Kobayashi, M. & Shimizu, S. A Novel Lipase from Pseudomonas fluorescens HU3 80 : Gene Cloning , Overproduction , Renkuration-Activation , Two-Step Purification , and Characterization. J. Biosci. Bioeng. 96, 242–249 (2003).eng
dcterms.referencesSelvin, J., Kennedy, J., Lejon, D. P. H., Kiran, S. & Dobson, A. D. W. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb. Cell Fact. 11, 72 (2012)eng
dcterms.referencesQuyen, T. D., Vu, C. H., Le, G. T. T., Thi, G. & Le, T. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. Microb. Cell Fact. 11, 29 (2012).eng
dcterms.referencesJaeger, K. E. et al. Bacterial lipases. FEMS Microbiol. Rev. 15, 29–63 (1994).eng
dcterms.referencesZha, D., Zhang, H. H. H. H., Zhang, H. H. H. H., Xu, L. & Yan, Y. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation. Biochimie 105, 165–171 (2014).eng
dcterms.referencesAkbari, N., Khajeh, K., Ghaemi, N. & Salemi, Z. Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expr. Purif. 70, 254–259 (2010)eng
dcterms.referencesSvendsen, A. Enzyme functionality : design, engineering, and screening. (Marcel Dekker, 2004).eng
dcterms.referencesNars, G. et al. Production of stable isotope labelled lipase Lip2 from Yarrowia lipolytica for NMR: Investigation of several expression systems. Protein Expr. Purif. 101, 14–20 (2014).eng
dcterms.referencesNagradova, N. Enzymes catalyzing protein folding and their cellular functions. Curr. Protein Pept. Sci. 8, 273–82 (2007).eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International