Mostrar el registro sencillo del ítem
Modelado matemático de la actividad de lasparaginasa purificada de cultivos axénicos de actinobacterias aisladas de la ribera del río Arauca
dc.contributor.advisor | Díaz Barrera, Luis Eduardo | |
dc.contributor.advisor | Cortázar Gómez, Jorge Eduardo | |
dc.contributor.author | Arévalo Tristancho, Estefanía | |
dc.date.accessioned | 2019-04-02T20:54:16Z | |
dc.date.available | 2019-04-02T20:54:16Z | |
dc.date.issued | 2019-01-10 | |
dc.identifier.uri | http://hdl.handle.net/10818/35352 | |
dc.description | 75 páginas | es_CO |
dc.description.abstract | Las enzimas de origen microbial han demostrado ser útiles en distintos campos como la medicina y la industria de alimentos. La L-asparaginasa, de origen microbial es una enzima aminohidrolasa, la cual cataliza la conversión de L-asparagina a aspartato y catión amonio. La L-asparaginasa es conocida como un agente anticáncer, el cual previene la proliferación de células tumorales por disminución del nivel de L-asparagina en la sangre. Esta enzima ha demostrado ser una forma de tratamiento ante la Leucemia Linfocítica Aguda (ALL por sus siglas en inglés), extraída de E. coli y Erwinia chrysanthemi, pero con un alto valor comercial en la extracción de la misma y múltiples efectos secundarios posiblemente debidos a la actividad L-glutaminasa producida por las mismas bacterias. En este proyecto de investigación se planteó como fuente de producción de Lasparaginasa a las actinobacterias más específicamente las Streptomyces aisladas de la ribera del río Arauca. Para esto, se realizó una identificación morfológica y molecular de siete actinobacterias aisladas de la ribera del río Arauca que fueron positivas ante la producción de L-asparaginasa. Se realizaron perfiles de crecimiento de las siete cepas en cinco fuentes de carbono y tres fuentes de nitrógeno. Posteriormente, se empleó una estrategia secuencial de mejora de algunos factores de fermentación para determinar el efecto de la concentración de la fuente de carbono y la fuente de nitrógeno, la temperatura de incubación, el pH del medio y la tasa de agitación en la actividad de la L-asparaginasa de las cepas seleccionadas. Se determinó que la mejor fuente de carbono y de nitrógeno que incrementó la actividad de la cepa fueron lactosa y extracto de levadura y Lasparagina respectivamente. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Enzimas | es_CO |
dc.subject | Microbiología | es_CO |
dc.subject | Organismos | es_CO |
dc.title | Modelado matemático de la actividad de lasparaginasa purificada de cultivos axénicos de actinobacterias aisladas de la ribera del río Arauca | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 270914 | |
dc.identifier.local | TE10031 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | Abraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8(1). https://doi.org/10.1007/s13205-017-1044-7 | eng |
dcterms.references | Aghaeepoor, M., Mozafari, S., Shahraki, M., Tabandeh, F., & Bambai, B. (2011). High level of extracellular fermentation and alternative purification of Escherichia coli Asparaginase II. Biharean Biologist, 5(2), 96–101. | eng |
dcterms.references | Al husnan, L. A., & Alkahtani, M. D. F. (2016). Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities. Annals of Agricultural Sciences, 61(2), 251–255. https://doi.org/10.1016/j.aoas.2016.06.002 | eng |
dcterms.references | Ali, U., Naveed, M., Ullah, A., & Ali, K. (2016). L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): A novel approach to target ALL. European Journal of Pharmacology, 771, 199–210. https://doi.org/10.1016/j.ejphar.2015.12.023 | eng |
dcterms.references | Amena, S., Vishalakshi, N., Prabhakar, M., & Dayanand, A. (2010). Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Brazilian Journal of Microbiology, 41(1), 173–178. | eng |
dcterms.references | Appel, I. M. (2008). Pharmacodynamics of L-Asparaginase in Childhood Acute Leukemia. Erasmus Universiteit Rotterdam, Holanda. | eng |
dcterms.references | Arango, C., Acosta-gonzalez, A., Parra-giraldo, C. M., Sánchez-, Z. A., Kerr, R., & Díaz, L. E. (2018). Characterization of actinobacterial communities from Arauca river sediments ( Colombia ) reveals antimicrobial potential presented in low abundant isolates. The Open Microbiology Journal, 12, 3–16. https://doi.org/10.2174/187428580181201 | eng |
dcterms.references | Badoei-Dalfard, A. (2015). Purification and characterization of l-asparaginase from Pseudomonas aeruginosa strain SN004: Production optimization by statistical methods. Biocatalysis and Agricultural Biotechnology, 4(3), 388–397. https://doi.org/10.1016/j.bcab.2015.06.007 | spa |
dcterms.references | Bazaraa, W., Alian, A., El-Shimi, N., & Mohamed, R. (2016). Purification and characterization of extracellular glutaminase from Aspergillus oryzae NRRL 32567. Biocatalysis and Agricultural Biotechnology, 6, 76–81. https://doi.org/10.1016/j.bcab.2016.02.009 | eng |
dcterms.references | Bhagat, J., Kaur, A., & Chadha, B. S. (2016). Food and Bioproducts Processing Single step purification of asparaginase from endophytic bacteria Pseudomonas oryzihabitans exhibiting high potential to reduce acrylamide in processed potato chips. Food and Bioproducts Processing, 99, 222–230. https://doi.org/10.1016/j.fbp.2016.05.010 | spa |
dcterms.references | Borek, D., & Jaskólski, M. (2001). Sequence analysis of enzymes with asparaginase activity. Acta Biochimica Polonica, 48(4), 893–902. | eng |
dcterms.references | Chohan, S. M., & Rashid, N. (2013). TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. Journal of Bioscience and Bioengineering, 116(4), 438–43. https://doi.org/10.1016/j.jbiosc.2013.04.005 | eng |
dcterms.references | Cui, F., & Zhao, L. (2012). Optimization of xylanase production from Penicillium sp.WX-Z1 by a twostep statistical strategy: Plackett-Burman and Box-Behnken experimental design. International Journal of Molecular Sciences, 13(8), 10630–10646. https://doi.org/10.3390/ijms130810630 | eng |
dcterms.references | de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., & de Azevedo, J. L. (2012). Antibiotics produced by Streptomyces. Brazilian Journal of Infectious Diseases, 16(5), 466–471. https://doi.org/10.1016/j.bjid.2012.08.014 | eng |
dcterms.references | de Souza, R. F., Coelho, R. R. R., Macrae, A., Soares, R. M. A., Nery, D. da C. M., Semêdo, T. de A. S., … Gomes, R. C. (2008). Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil. International Journal of Systematic and Evolutionary Microbiology, 58(12), 2774–2778. https://doi.org/10.1099/ijs.0.65768-0 | eng |
dcterms.references | DeJong, P. J. (1972). L-Asparaginase Production by Streptomyces griseus. Applied Mocrobiology, 23(6), 1163–1164. | eng |
dcterms.references | Deshpande, N., Choubey, P., & Agashe, M. (2014). Studies on Optimization of Growth Parameters for L-asparaginase production by Streptomyces ginsengisoli. The Scientific World Journal, 2014, 1–6. https://doi.org/10.1155/2014/895167 | eng |
dcterms.references | Dhale, M. A., & Mohan-Kumari, H. P. (2014). A comparative rapid and sensitive method to screen lasparaginase producing fungi. Journal of Microbiological Methods, 102, 66–68. https://doi.org/10.1016/j.mimet.2014.04.010 | eng |
dcterms.references | Dhevagi, P., & Poorani, E. (2006). Isolation and characterization of L -asparaginase from marine actinomycetes. Indian Journal of Biotechnology, 5(December 2003), 514–520. | eng |
dcterms.references | Dias-Gonçalves, F. F., Ruiz-Tasca Gois, A. L., Torre Della, A., & Sato-Harumi, H. (2016). Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pacific Journal of Tropical Biomedicine, 6(9), 785–794. https://doi.org/10.1016/j.apjtb.2016.07.007 | eng |
dcterms.references | Dias, F. F. G., & Sato, H. H. (2016). Sequential optimization strategy for maximum l-asparaginase production from Aspergillus oryzae CCT 3940. Biocatalysis and Agricultural Biotechnology, 6, 33–39. https://doi.org/10.1016/j.bcab.2016.02.006 | eng |
dcterms.references | Díaz Díaz, J., Nuñez Enamorado, N., Martinez de Aragón, A., Barrios López, M., Camacho Salas, A., & Simón de la Heras, R. (2015). Trombosis venosa cerebral en pacientes oncológicos en tratamiento con L-asparaginasa. An Pediatr (Barc), 82(2), 113–114. https://doi.org/http://dx.doi.org/10.1016/j.anpedi.2014.04.015 | spa |
dcterms.references | Duncan, K., Haltli, B., Gill, K. A., & Kerr, R. G. (2014). Bioprospecting from marine sediments of New Brunswick, Canada: Exploring the relationship between total bacterial diversity and actinobacteria diversity. Marine Drugs, 12(2), 899–925. https://doi.org/10.3390/md12020899 | eng |
dcterms.references | El-Ahmady El-Naggar, N., Moawad, H., & Abdelwahed, N. A. M. (2017). Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation. Annals of Microbiology, 67(1). https://doi.org/10.1007/s13213-016-1231-5 | eng |
dcterms.references | El-Naggar, N. E.-A., Deraz, S. F., Soliman, H. M., & El-Deeb, N. M. (2016). Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82. Scientific Reports, 6(1), 32926. https://doi.org/10.1038/srep32926 | eng |
dcterms.references | El-Naggar, N. E. A., Moawad, H., El-Shweihy, N. M., & El-Ewasy, S. M. (2015). Optimization of culture conditions for production of the anti-leukemic glutaminase free L-asparaginase by newly isolated Streptomyces olivaceus NEAE-119 using response surface methodology. BioMed Research International, 2015, 1–17. https://doi.org/10.1155/2015/627031 | eng |
dcterms.references | England, P. H. (2017). National Cancer Registration and Analysis Service Cancer statistics : availability and location May 2017 update About Public Health England, (May). | eng |
dcterms.references | Estadisticas | Instituto Nacional de Cancerologia. (2017). Retrieved September 12, 2017, from http://www.cancer.gov.co/cancer_en_cifras | eng |
dcterms.references | Fu, C. H., & Sakamoto, K. M. (2007). PEG-asparaginase, 1977–1984. | eng |
dcterms.references | García-Arellano, H., & Vázquez-Duhalt, R. (1998). Cuantificación De Proteínas: Una Revisión. BioTecnologia. | spa |
dcterms.references | Goodfellow, M., Kumar, Y., Labeda, D. P., & Sembiring, L. (2007). The Streptomyces violaceusniger clade: A home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 92(2), 173–199. https://doi.org/10.1007/s10482-007-9146-6 | eng |
dcterms.references | Hassan, S. S. ul, Anjum, K., Abbas, S. Q., Akhter, N., Shagufta, B. I., Shah, S. A. A., & Tasneem, U. (2017). Emerging biopharmaceuticals from marine actinobacteria. Environmental Toxicology and Pharmacology, 49, 34–47. https://doi.org/10.1016/j.etap.2016.11.015 | eng |
dcterms.references | Hatanaka, T., Usuki, H., Arima, J., Uesugi, Y., Yamamoto, Y., Kumagai, Y., Mukaihara, T. (2011). Extracellular production and characterization of two Streptomyces L-asparaginases. Applied Biochemistry and Biotechnology, 163(7), 836–844. https://doi.org/10.1007/s12010-010-9087-9 | eng |
dcterms.references | Hunger, S. P., Lu, X., Devidas, M., Camitta, B. M., Gaynon, P. S., Winick, N. J., Carroll, W. L. (2012). Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children’s oncology group. Journal of Clinical Oncology, 30(14), 1663–1669. https://doi.org/10.1200/JCO.2011.37.8018 | eng |
dcterms.references | Jain, R., Zaidi, K. U., Verma, Y., & Saxena, P. (2012). L-asparaginase : A promising enzyme for treatment of acute lymphoblastic leukiemia. People’s Journal of Scientific Research, 5(1). | eng |
dcterms.references | Jha, S. K., Pasrija, D., Sinha, R. K., & Singh, H. R. (2012). Microbial L-asparaginase: a review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3(9), 3076. | eng |
dcterms.references | Kao, W.-C., Kleinschroth, T., Nitschke, W., Baymann, F., Neehaul, Y., Hellwig, P., Hunte, C. (2016). The obligate respiratory supercomplex from actinobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. https://doi.org/10.1016/j.bbabio.2016.07.009 | eng |
dcterms.references | Kavitha, A., Prabhakar, P., Vijayalakshmi, M., & Venkateswarlu, Y. (2010). Purification and biological evaluation of the metabolites produced by Streptomyces sp . TK-VL _ 333. Research in Microbiologoy, 161(5), 335–345. https://doi.org/10.1016/j.resmic.2010.03.011 | eng |
dcterms.references | Kawedia, J. D., & Rytting, M. E. (2014). Asparaginase in acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma & Leukemia, 14 Suppl, S14-7. https://doi.org/10.1016/j.clml.2014.06.017 | eng |
dcterms.references | Kumar, P. S., Duraipandiyan, V., & Ignacimuthu, S. (2014). Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung Journal of Medical Sciences, 30(9), 435–446. https://doi.org/10.1016/j.kjms.2014.05.006 | eng |
dcterms.references | Kumar, S., Venkata Dasu, V., & Pakshirajan, K. (2011). Purification and characterization of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresource Technology, 102(2), 2077–2082. https://doi.org/10.1016/j.biortech.2010.07.114 | eng |
dcterms.references | Kyonen, M., Folatre, I., Zolezzi, P., & Badilla, V. (2006). Reacciones adversas a L-asparaginasa en pacientes. Revista Médica de Chile, 134, 1530–1534. | eng |
dcterms.references | Laemmli, U. . (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature, 227, 680–685. | eng |
dcterms.references | Lal, D., Verma, M., Behura, S. K., & Lal, R. (2016). Codon usage bias in phylum actinobacteria: relevance to environmental adaptation and host pathogenicity. Research in Microbiology, 1–9. https://doi.org/10.1016/j.resmic.2016.06.003 | eng |
dcterms.references | LeincoTechnologies. (2013). General Western Blot Protocol. Abcam. | eng |
dcterms.references | Li, S., Tang, L., Chen, X., Liao, L., Li, F., & Mao, Z. (2011). Isolation and characterization of a novel ε-poly-L-lysine producing strain: Streptomyces griseofuscus. Journal of Industrial Microbiology and Biotechnology, 38(4), 557–563. https://doi.org/10.1007/s10295-010-0803-9 | eng |
dcterms.references | Liu, F., & Zajic, J. (1972). L-Asparaginase synthesis by Erwinia aroideae. Appl Microbiol, 3, 667–668. | eng |
dcterms.references | Loghavi, S., Zuo, Z., Ravandi, F., Kantarjian, H. M., Bueso-Ramos, C., Zhang, L., Khoury, J. D. (2014). Clinical features of de novo acute myeloid leukemia with concurrent DNMT3A, FLT3 and NPM1 mutations. Journal of Hematology & Oncology, 7, 74. https://doi.org/10.1186/s13045-014-0074-4 | eng |
dcterms.references | Luedeking, R., & Piret, E. L. (2000). A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnology and Bioengineering, 67(6), 636–644. | eng |
dcterms.references | Mahajan, R. V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, R. K. (2014). Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: In vitro evaluation of anti-cancerous properties. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099037 | eng |
dcterms.references | Mangamuri, U., Vijayalakshmi, M., Siva, V., & Krishna, R. (2017). Extracellular L-asparaginase from Streptomyces labedae VSM-6 : Isolation , Production and Optimization of Culture Conditions Using RSM. Pharmacognosy Journal, 9(6), 932–941. | eng |
dcterms.references | Manivasagan, P., Venkatesan, J., Kang, K.-H., & Sivakumar, K. (2015). Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. International Journal of Biological Macromolecules, 72, 71–78. https://doi.org/10.1016/j.ijbiomac.2014.07.045 | eng |
dcterms.references | Meena, B., Anburajan, L., Sathish, T., Vijaya Raghavan, R., Dharani, G., Vinithkumar, N. V., & Kirubagaran, R. (2015). L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of Lasparaginase gene. Scientific Reports, 5(March), 12404. https://doi.org/10.1038/srep12404 | eng |
dcterms.references | Meena, B., Anburajan, L., Valsalan, N., Shridhar, D., Vijaya, R., Dharani, G., & Kirubagaran, R. (2016). Molecular expression of L -asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli : A prospective recombinant enzyme for leukaemia chemotherapy. Gene, 590(2), 220–226. https://doi.org/10.1016/j.gene.2016.05.003 | eng |
dcterms.references | Miyares, M., Torres, D., Padrón, S., & Valdéz, J. (2015). Aplicación del reactivo de Neesler en la cuantificación de amonio para las fermentaciones de productos biotecnológicos. Vaccimonitor, 24(1), 33–44. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025028X2015000100005&nrm=iso | eng |
dcterms.references | Mohamed, S. A., Elshal, M. F., Kumosani, T. A., & Aldahlawi, A. M. (2015). Purification and Characterization of asparaginase from Phaseolus vulgaris seeds. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/309214 | eng |
dcterms.references | Mohan-Kumar, N. S., & Manonmani, H. K. (2013). Purification, characterization and kinetic properties of extracellular l-asparaginase produced by Cladosporium sp. World Journal of Microbiology and Biotechnology, 29(4), 577–587. https://doi.org/10.1007/s11274-012-1213-0 | eng |
dcterms.references | Mohan-Kumari, P., & Dhale, M. A. (2013). Glucose released by hydrolytic activity of amylase influences the pigment synthesis in Penicillium sp NIOM-02. Journal of Basic Microbiology, 53(1), 93–7. | eng |
dcterms.references | Moscardó Guilleme, C., Fernández Delgado, R., Sevilla Navarro, J., Astigarraga Aguirre, I., Rives Solà, S., Sánchez De Toledo Codina, J., Madero López, L. (2013). Actualización del tratamiento con L-asparraginasa en Pediatría. Anales de Pediatria, 79(5). https://doi.org/10.1016/j.anpedi.2013.03.015 | eng |
dcterms.references | Mostafa, S. a. (1979). Activity of L-asparaginase in cells of Streptomyces karnatakensis. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes, 134(4), 343–351. | eng |
dcterms.references | Muso-Cachumba, J. J., Fernandes-Antunes, F. A., Dias-Peres, G. F., Pereira Brumano, L., Dos Santos, J. C., & Silvèrico Da Silva, S. (2016). Current applications and different approaches for microbial L-asparaginase production. Brazilian Journal of Microbiology, 47, 77–85. https://doi.org/10.1016/j.bjm.2016.10.004 | eng |
dcterms.references | Narayana, K. J. P., Kumar, K. G., & Vijayalakshmi, M. (2008). L-asparaginase production by Streptomyces albidoflavus. Indian Journal of Microbiology, 48(3), 331–336. https://doi.org/10.1007/s12088-008-0018-1 | eng |
dcterms.references | Narta, U. K., Kanwar, S. S., & Azmi, W. (2007). Pharmacological and clinical evaluation of L asparaginase in the treatment of leukemia, 61, 208–221. https://doi.org/10.1016/j.critrevonc.2006.07.009 | eng |
dcterms.references | Nybo, S. E., Shepherd, M. D., Bosserman, M. A., & Rohr, J. (2010). Genetic manipulation of Streptomyces species. Current Protocols in Microbiology, (SUPPL.19). https://doi.org/10.1002/9780471729259.mc10e03s19 | eng |
dcterms.references | OMS | Cáncer. (2018). Retrieved August 25, 2016, from http://www.who.int/mediacentre/factsheets/fs297/es/ | eng |
dcterms.references | Özdemir, U., Özbay, B., Özbay, I., & Veli, S. (2014). Application of Taguchi L32 orthogonal array design to optimize copper biosorption by using Spaghnum moss. Ecotoxicology and Environmental Safety, 107, 229–235. https://doi.org/10.1016/j.ecoenv.2014.06.018 | eng |
dcterms.references | Pacheco Da Rosa, J., Korenblum, E., Franco-Cirigliano, M. N., Abreu, F., Lins, U., Soares, R. M. A., … Coelho, R. R. R. (2013). Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Research International, 2013. https://doi.org/10.1155/2013/309769 | eng |
dcterms.references | Parekh, S., & Desai, P. (2012). Media optimization using orthogonal array technique for cholesterol oxidase production by Streptomyces sp. International Journal of Applied Microbiology Science, 1, 32–43. | eng |
dcterms.references | Park, D. H., Kim, J. S., Kwon, S. W., Wilson, C., Yu, Y. M., Hur, J. H., & Lim, C. K. (2003). Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(6), 2049–2054. https://doi.org/10.1099/ijs.0.02629-0 | eng |
dcterms.references | Parmentier, J. H., Maggi, M., Tarasco, E., & Scotti, C. (2015). Glutaminase activity determines cytotoxicity of l-asparaginases on most leukemia cell lines. Leukemia Research, 39(7), 757– 762. https://doi.org/10.1016/j.leukres.2015.04.008 | eng |
dcterms.references | Parra, S. E. (2014). Estudio del transporte y consumo de oxígeno en cultivos bacterianos estrés hidrodinámico. https://doi.org/ISBN: 978-84-693-1123-3 | spa |
dcterms.references | Pastrana-Camacho, N. (2015). Evaluación de la actividad antibacterial y antifúngica de actinobacterias cultivables aisladas de las riberas del río Guaviare. In Tesis (p. 103). Chía. https://doi.org/10.1590/S0124-00642012000800004 | spa |
dcterms.references | Pastrana-Camacho, N., Suárez, Z., Acosta-gonzález, A., & Arango, C. (2016). Bioprospecting for culturable actinobacteria with antimicrobial properties isolated from rivers in Colombian Orinoquia. Tropical Journal of Pharmaceutical Research, 15(June), 1259–1265. | eng |
dcterms.references | Poorani, E. (2010). A novel antitumour l-asparaginase from marine Streptomyces sp: strain epd 27 identification, purification, characterization and fermentation kinetics of enzyme production. In Thesis (p. 1). | eng |
dcterms.references | Pui, C.-H., Campana, D., Pei, D., Bowman, W. P., Sandlund, J. T., Kaste, S. C., Relling, M. V. (2009). Treating childhood acute lymphoblastic leukemia without cranial irradiation. The New England Journal of Medicine, 360(26), 2730–41. https://doi.org/10.1056/NEJMoa0900386 | eng |
dcterms.references | Radha, R., Arumugam, N., & Gummadi, S. N. (2018). Glutaminase free L-asparaginase from Vibrio cholerae: Heterologous expression, purification and biochemical characterization. International Journal of Biological Macromolecules, 111, 129–138. https://doi.org/10.1016/j.ijbiomac.2017.12.165 | eng |
dcterms.references | Rahimzadeh, M., Poodat, M., Javadpour, S., & Qeshmi, F. I. (2016). Purification, Characterization and Comparison between Two New L-asparaginases from PG03 and PG04. The Open Biochemistry Journal, 10(1), 35–45. https://doi.org/10.2174/1874091X01610010035 | eng |
dcterms.references | Rani, S. A., Sundaram, L., & Vashanta, P. B. (2011). n vitro antioxidant and anticancer activity of Lasparaginase from Aspergillus flavus (KUFS20). Asian Journal of Pharmaceutical and Clinical Research, 4, 4–6. | eng |
dcterms.references | Rojas Muñoz, V. R. (2009). Evaluación de métodos de extracción y purificación de enzimas pectinolíticas obtenidas por fermentación en estado semisólido del Aspergillus niger. | spa |
dcterms.references | Rosales, W., & Lizcano, F. (2018). The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-derived cardiomyocytes. Frontiers in Genetics, 9(FEB), 1–8. https://doi.org/10.3389/fgene.2018.00014 | eng |
dcterms.references | Saxena, A., Upadhyay, R., & Kango, N. (2015). Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase. Indian Journal of Experimental Biology, 53(12), 786–793. | |
dcterms.references | Shanmugaprakash, M., Jayashree, C., Vinothkumar, V., Senthilkumar, S. N. S., Siddiqui, S., Rawat, V., & Arshad, M. (2015). Biochemical characterization and antitumor activity of three phase partitioned l-asparaginase from Capsicum annuum L. Separation and Purification Technology (Vol. 142). Elsevier B.V. https://doi.org/10.1016/j.seppur.2014.12.036 | eng |
dcterms.references | Shirling, E. B., & D. Gottlieb. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacterology, 16(3), 313–340. https://doi.org/10.1017/CBO9781107415324.004 | eng |
dcterms.references | Shrivastava, A., Khan, A. A., Khurshid, M., & Kalam, M. A. (2015). Recent developments in lasparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology, 1–12. | eng |
dcterms.references | Silverman, L. R., Demakos, E. P., Peterson, B. L., Kornblith, A. B., Holland, J. C., Odchimar-Reissig, R., … Holland, J. F. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia group B. Journal of Clinical Oncology, 20(10), 2429–2440. https://doi.org/10.1200/JCO.2002.04.117 | eng |
dcterms.references | Sindhu, R., & Manonmani, H. K. (2018). Expression and characterization of recombinant Lasparaginase from Pseudomonas fluorescens. Protein Expression and Purification, 143, 83– 91. https://doi.org/10.1016/j.pep.2017.09.009 | eng |
dcterms.references | Stock, W., La, M., Sanford, B., & Bloomfield, C. D. (2008). What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood, 112(5), 1646–1654. https://doi.org/10.1182/blood-2008-01-130237 | eng |
dcterms.references | Subramani, R., & Aalbersberg, W. (2012). Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research, 167(10), 571–580. https://doi.org/10.1016/j.micres.2012.06.005 | eng |
dcterms.references | Thaer, T. A., & Ellaiah, P. (2013). L-Asparaginase production by a streptomycete and optimization of production parameters. Journal of Pharmaceutical and Biomedical Sciences, 29, 859–868. | eng |
dcterms.references | Thenmozhi, C., Sankar, R., Karuppiah, V., & Sampathkumar, P. (2011). L-asparaginase production by mangrove derived Bacillus cereus MAB5 : optimization by response surface methodology. Asian Pacific Journal of Tropical Medicine, 4(6), 486–491. https://doi.org/10.1016/S19957645(11)60132-6 | eng |
dcterms.references | Tork, S. E., Aly, M. M., & Elsemin, O. (2018). A new L-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. International Journal of Biological Macromolecules, 113, 550–557. https://doi.org/10.1016/j.ijbiomac.2018.02.080 | eng |
dcterms.references | Verma, N., Kumar, K., Kaur, G., & Anand, S. (2007). L-asparaginase: a promising chemotherapeutic agent. Critical Reviews in Biotechnology, 27(1), 45–62. | eng |
dcterms.references | Vidya, J., Sajitha, S., Ushasree, M. V., Sindhu, R., Binod, P., Madhavan, A., & Pandey, A. (2017). Genetic and metabolic engineering approaches for the production and delivery of Lasparaginases: An overview. Bioresource Technology, 245, 1775–1781. https://doi.org/10.1016/j.biortech.2017.05.057 | eng |
dcterms.references | Vinayagam, R., & Murty, R. (2015). Development of a simple kinetic model and parameter estimation for biomass and nattokinase production by Bacillus subtilis 1A752, 2(1), 6–10. | eng |
dcterms.references | Wade, H. E., Robinson, H. K., & Phillips, B. W. (1971). Asparaginase and glutaminase activities of bacteria. Journal of General Microbiology, 69(3), 299–312. | eng |
dcterms.references | Warangkar, S. C., & Khobragade, C. N. (2010). Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Research, 2010, 165878. https://doi.org/10.4061/2010/165878 | eng |
dcterms.references | Weber, T., Charusanti, P., Musiol-kroll, E. M., Jiang, X., Tong, Y., Kim, H. U., & Lee, S. Y. (2015). Metabolic engineering of antibiotic factories : new tools for antibiotic production in actinomycetes. Trends in Biotechnology, 33(1), 15–26. https://doi.org/10.1016/j.tibtech.2014.10.009 | eng |
dcterms.references | Whitman, W. B., Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., Ludwig, W., & Suzuki, K. (2012). Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria. | eng |
dcterms.references | Xiong, Z. Q., Zhang, Z. P., Li, J. H., Wei, S. J., & Tu, G. Q. (2012). Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Applied and Environmental Microbiology, 78(2), 589–592. https://doi.org/10.1128/AEM.06561-11 | eng |
dcterms.references | Yarza, P., Yilmaz, P., Pruesse, E., & Glöckner, F. O. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 | eng |
dcterms.references | Yu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y., & Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pacific Journal of Tropical Biomedicine, 5(7), 555–560. https://doi.org/10.1016/j.apjtb.2015.04.007 | eng |
dcterms.references | Zhu, H. H., Yao, Q., Yang, S. Z., Li, Z. K., & Guo, J. (2011). Streptomyces lacticiproducens sp. nov., a lactic acid-producing streptomycete isolated from the rhizosphere of tomato plants. International Journal of Systematic and Evolutionary Microbiology, 61(1), 35–39. https://doi.org/10.1099/ijs.0.019125-0 | eng |