Mostrar el registro sencillo del ítem

dc.contributor.advisorDíaz Barrera, Luis Eduardo
dc.contributor.advisorCortázar Gómez, Jorge Eduardo
dc.contributor.authorArévalo Tristancho, Estefanía
dc.date.accessioned2019-04-02T20:54:16Z
dc.date.available2019-04-02T20:54:16Z
dc.date.issued2019-01-10
dc.identifier.urihttp://hdl.handle.net/10818/35352
dc.description75 páginases_CO
dc.description.abstractLas enzimas de origen microbial han demostrado ser útiles en distintos campos como la medicina y la industria de alimentos. La L-asparaginasa, de origen microbial es una enzima aminohidrolasa, la cual cataliza la conversión de L-asparagina a aspartato y catión amonio. La L-asparaginasa es conocida como un agente anticáncer, el cual previene la proliferación de células tumorales por disminución del nivel de L-asparagina en la sangre. Esta enzima ha demostrado ser una forma de tratamiento ante la Leucemia Linfocítica Aguda (ALL por sus siglas en inglés), extraída de E. coli y Erwinia chrysanthemi, pero con un alto valor comercial en la extracción de la misma y múltiples efectos secundarios posiblemente debidos a la actividad L-glutaminasa producida por las mismas bacterias. En este proyecto de investigación se planteó como fuente de producción de Lasparaginasa a las actinobacterias más específicamente las Streptomyces aisladas de la ribera del río Arauca. Para esto, se realizó una identificación morfológica y molecular de siete actinobacterias aisladas de la ribera del río Arauca que fueron positivas ante la producción de L-asparaginasa. Se realizaron perfiles de crecimiento de las siete cepas en cinco fuentes de carbono y tres fuentes de nitrógeno. Posteriormente, se empleó una estrategia secuencial de mejora de algunos factores de fermentación para determinar el efecto de la concentración de la fuente de carbono y la fuente de nitrógeno, la temperatura de incubación, el pH del medio y la tasa de agitación en la actividad de la L-asparaginasa de las cepas seleccionadas. Se determinó que la mejor fuente de carbono y de nitrógeno que incrementó la actividad de la cepa fueron lactosa y extracto de levadura y Lasparagina respectivamente.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectEnzimases_CO
dc.subjectMicrobiologíaes_CO
dc.subjectOrganismoses_CO
dc.titleModelado matemático de la actividad de lasparaginasa purificada de cultivos axénicos de actinobacterias aisladas de la ribera del río Araucaes_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local270914
dc.identifier.localTE10031
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesAbraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8(1). https://doi.org/10.1007/s13205-017-1044-7eng
dcterms.referencesAghaeepoor, M., Mozafari, S., Shahraki, M., Tabandeh, F., & Bambai, B. (2011). High level of extracellular fermentation and alternative purification of Escherichia coli Asparaginase II. Biharean Biologist, 5(2), 96–101.eng
dcterms.referencesAl husnan, L. A., & Alkahtani, M. D. F. (2016). Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities. Annals of Agricultural Sciences, 61(2), 251–255. https://doi.org/10.1016/j.aoas.2016.06.002eng
dcterms.referencesAli, U., Naveed, M., Ullah, A., & Ali, K. (2016). L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): A novel approach to target ALL. European Journal of Pharmacology, 771, 199–210. https://doi.org/10.1016/j.ejphar.2015.12.023eng
dcterms.referencesAmena, S., Vishalakshi, N., Prabhakar, M., & Dayanand, A. (2010). Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Brazilian Journal of Microbiology, 41(1), 173–178.eng
dcterms.referencesAppel, I. M. (2008). Pharmacodynamics of L-Asparaginase in Childhood Acute Leukemia. Erasmus Universiteit Rotterdam, Holanda.eng
dcterms.referencesArango, C., Acosta-gonzalez, A., Parra-giraldo, C. M., Sánchez-, Z. A., Kerr, R., & Díaz, L. E. (2018). Characterization of actinobacterial communities from Arauca river sediments ( Colombia ) reveals antimicrobial potential presented in low abundant isolates. The Open Microbiology Journal, 12, 3–16. https://doi.org/10.2174/187428580181201eng
dcterms.referencesBadoei-Dalfard, A. (2015). Purification and characterization of l-asparaginase from Pseudomonas aeruginosa strain SN004: Production optimization by statistical methods. Biocatalysis and Agricultural Biotechnology, 4(3), 388–397. https://doi.org/10.1016/j.bcab.2015.06.007spa
dcterms.referencesBazaraa, W., Alian, A., El-Shimi, N., & Mohamed, R. (2016). Purification and characterization of extracellular glutaminase from Aspergillus oryzae NRRL 32567. Biocatalysis and Agricultural Biotechnology, 6, 76–81. https://doi.org/10.1016/j.bcab.2016.02.009eng
dcterms.referencesBhagat, J., Kaur, A., & Chadha, B. S. (2016). Food and Bioproducts Processing Single step purification of asparaginase from endophytic bacteria Pseudomonas oryzihabitans exhibiting high potential to reduce acrylamide in processed potato chips. Food and Bioproducts Processing, 99, 222–230. https://doi.org/10.1016/j.fbp.2016.05.010spa
dcterms.referencesBorek, D., & Jaskólski, M. (2001). Sequence analysis of enzymes with asparaginase activity. Acta Biochimica Polonica, 48(4), 893–902.eng
dcterms.referencesChohan, S. M., & Rashid, N. (2013). TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. Journal of Bioscience and Bioengineering, 116(4), 438–43. https://doi.org/10.1016/j.jbiosc.2013.04.005eng
dcterms.referencesCui, F., & Zhao, L. (2012). Optimization of xylanase production from Penicillium sp.WX-Z1 by a twostep statistical strategy: Plackett-Burman and Box-Behnken experimental design. International Journal of Molecular Sciences, 13(8), 10630–10646. https://doi.org/10.3390/ijms130810630eng
dcterms.referencesde Lima Procópio, R. E., da Silva, I. R., Martins, M. K., & de Azevedo, J. L. (2012). Antibiotics produced by Streptomyces. Brazilian Journal of Infectious Diseases, 16(5), 466–471. https://doi.org/10.1016/j.bjid.2012.08.014eng
dcterms.referencesde Souza, R. F., Coelho, R. R. R., Macrae, A., Soares, R. M. A., Nery, D. da C. M., Semêdo, T. de A. S., … Gomes, R. C. (2008). Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil. International Journal of Systematic and Evolutionary Microbiology, 58(12), 2774–2778. https://doi.org/10.1099/ijs.0.65768-0eng
dcterms.referencesDeJong, P. J. (1972). L-Asparaginase Production by Streptomyces griseus. Applied Mocrobiology, 23(6), 1163–1164.eng
dcterms.referencesDeshpande, N., Choubey, P., & Agashe, M. (2014). Studies on Optimization of Growth Parameters for L-asparaginase production by Streptomyces ginsengisoli. The Scientific World Journal, 2014, 1–6. https://doi.org/10.1155/2014/895167eng
dcterms.referencesDhale, M. A., & Mohan-Kumari, H. P. (2014). A comparative rapid and sensitive method to screen lasparaginase producing fungi. Journal of Microbiological Methods, 102, 66–68. https://doi.org/10.1016/j.mimet.2014.04.010eng
dcterms.referencesDhevagi, P., & Poorani, E. (2006). Isolation and characterization of L -asparaginase from marine actinomycetes. Indian Journal of Biotechnology, 5(December 2003), 514–520.eng
dcterms.referencesDias-Gonçalves, F. F., Ruiz-Tasca Gois, A. L., Torre Della, A., & Sato-Harumi, H. (2016). Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pacific Journal of Tropical Biomedicine, 6(9), 785–794. https://doi.org/10.1016/j.apjtb.2016.07.007eng
dcterms.referencesDias, F. F. G., & Sato, H. H. (2016). Sequential optimization strategy for maximum l-asparaginase production from Aspergillus oryzae CCT 3940. Biocatalysis and Agricultural Biotechnology, 6, 33–39. https://doi.org/10.1016/j.bcab.2016.02.006eng
dcterms.referencesDíaz Díaz, J., Nuñez Enamorado, N., Martinez de Aragón, A., Barrios López, M., Camacho Salas, A., & Simón de la Heras, R. (2015). Trombosis venosa cerebral en pacientes oncológicos en tratamiento con L-asparaginasa. An Pediatr (Barc), 82(2), 113–114. https://doi.org/http://dx.doi.org/10.1016/j.anpedi.2014.04.015spa
dcterms.referencesDuncan, K., Haltli, B., Gill, K. A., & Kerr, R. G. (2014). Bioprospecting from marine sediments of New Brunswick, Canada: Exploring the relationship between total bacterial diversity and actinobacteria diversity. Marine Drugs, 12(2), 899–925. https://doi.org/10.3390/md12020899eng
dcterms.referencesEl-Ahmady El-Naggar, N., Moawad, H., & Abdelwahed, N. A. M. (2017). Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation. Annals of Microbiology, 67(1). https://doi.org/10.1007/s13213-016-1231-5eng
dcterms.referencesEl-Naggar, N. E.-A., Deraz, S. F., Soliman, H. M., & El-Deeb, N. M. (2016). Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82. Scientific Reports, 6(1), 32926. https://doi.org/10.1038/srep32926eng
dcterms.referencesEl-Naggar, N. E. A., Moawad, H., El-Shweihy, N. M., & El-Ewasy, S. M. (2015). Optimization of culture conditions for production of the anti-leukemic glutaminase free L-asparaginase by newly isolated Streptomyces olivaceus NEAE-119 using response surface methodology. BioMed Research International, 2015, 1–17. https://doi.org/10.1155/2015/627031eng
dcterms.referencesEngland, P. H. (2017). National Cancer Registration and Analysis Service Cancer statistics : availability and location May 2017 update About Public Health England, (May).eng
dcterms.referencesEstadisticas | Instituto Nacional de Cancerologia. (2017). Retrieved September 12, 2017, from http://www.cancer.gov.co/cancer_en_cifraseng
dcterms.referencesFu, C. H., & Sakamoto, K. M. (2007). PEG-asparaginase, 1977–1984.eng
dcterms.referencesGarcía-Arellano, H., & Vázquez-Duhalt, R. (1998). Cuantificación De Proteínas: Una Revisión. BioTecnologia.spa
dcterms.referencesGoodfellow, M., Kumar, Y., Labeda, D. P., & Sembiring, L. (2007). The Streptomyces violaceusniger clade: A home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 92(2), 173–199. https://doi.org/10.1007/s10482-007-9146-6eng
dcterms.referencesHassan, S. S. ul, Anjum, K., Abbas, S. Q., Akhter, N., Shagufta, B. I., Shah, S. A. A., & Tasneem, U. (2017). Emerging biopharmaceuticals from marine actinobacteria. Environmental Toxicology and Pharmacology, 49, 34–47. https://doi.org/10.1016/j.etap.2016.11.015eng
dcterms.referencesHatanaka, T., Usuki, H., Arima, J., Uesugi, Y., Yamamoto, Y., Kumagai, Y., Mukaihara, T. (2011). Extracellular production and characterization of two Streptomyces L-asparaginases. Applied Biochemistry and Biotechnology, 163(7), 836–844. https://doi.org/10.1007/s12010-010-9087-9eng
dcterms.referencesHunger, S. P., Lu, X., Devidas, M., Camitta, B. M., Gaynon, P. S., Winick, N. J., Carroll, W. L. (2012). Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children’s oncology group. Journal of Clinical Oncology, 30(14), 1663–1669. https://doi.org/10.1200/JCO.2011.37.8018eng
dcterms.referencesJain, R., Zaidi, K. U., Verma, Y., & Saxena, P. (2012). L-asparaginase : A promising enzyme for treatment of acute lymphoblastic leukiemia. People’s Journal of Scientific Research, 5(1).eng
dcterms.referencesJha, S. K., Pasrija, D., Sinha, R. K., & Singh, H. R. (2012). Microbial L-asparaginase: a review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3(9), 3076.eng
dcterms.referencesKao, W.-C., Kleinschroth, T., Nitschke, W., Baymann, F., Neehaul, Y., Hellwig, P., Hunte, C. (2016). The obligate respiratory supercomplex from actinobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. https://doi.org/10.1016/j.bbabio.2016.07.009eng
dcterms.referencesKavitha, A., Prabhakar, P., Vijayalakshmi, M., & Venkateswarlu, Y. (2010). Purification and biological evaluation of the metabolites produced by Streptomyces sp . TK-VL _ 333. Research in Microbiologoy, 161(5), 335–345. https://doi.org/10.1016/j.resmic.2010.03.011eng
dcterms.referencesKawedia, J. D., & Rytting, M. E. (2014). Asparaginase in acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma & Leukemia, 14 Suppl, S14-7. https://doi.org/10.1016/j.clml.2014.06.017eng
dcterms.referencesKumar, P. S., Duraipandiyan, V., & Ignacimuthu, S. (2014). Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung Journal of Medical Sciences, 30(9), 435–446. https://doi.org/10.1016/j.kjms.2014.05.006eng
dcterms.referencesKumar, S., Venkata Dasu, V., & Pakshirajan, K. (2011). Purification and characterization of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresource Technology, 102(2), 2077–2082. https://doi.org/10.1016/j.biortech.2010.07.114eng
dcterms.referencesKyonen, M., Folatre, I., Zolezzi, P., & Badilla, V. (2006). Reacciones adversas a L-asparaginasa en pacientes. Revista Médica de Chile, 134, 1530–1534.eng
dcterms.referencesLaemmli, U. . (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature, 227, 680–685.eng
dcterms.referencesLal, D., Verma, M., Behura, S. K., & Lal, R. (2016). Codon usage bias in phylum actinobacteria: relevance to environmental adaptation and host pathogenicity. Research in Microbiology, 1–9. https://doi.org/10.1016/j.resmic.2016.06.003eng
dcterms.referencesLeincoTechnologies. (2013). General Western Blot Protocol. Abcam.eng
dcterms.referencesLi, S., Tang, L., Chen, X., Liao, L., Li, F., & Mao, Z. (2011). Isolation and characterization of a novel ε-poly-L-lysine producing strain: Streptomyces griseofuscus. Journal of Industrial Microbiology and Biotechnology, 38(4), 557–563. https://doi.org/10.1007/s10295-010-0803-9eng
dcterms.referencesLiu, F., & Zajic, J. (1972). L-Asparaginase synthesis by Erwinia aroideae. Appl Microbiol, 3, 667–668.eng
dcterms.referencesLoghavi, S., Zuo, Z., Ravandi, F., Kantarjian, H. M., Bueso-Ramos, C., Zhang, L., Khoury, J. D. (2014). Clinical features of de novo acute myeloid leukemia with concurrent DNMT3A, FLT3 and NPM1 mutations. Journal of Hematology & Oncology, 7, 74. https://doi.org/10.1186/s13045-014-0074-4eng
dcterms.referencesLuedeking, R., & Piret, E. L. (2000). A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnology and Bioengineering, 67(6), 636–644.eng
dcterms.referencesMahajan, R. V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, R. K. (2014). Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: In vitro evaluation of anti-cancerous properties. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099037eng
dcterms.referencesMangamuri, U., Vijayalakshmi, M., Siva, V., & Krishna, R. (2017). Extracellular L-asparaginase from Streptomyces labedae VSM-6 : Isolation , Production and Optimization of Culture Conditions Using RSM. Pharmacognosy Journal, 9(6), 932–941.eng
dcterms.referencesManivasagan, P., Venkatesan, J., Kang, K.-H., & Sivakumar, K. (2015). Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. International Journal of Biological Macromolecules, 72, 71–78. https://doi.org/10.1016/j.ijbiomac.2014.07.045eng
dcterms.referencesMeena, B., Anburajan, L., Sathish, T., Vijaya Raghavan, R., Dharani, G., Vinithkumar, N. V., & Kirubagaran, R. (2015). L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of Lasparaginase gene. Scientific Reports, 5(March), 12404. https://doi.org/10.1038/srep12404eng
dcterms.referencesMeena, B., Anburajan, L., Valsalan, N., Shridhar, D., Vijaya, R., Dharani, G., & Kirubagaran, R. (2016). Molecular expression of L -asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli : A prospective recombinant enzyme for leukaemia chemotherapy. Gene, 590(2), 220–226. https://doi.org/10.1016/j.gene.2016.05.003eng
dcterms.referencesMiyares, M., Torres, D., Padrón, S., & Valdéz, J. (2015). Aplicación del reactivo de Neesler en la cuantificación de amonio para las fermentaciones de productos biotecnológicos. Vaccimonitor, 24(1), 33–44. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025028X2015000100005&nrm=isoeng
dcterms.referencesMohamed, S. A., Elshal, M. F., Kumosani, T. A., & Aldahlawi, A. M. (2015). Purification and Characterization of asparaginase from Phaseolus vulgaris seeds. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/309214eng
dcterms.referencesMohan-Kumar, N. S., & Manonmani, H. K. (2013). Purification, characterization and kinetic properties of extracellular l-asparaginase produced by Cladosporium sp. World Journal of Microbiology and Biotechnology, 29(4), 577–587. https://doi.org/10.1007/s11274-012-1213-0eng
dcterms.referencesMohan-Kumari, P., & Dhale, M. A. (2013). Glucose released by hydrolytic activity of amylase influences the pigment synthesis in Penicillium sp NIOM-02. Journal of Basic Microbiology, 53(1), 93–7.eng
dcterms.referencesMoscardó Guilleme, C., Fernández Delgado, R., Sevilla Navarro, J., Astigarraga Aguirre, I., Rives Solà, S., Sánchez De Toledo Codina, J., Madero López, L. (2013). Actualización del tratamiento con L-asparraginasa en Pediatría. Anales de Pediatria, 79(5). https://doi.org/10.1016/j.anpedi.2013.03.015eng
dcterms.referencesMostafa, S. a. (1979). Activity of L-asparaginase in cells of Streptomyces karnatakensis. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes, 134(4), 343–351.eng
dcterms.referencesMuso-Cachumba, J. J., Fernandes-Antunes, F. A., Dias-Peres, G. F., Pereira Brumano, L., Dos Santos, J. C., & Silvèrico Da Silva, S. (2016). Current applications and different approaches for microbial L-asparaginase production. Brazilian Journal of Microbiology, 47, 77–85. https://doi.org/10.1016/j.bjm.2016.10.004eng
dcterms.referencesNarayana, K. J. P., Kumar, K. G., & Vijayalakshmi, M. (2008). L-asparaginase production by Streptomyces albidoflavus. Indian Journal of Microbiology, 48(3), 331–336. https://doi.org/10.1007/s12088-008-0018-1eng
dcterms.referencesNarta, U. K., Kanwar, S. S., & Azmi, W. (2007). Pharmacological and clinical evaluation of L asparaginase in the treatment of leukemia, 61, 208–221. https://doi.org/10.1016/j.critrevonc.2006.07.009eng
dcterms.referencesNybo, S. E., Shepherd, M. D., Bosserman, M. A., & Rohr, J. (2010). Genetic manipulation of Streptomyces species. Current Protocols in Microbiology, (SUPPL.19). https://doi.org/10.1002/9780471729259.mc10e03s19eng
dcterms.referencesOMS | Cáncer. (2018). Retrieved August 25, 2016, from http://www.who.int/mediacentre/factsheets/fs297/es/eng
dcterms.referencesÖzdemir, U., Özbay, B., Özbay, I., & Veli, S. (2014). Application of Taguchi L32 orthogonal array design to optimize copper biosorption by using Spaghnum moss. Ecotoxicology and Environmental Safety, 107, 229–235. https://doi.org/10.1016/j.ecoenv.2014.06.018eng
dcterms.referencesPacheco Da Rosa, J., Korenblum, E., Franco-Cirigliano, M. N., Abreu, F., Lins, U., Soares, R. M. A., … Coelho, R. R. R. (2013). Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Research International, 2013. https://doi.org/10.1155/2013/309769eng
dcterms.referencesParekh, S., & Desai, P. (2012). Media optimization using orthogonal array technique for cholesterol oxidase production by Streptomyces sp. International Journal of Applied Microbiology Science, 1, 32–43.eng
dcterms.referencesPark, D. H., Kim, J. S., Kwon, S. W., Wilson, C., Yu, Y. M., Hur, J. H., & Lim, C. K. (2003). Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(6), 2049–2054. https://doi.org/10.1099/ijs.0.02629-0eng
dcterms.referencesParmentier, J. H., Maggi, M., Tarasco, E., & Scotti, C. (2015). Glutaminase activity determines cytotoxicity of l-asparaginases on most leukemia cell lines. Leukemia Research, 39(7), 757– 762. https://doi.org/10.1016/j.leukres.2015.04.008eng
dcterms.referencesParra, S. E. (2014). Estudio del transporte y consumo de oxígeno en cultivos bacterianos estrés hidrodinámico. https://doi.org/ISBN: 978-84-693-1123-3spa
dcterms.referencesPastrana-Camacho, N. (2015). Evaluación de la actividad antibacterial y antifúngica de actinobacterias cultivables aisladas de las riberas del río Guaviare. In Tesis (p. 103). Chía. https://doi.org/10.1590/S0124-00642012000800004spa
dcterms.referencesPastrana-Camacho, N., Suárez, Z., Acosta-gonzález, A., & Arango, C. (2016). Bioprospecting for culturable actinobacteria with antimicrobial properties isolated from rivers in Colombian Orinoquia. Tropical Journal of Pharmaceutical Research, 15(June), 1259–1265.eng
dcterms.referencesPoorani, E. (2010). A novel antitumour l-asparaginase from marine Streptomyces sp: strain epd 27 identification, purification, characterization and fermentation kinetics of enzyme production. In Thesis (p. 1).eng
dcterms.referencesPui, C.-H., Campana, D., Pei, D., Bowman, W. P., Sandlund, J. T., Kaste, S. C., Relling, M. V. (2009). Treating childhood acute lymphoblastic leukemia without cranial irradiation. The New England Journal of Medicine, 360(26), 2730–41. https://doi.org/10.1056/NEJMoa0900386eng
dcterms.referencesRadha, R., Arumugam, N., & Gummadi, S. N. (2018). Glutaminase free L-asparaginase from Vibrio cholerae: Heterologous expression, purification and biochemical characterization. International Journal of Biological Macromolecules, 111, 129–138. https://doi.org/10.1016/j.ijbiomac.2017.12.165eng
dcterms.referencesRahimzadeh, M., Poodat, M., Javadpour, S., & Qeshmi, F. I. (2016). Purification, Characterization and Comparison between Two New L-asparaginases from PG03 and PG04. The Open Biochemistry Journal, 10(1), 35–45. https://doi.org/10.2174/1874091X01610010035eng
dcterms.referencesRani, S. A., Sundaram, L., & Vashanta, P. B. (2011). n vitro antioxidant and anticancer activity of Lasparaginase from Aspergillus flavus (KUFS20). Asian Journal of Pharmaceutical and Clinical Research, 4, 4–6.eng
dcterms.referencesRojas Muñoz, V. R. (2009). Evaluación de métodos de extracción y purificación de enzimas pectinolíticas obtenidas por fermentación en estado semisólido del Aspergillus niger.spa
dcterms.referencesRosales, W., & Lizcano, F. (2018). The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-derived cardiomyocytes. Frontiers in Genetics, 9(FEB), 1–8. https://doi.org/10.3389/fgene.2018.00014eng
dcterms.referencesSaxena, A., Upadhyay, R., & Kango, N. (2015). Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase. Indian Journal of Experimental Biology, 53(12), 786–793.
dcterms.referencesShanmugaprakash, M., Jayashree, C., Vinothkumar, V., Senthilkumar, S. N. S., Siddiqui, S., Rawat, V., & Arshad, M. (2015). Biochemical characterization and antitumor activity of three phase partitioned l-asparaginase from Capsicum annuum L. Separation and Purification Technology (Vol. 142). Elsevier B.V. https://doi.org/10.1016/j.seppur.2014.12.036eng
dcterms.referencesShirling, E. B., & D. Gottlieb. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacterology, 16(3), 313–340. https://doi.org/10.1017/CBO9781107415324.004eng
dcterms.referencesShrivastava, A., Khan, A. A., Khurshid, M., & Kalam, M. A. (2015). Recent developments in lasparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology, 1–12.eng
dcterms.referencesSilverman, L. R., Demakos, E. P., Peterson, B. L., Kornblith, A. B., Holland, J. C., Odchimar-Reissig, R., … Holland, J. F. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia group B. Journal of Clinical Oncology, 20(10), 2429–2440. https://doi.org/10.1200/JCO.2002.04.117eng
dcterms.referencesSindhu, R., & Manonmani, H. K. (2018). Expression and characterization of recombinant Lasparaginase from Pseudomonas fluorescens. Protein Expression and Purification, 143, 83– 91. https://doi.org/10.1016/j.pep.2017.09.009eng
dcterms.referencesStock, W., La, M., Sanford, B., & Bloomfield, C. D. (2008). What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood, 112(5), 1646–1654. https://doi.org/10.1182/blood-2008-01-130237eng
dcterms.referencesSubramani, R., & Aalbersberg, W. (2012). Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research, 167(10), 571–580. https://doi.org/10.1016/j.micres.2012.06.005eng
dcterms.referencesThaer, T. A., & Ellaiah, P. (2013). L-Asparaginase production by a streptomycete and optimization of production parameters. Journal of Pharmaceutical and Biomedical Sciences, 29, 859–868.eng
dcterms.referencesThenmozhi, C., Sankar, R., Karuppiah, V., & Sampathkumar, P. (2011). L-asparaginase production by mangrove derived Bacillus cereus MAB5 : optimization by response surface methodology. Asian Pacific Journal of Tropical Medicine, 4(6), 486–491. https://doi.org/10.1016/S19957645(11)60132-6eng
dcterms.referencesTork, S. E., Aly, M. M., & Elsemin, O. (2018). A new L-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. International Journal of Biological Macromolecules, 113, 550–557. https://doi.org/10.1016/j.ijbiomac.2018.02.080eng
dcterms.referencesVerma, N., Kumar, K., Kaur, G., & Anand, S. (2007). L-asparaginase: a promising chemotherapeutic agent. Critical Reviews in Biotechnology, 27(1), 45–62.eng
dcterms.referencesVidya, J., Sajitha, S., Ushasree, M. V., Sindhu, R., Binod, P., Madhavan, A., & Pandey, A. (2017). Genetic and metabolic engineering approaches for the production and delivery of Lasparaginases: An overview. Bioresource Technology, 245, 1775–1781. https://doi.org/10.1016/j.biortech.2017.05.057eng
dcterms.referencesVinayagam, R., & Murty, R. (2015). Development of a simple kinetic model and parameter estimation for biomass and nattokinase production by Bacillus subtilis 1A752, 2(1), 6–10.eng
dcterms.referencesWade, H. E., Robinson, H. K., & Phillips, B. W. (1971). Asparaginase and glutaminase activities of bacteria. Journal of General Microbiology, 69(3), 299–312.eng
dcterms.referencesWarangkar, S. C., & Khobragade, C. N. (2010). Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Research, 2010, 165878. https://doi.org/10.4061/2010/165878eng
dcterms.referencesWeber, T., Charusanti, P., Musiol-kroll, E. M., Jiang, X., Tong, Y., Kim, H. U., & Lee, S. Y. (2015). Metabolic engineering of antibiotic factories : new tools for antibiotic production in actinomycetes. Trends in Biotechnology, 33(1), 15–26. https://doi.org/10.1016/j.tibtech.2014.10.009eng
dcterms.referencesWhitman, W. B., Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., Ludwig, W., & Suzuki, K. (2012). Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria.eng
dcterms.referencesXiong, Z. Q., Zhang, Z. P., Li, J. H., Wei, S. J., & Tu, G. Q. (2012). Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Applied and Environmental Microbiology, 78(2), 589–592. https://doi.org/10.1128/AEM.06561-11eng
dcterms.referencesYarza, P., Yilmaz, P., Pruesse, E., & Glöckner, F. O. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro3330eng
dcterms.referencesYu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y., & Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pacific Journal of Tropical Biomedicine, 5(7), 555–560. https://doi.org/10.1016/j.apjtb.2015.04.007eng
dcterms.referencesZhu, H. H., Yao, Q., Yang, S. Z., Li, Z. K., & Guo, J. (2011). Streptomyces lacticiproducens sp. nov., a lactic acid-producing streptomycete isolated from the rhizosphere of tomato plants. International Journal of Systematic and Evolutionary Microbiology, 61(1), 35–39. https://doi.org/10.1099/ijs.0.019125-0eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International