Mostrar el registro sencillo del ítem
Síntesis, caracterización y análisis de la degradabilidad de adhesivos tipo poliuretano obtenidos a partir del aceite de Higuerilla modificado
dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.author | Ortegon Fernandez, Yamileth | |
dc.date.accessioned | 2014-08-27T16:09:25Z | |
dc.date.available | 2014-08-27T16:09:25Z | |
dc.date.created | 2014 | |
dc.date.issued | 2014-08-27 | |
dc.identifier.citation | Oprea S. and Doroftei F. Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum. International Biodeterioration & Biodegradation; Vol. 65: 533–538. 2011. | |
dc.identifier.citation | Sathiskumar P.S., Madras G. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Journal de Polymer degradation and stability. Vol. 96: 1695-1704. 2011. | |
dc.identifier.citation | Karak N. Vegetable Oil-Based Polymers. Properties, Processing and Applications. Pages: 247-270. 2012. | |
dc.identifier.citation | Aranguren MI, González JF and Mosiewicki MA. Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymers Testing. Vol. 31: 7–15. 2012. | |
dc.identifier.citation | Ferreira P, Pereira R, Coelho JFJ, Silva AFM and Gil MH. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules; Vol .40: 144–152. 2007. | |
dc.identifier.citation | Miaoa S., Wang P., Sua Z., Zhang S. Vegetable-oil-based polymers as future polymeric biomaterials. Journal Actabiomaterialia. Vol. 10: 1692-1704. 2014. | |
dc.identifier.citation | Raquez J-M., Deléglise M., Lacrampe M-F., Krawczak P. Thermosetting (bio) materials derived from renewable resources: a critical review. Progress in Polymer Science. Vol. 35(4):487–509. 2010. | |
dc.identifier.citation | Szycher, M. “Szycher’s Handbook of Polyurethanes”, CRC Press, Boca Raton, Florida. 1999. | |
dc.identifier.citation | Productos químicos Adhesivos y Selladores: Mercados Globales, Aarkstore.com de 3 ª Edición. Recuperado de http://yoospain.appspot.com/article/2012-chemicalsadhesives-and-sealants-global-markets-3rd-edition-aarkstore-com. Fecha de consulta Enero 2013. | |
dc.identifier.citation | Acevedo N. Efecto de algunas modificaciones físicas y químicas sobre las propiedades funcionales y nutricionales del almidón de ñame (Discorea alata). Trabajo de grado. Facultad de Agronomía. Escuela de Agronomía. Universidad Central de Venezuela. Maracay, Estado Aragua. 2011. | |
dc.identifier.citation | Maleki E., Kheireddine A. M., Meriam N. Castor oil — a more suitable feedstock for enzymatic production of methyl esters. Fuel Processing Technology. Vol. 112: 129132. 2013. | |
dc.identifier.citation | Aranguren MI, González JF and Mosiewicki MA. Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymers Testing; Vol 31: 7–15. 2012. | |
dc.identifier.citation | Conde A. Cinemática de la transesterificación del aceite de higuerilla. Proyecto de grado, Universidad Industrial de Santander. Escuela de Ingeniería Química, 1970. | |
dc.identifier.citation | Valero M. F. Pulido J. E.; Ramírez A.; Cheng Z, Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol. Química Nova. Vol. 31 (8): 2076-2082. 2008. | |
dc.identifier.citation | Ramezani K., Rowshanzamir S., Eikani M.H. Castor oil transesterification reaction: A kinetic study and optimization of parameters. Energy. Vol. 35: 4142-4148. 2010. | |
dc.identifier.citation | Louise L, Sousa, Izabelly L. Lucena F., Fernandes A.N. Transesterification of castor oil: Effect of the acid value and neutralization of the oil with glycerol. Fuel Processing Technology. Vol. 91: 194-196. 2010. | |
dc.identifier.citation | Tang J, Zhang Z, Song Z, Chen L, Hou X, Yao K. Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol. Europe Polymers Journal. Vol. 42: 3360-3366. 2009. | |
dc.identifier.citation | F. Seniha Güner, Yusuf Yagci, A. Tuncer Erciyes. Polymers from triglyceride oils. Processing Polymers. Sci. Vol. 31: 633-670. 2006. | |
dc.identifier.citation | Diaz G. A., Sotolongo P. J. Modelación matemática de la reacción de transesterificación. Tecnología Química. Vol. 27 (3): 9-16. 2007. | |
dc.identifier.citation | Bhabhe M. D. Athawale V. D. Chemoenzymatic Syntesis of urethane on special functional group oil. Journal of Applied Polymer Sciencie. Vol. 69: 1451-1458. 1998 | |
dc.identifier.citation | Sanmathi C. S. Prasannakumar S. Sherigara B. S. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly (2-ethoxyethyl metacrylate): synthesis, chemical, mechanical, thermal properties, and morphology. Journal of Applied Polymer Sciencie. Vol. 94: 1029-1034.2004. | |
dc.identifier.citation | Valero M. F. Pulido J. E.; Ramírez A.; Cheng Z. Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros. Vol.19 (1): 14-21. 2009 | |
dc.identifier.citation | Howard GT. Polyurethane biodegradation. In: Singh SN, editor. Microbial degradation of xenobiotics, 14. Heidelberg Dordrecht London, NY: Springer. Pages: 371–94. 2012 | |
dc.identifier.citation | Pardo Y, González S. Utilización del subproducto vegetal generado en la elaboración de edulcorantes de Stevia como material de relleno reforzante en elastómeros de poliuretano a partir de aceite de higuerilla. Revista Virtual Pro - Procesos Industriales. Vol. 109: 23-29. 2011. | |
dc.identifier.citation | Chernga J., Houa T., Shihb M. F., Talsmac H., Hennink W. E. Polyurethane-based drug delivery systems. International Journal of Pharmaceutics. Vol. 450: 145-162. 2010. | |
dc.identifier.citation | Mark, H. F. Encyclopedia of Polymer Science and Technology (3rd Edition).West Sussex, Reino Unido: John Wiley & Sons. 2004. | |
dc.identifier.citation | Tighzert, et al. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resource. Polymer. Vol. 46: 863 -9870. 2005. | |
dc.identifier.citation | Yun-Jun Lan L., Shu-Fen Z. Synthesis and properties of waterborne polyurethane dispersion with lions in the soft segments. Journal of Polymer Research. Vol. 13 (6). 2006. | |
dc.identifier.citation | Tecnología de los plásticos. Recuperado de http://tecnologiadelosplasticos.blogspot.com/2012/11/policaprolactona-pcl.html. Fecha de consulta Enero 2014. | |
dc.identifier.citation | Yeganeh H., et al. Preparation and properties of novel biodegradable polyurethane networks base on castor oil and poly (ethylene glicol). Polymer Degradation and Stability. Vol.92: 480-489.2007. | |
dc.identifier.citation | Tecnología de los plásticos. Recuperado de http://tecnologiadelosplasticos.blogspot.com/2012/11/policaprolactona-pcl.html. Fecha de consulta Enero 2014 | |
dc.identifier.citation | Jiang X., Li J., Ding M. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal. Vol. 43: 1838–1846. 2007 | |
dc.identifier.citation | J.J. Guan, K.L. Fujimoto, M.S. Sacks, W.R. Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, Vol.26 (18): 3961–3971. 2005. | |
dc.identifier.citation | J.J. Guan, M.S. Sacks, E.J. Beckman, W.R. Wagner. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. Journal Biomedical Materials Res, Vol. 61 (3): 493–503. 2002. | |
dc.identifier.citation | J.J. Stankus, J.J. Guan, K. Fujimoto, W.R. Wagner. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. Vol. 27 (5): 735– 744. 2006 | |
dc.identifier.citation | . Loctite Worldwide Design Handbook. Loctite 2ª Edición, 1995. | |
dc.identifier.citation | Duncan B. Broughton B. “Characteristing strength of adhesion”. Crown Copyright 2004, Julio 2004. | |
dc.identifier.citation | Esposito Corcione C., Prinari P. Cannoletta D., Mensitieri G., Maffezzoli A. Synthesis and characterization of clay-nanocomposite solvent-based polyurethane adhesives. International Journal of Adhesion & Adhesives. Vol. 28: 91–100. 2008. | |
dc.identifier.citation | Mishra D., SINHA V. K. Eco-economical polyurethane wood adhesives from cellulosic waste: Synthesis, characterization and adhesion study. International Journal of Adhesion & Adhesives. Vol. 30: 47–54. 2010 | |
dc.identifier.citation | Prashantha P., K. Vasanth Kumar Pai, B. S. Sherigara, S. Prasannakumar. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly (2-hydroxyethylmethacrylate): Synthesis, chemical, mechanical and thermal properties. Bull. Mater. Sci. Vol. 24 (5): 535-538. 2001. | |
dc.identifier.citation | Valero M, Pulido JE, Ramírez A and Cheng, Z. Simultaneous interpenetrating polymer networks of polyurethane from pentaerythritol–modified castor oil and polystyrene: structure–property relationships. J Am Oil Chem Soc. Vol. 86: 383–392. 2009. | |
dc.identifier.citation | Ivan Javni, Zoran S. Petrovic, Andrew Guo, Rachel Fuller. Thermal stability of polyurethanes base on vegetable oils. Journal of applied polymer science. Vol. 77. 1723-1734. 2000. | |
dc.identifier.citation | Suthar. Thermal stability of castor Oil based interpenetrating polymer networks. Termochimica Acta, Pag. 228,213-218. 1993. | |
dc.identifier.citation | Siddaramaiah. Interpenetrating polymer Networks from castor Oil-based polyurethane and polystyrene. Polymer. Vol. 63: 305-309. 1999. | |
dc.identifier.citation | United States Patent 6,359,023. Kluth y colaboradores. Polyurethane prepolymer containing NCO groups. Marzo 19. 2002. | |
dc.identifier.citation | Dutta S and Karak N. Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polymers International; Vol. 55: 49–56. 2006 | |
dc.identifier.citation | Guan J, Sacks MS, Beckman EJ and Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials. Vol. 25: 85–96. 2004 | |
dc.identifier.citation | Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, et al. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials. Vol. 28: 5407–5417. 2007 | |
dc.identifier.citation | Petrovic Zoran S, Ferguson James, Hudson Nick, Javni Ivan y Vranes Marija. The effect of hard segment structure on rheological properties of solutions of segmented polyurethanes. European Polymer Journal. Vol. 28: 637-642. 1992 | |
dc.identifier.citation | United States Patent Application 20030088054. Chasar Dwight W. y colaboradores. Method of making oleochemical oil-based polyols. Mayo 8. 2003. | |
dc.identifier.citation | Baron A, Rodriguez-Hernandez J, Ibarboure E, Derail C and Papon, E. Adhesives based on polyurethane graft multiblock copolymers: tack, rheology and first morphological analyses. Int J Adhes Adhes. Vol. 29: 1–8. 2009 | |
dc.identifier.citation | Luaciane L. Monteavaro. Isabel C. Riegel. Cesar L. Petzhold. Dimitiros samios. Thermal stability of soy-based polyurethanes. Polímeros ciencia y tecnología. Vol. 15(2). 2005 | |
dc.identifier.citation | Mehdi Barikani, Hepburn C. The relative thermal stability of polyurethane elastomers. III: Influence of chain extender structure. Cellular polymers. Vol. 6(2): 47-66. 1987 | |
dc.identifier.citation | Guan J, Sacks MS, Beckman EJ and Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res. Vol. 61: 493–503. 2002. | |
dc.identifier.citation | Ashton JH, Mertz JA, Harper JL, Slepian MJ, Mills JL, McGrath DV, et al. Polymeric endoaortic paving: mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications. Acta Biomater. Vol. 7: 287–294. 2011 | |
dc.identifier.citation | Sathiskumar PS and Madras G. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polymer Degrad Stabil. Vol. 96: 1695–1704. 2011 | |
dc.identifier.citation | Sandip D. Desai, Jigar V. Patel, Vijay Kumar Sinha. Polyurethane adhesive system from biomaterial-based polyol for bondingwood. International Journal of Adhesion & Adhesives. Vol. 23: 393–399. 2003. | |
dc.identifier.citation | Qiaojia L., Nairong C., Liping B., Mizi F. Development and mechanism characterization of high performance soy-based bio-adhesives. International Journal of Adhesion and Adhesives. Vol.34: 11–162. 2012. | |
dc.identifier.citation | H. Lei nG. Du, Z. Wu, X. Xi, Z. Dong. Cross-linked soy-based wood adhesives for plywood. International Journal of Adhesion & Adhesive. Vol. 50: 199–203. 2014. | |
dc.identifier.citation | Yuan Liu, Kaichang Li. Development and characterization of adhesives from soy protein for bonding wood. International Journal of Adhesion & Adhesives. Vol. 27: 59–67. 2007. | |
dc.identifier.citation | Zhongqi H., Dorselyn C. Chapital, Huai N. Cheng, Michael K. Dowd. H. Lei nG. Du, Z. Wu, X. Xi, Z. Dong. Comparison of adhesive properties of water- and phosphate buffer-washed cottonseed meals with cottonseed protein isolate on maple and poplar veneers. International Journal of Adhesion & Adhesives. Vol. 50: 102–106. 2014. | |
dc.identifier.citation | Chanchan W., Jianping W., Guy M. B. Preparation and characterization of canola protein isolate–poly(glycidyl methacrylate) conjugates: A bio-based adhesive. .Industrial Crops and Product.s Vol. 57: 124–131. 2014. | |
dc.identifier.citation | Zhenjiong W., Zhaofeng L., Zhengbiao G., Yan H., Li Cheng. Preparation, characterization and properties of starch-based wood adhesive. Carbohydrate Polymers. Vol. 88: 699–706. 2012. | |
dc.identifier.citation | Keyur P. S., Sujata S. K., Natvar K. P., Animesh K. R. Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion & Adhesives. Vol. 23: 269–275. 2003 | |
dc.identifier.citation | Deepak M., Vijay K. S. . Eco-economical polyurethane wood adhesives from cellulosic waste: Synthesis, characterization and adhesion study. International Journal of Adhesion & Adhesives. Vol: 30: 47–54. 2010. | |
dc.identifier.citation | Silva B., Santana R., Forte M. A solventless castor oil-based PU adhesive for wood and foam substrates. International Journal of Adhesion & Adhesives. Vol. 30: 559– 565. 2010. | |
dc.identifier.uri | http://hdl.handle.net/10818/11652 | |
dc.description | 86 páginas | |
dc.description.abstract | Los biopolímeros constituyen en la actualidad una de las alternativas más atractivas para obtener materiales que satisfagan los requerimientos de un amplio campo de aplicaciones. Los poliuretanos basados en recursos naturales en lugar de polímeros que se derivan del petróleo podrían contribuir en mejorar la calidad ambiental, reduciendo la contaminación y preservando los recursos fósiles. El aceite de higuerilla hace parte del grupo de materias primas renovables que apuntan hacia materiales degradables que permiten sintetizar poliuretanos con diversas aplicaciones debido a sus propiedades mecánicas, resistencia química y baja contracción de curado. Además al presentar una elevada adherencia a un gran número se substratos es utilizado para diferentes aplicaciones como adhesivo. En este trabajo se evaluó la obtención de poliuretanos a partir de polioles derivados del aceite de higuerilla modificado por transesterificación con pentaeritritol, poli ( ε -caprolactona) diol y diisocianato de isoforona (IPDI). Se evidenció el efecto de la modificación de la estructura química de poliol, y por tanto de su funcionalidad hidroxílica, por medio de ensayos de espectroscopia de infrarrojos. La relación de grupos NCO/OH utilizada fue de 1:1. Se determinó el efecto de la cantidad de poli ( ε -caprolactona) diol (PCL) sobre las propiedades físicas de los revestimientos de poliuretano en superficies de madera. Los revestimientos de poliuretano se caracterizaron mediante pruebas de espectroscopia infrarroja con transformada de Fourier (FTIR), resistencia a la tracción, fuerza de adhesión (substrato madera) y dureza Shore A. La degradación in vitro de los poliuretanos se realizó por técnicas gravimétricas (porcentaje de pérdida de peso) y el carácter biodegradable de los materiales se correlacionó con la estructura del segmento duro y el carácter hidrofílico de polímero, que se determinó. | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Biopolímeros -- Adhesivos | |
dc.subject | Industria de adhesivos -- Biopolímeros -- Colombia | |
dc.subject | Aceites vegetales -- Biopolímeros -- Colombia | |
dc.title | Síntesis, caracterización y análisis de la degradabilidad de adhesivos tipo poliuretano obtenidos a partir del aceite de Higuerilla modificado | es_CO |
dc.type | masterThesis | |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | |
dc.publisher.department | Facultad de Ingeniería | |
dc.identifier.local | 259692 | |
dc.identifier.local | TE06749 | |
dc.type.local | Tesis de maestría | |
dc.type.hasVersion | publishedVersion | |
dc.rights.accessRights | openAccess | |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos |