Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzález Mariño, Gloria Eugenia
dc.contributor.authorMontenegro Jaramillo, Andrés Mauricio
dc.date.accessioned2013-05-23T16:49:39Z
dc.date.available2013-05-23T16:49:39Z
dc.date.created2013-05-23
dc.date.issued2009
dc.identifier.citationPimentel D, Harman R, Pacenza M, Pecarsky J, Pimentel M. Natural resources and an optimum human population. Population and Environment. (1994); 15 (5): 347-369
dc.identifier.citationFAO Statistical División. Stadistical data. FAO Quarterly Bulletin of Statistics (1992); 5: 1
dc.identifier.citationColombia. Departamento Nacional de Planeación. Plan 2019: Visión Colombia II Centenario. Bogotá: El Departamento; 2006
dc.identifier.citationColombia. Ministerio de Agricultura y Desarrollo Rural. Apuesta Exportadora Agropecuaria 2006-2019. Bogotá: El Ministerio; 2006
dc.identifier.citationPimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M et al. Environmental Costo f soil erosion and conservation benefits. Science (1995); 267 (5201): 1117-1223
dc.identifier.citationBarclay WR, Lewin RA. Microalgal polysaccharide production for the conditioning of agricultural soils. Plant Soil (1985); 88 (2): 159-169
dc.identifier.citationVitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of Earth’s ecosystems. Science (1997); 277 (5323): 494-499
dc.identifier.citationWardle DA, Bardgett RD, Klironomos JN, Setälä, van der Putten W, Wall DH. Ecological linkages between aboveground and belowground biota. Science (2004); 304 (5677): 1629-1633
dc.identifier.citationMcNeill JR, Winiwarter V. Breaking the sod: Humankind, history, and soil. Science (2004); 304 (5677): 1627-1629
dc.identifier.citationMcNeill JR. Something new under the sun: an environmental history of the 20th – century World. New York: Norton; 2000.
dc.identifier.citationBarrow JC. Land Degradation. Cambridge: Cambridge University Press; 1991.
dc.identifier.citationMann ChC. El futuro está en la tierra que yace a nuestros pies. National Geographic en Español (2008); 23 (3): 2-27
dc.identifier.citationSanchez PA, Buol SW. Soils of the tropics and the World food crisis. Science (1975); 188 (4188): 598-603
dc.identifier.citationLarson WE, Pierce FJ, Dowdy RH. The treat of soil erosion to long-term crop production. Science (1983); 219 (4584): 458-465
dc.identifier.citationChaney K, Swift SR, The influence of organic matter on agrégate stability in some British soils. Journal of Soil Science (1984); 45 (): 273-283
dc.identifier.citationAllison FE. Soil organic Matter and Its role in crop production. New York: Elsevier; 1973.
dc.identifier.citationGrant WD, Long PE. Microbiología ambiental. Zaragoza: Acribia; 1989
dc.identifier.citationPimentel D, Garnick E, Berkowitz A, Jacobson S, Napolitano S, Black P et al. Environmental quality and natural biota. BioScience (1980); 30: 750-755
dc.identifier.citationLewin RA. The use of algae as soil conditioners. Centros Invest. Baja Calif. Scripps. Inst. Oceanogr, 3 (1977), 33-35.
dc.identifier.citationFoster RC. Polysaccharides in soil fabrics. Science (1981); 214 (4521): 665-667
dc.identifier.citationMetting B. The systematics and ecology of soil algae. The Botanical Review (1981); 47 (2): 195-312
dc.identifier.citationMazor G, Kidron GJ, Vonshak A, Abeliovich A. The role of cyanobacterial exopolysaccharides in structuring desert microbiol crusts. FEMS Microb Ecol (1996); 21: 121-130
dc.identifier.citationApte SK, Thomas J. Possible reclamation of coastal soil salinity using halotolerant nitrógeno-fixing cyanobacteria. Planta and Soil (1997); 189: 205-211
dc.identifier.citationKaushik BD, Venkataraman GS. Reclamative capacity of blue-green algae in saline and sodic soils. En: Proceedings of the National Symposium on Biological Nitrogen Fixation, Department of Atomic Energy. Bombay. p. 378-389
dc.identifier.citationAshraf M, Hasnain S, Berge O. Effecto of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum) plants grown in a saltaffected soil. IJEST (2006); 3: 43-51
dc.identifier.citationCohen Z. Products from microalgae. En: Richmond A, editor. Handbook of microalgae mass culture. Florida: CRC Press, 1986. p. 421-454
dc.identifier.citationÖrdög V, Stirk WA, Lenobel R, Bancírová M, Strnad M, van Staden J, Szigeti J, Németh L. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology (2004); 16 (4): 309-314
dc.identifier.citationRoeselers G, van Loosdrecht MCM, Muyzer G. Phototrophic biofilms and their potencial applications. Journal of Applied Phycology (2008); 20 (3): 227-235
dc.identifier.citationBorowitzka MA. Microalgae as sources of fine chemicals. Current Microbiology (1986); 3: 372-375
dc.identifier.citationBubrik P. Production of astaxanthin from Haematococcus. Bioresource Technology (1991); 38 (2-3): 237-239
dc.identifier.citationPulz O. Photobioreactors: production Systems for phototrophic microorganisms. Applied Microbiology and Biotechnology (2001); 57 (3): 287-293
dc.identifier.citationBanerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii; a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology (2002); 22: 245-279
dc.identifier.citationSpolaore P, Joanniss-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience an Bioengineering (2006); 101 (2): 87-96
dc.identifier.citationCardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP et al. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology (2007); C146 (1-2): 60-78
dc.identifier.citationDos Santos MD, Guarantini T, Lopes JLC, Colepicolo P, Lopes NP. Plant cell and microalgae culture. En: Modern Biotechnology in Medicinal Chemistry and Industry (2005). Research signpost, Kerala, India
dc.identifier.citationStirk WA, Ördög V, Van Staden J, Jäger K. Cytokinin- and auxina-like activity in Cyanophyta and microalgae. Journal of Applied Phycology (2002); 14 (3): 215-221
dc.identifier.citationAugier, H. Les hormones des algues. Etat actuel des connaissances. VII-Applications, conclusión, bibliographie. Bot. Mar. 21: 175-197.
dc.identifier.citationBuggeln RG. Morphogenesis and growth regulators. En: Lobban CS y Winne MJ, editors. The biology of seaweeds. Berkeley: University of California Press; 1981. p. 627-660
dc.identifier.citationJacobs WP. Are angiosperm hormones present in, and used as hormones by, algae? En: Bopp M, editor. Plant growth substances 1983. Berlín: Springer-Verlag; 1986. p. 249-256
dc.identifier.citationEvans LV, Trewavas AJ. Is algal development controlled by plant growth substances? Journal of Phycology (1991); 27: 322-326
dc.identifier.citationBradley PM. Plant hormones do have a role in controlling growth and development of algae. Journal of Phycology (1991); 27: 317-321
dc.identifier.citationKefeli VI, Dashek WV. Non-hormonal stimulators and inhibitors of plant growth and development. Biol. Rev. (1984); 59: 273-288
dc.identifier.citationMartínez Sancho Ma E, Jiménez Castillo JM, El Yousfi F. Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture – Influence of light intensity. Process Biochemistry (1999); 34: 811-818
dc.identifier.citationSánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry (2008); 43: 398-405
dc.identifier.citationStirk WA, Ördög V, van Staden J, Jäger K. Cytokinin-and-auxin-like activity in Cyanophyta and microalgae. Journal of Applied Phycology (2002); 14: 215-221
dc.identifier.citationBailey D, Mazurak AP, Rosowski JR. Aggregation of soil particles by algae. Journal of Phycology (1973); 9: 99-101
dc.identifier.citationMasojídek J, Koblízek M, Torzillo G. Photosynthesis in microalgae. En: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology, Oxford: Blackwell Science; 2004. p. 20-39
dc.identifier.citationTomaselli L. The microalgal cell. En: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology, Oxford: Blackwell Science; 2004. p. 3- 19
dc.identifier.citationLombardi AT, Hidalgo MR, Vieira AAH. Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere (2005); 60: 453-459
dc.identifier.citationBecker EW. Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass (1984); 4: 1-19
dc.identifier.citationÖrdög V, Stirk WA, Lenobel R, Bancírová M, Strnad M, van Staden J, Szigeti J, Németh L. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology (2004); 16 (4): 309-314
dc.identifier.citationRoeselers G, van Loosdrecht MCM, Muyzer G. Phototrophic biofilms and their potencial applications. Journal of Applied Phycology (2008); 20 (3): 227-235
dc.identifier.citationMandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology (2009); 84 (2): 281-291
dc.identifier.citationBurja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria – a profilic source of natural products. Tetrahedron (2001); 57: 9347-9377
dc.identifier.citationFogg GE. Algal cultures and phytoplankton ecology. Madison: University of Wisconsin Press; 1966.
dc.identifier.citationGrobbelaar JU. Availability to algae of N and P adsorbed on suspended solids in turbid waters of the Amazon River. Arch. Hydrobiol (1983); 96 (3): 302-316
dc.identifier.citationRichmond A. Microalgal biotechnology at the turn of the millennium: a personal view. Journal of Applied Phycology (2000); 12: 441-451
dc.identifier.citationGrobbelaar JU. Carbon flow in the pelagic zone of a shallow turbid impoundment, Wuras Dam. Arch. Hydrobiol (1985); 103 (1): 1-24
dc.identifier.citationGrobbelaar JU. Algal nutrition: mineral nutrition. En: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology, Oxford: Blackwell Science; 2004. p. 97-115
dc.identifier.citationRichmond A. Biological principles of mass cultivation. En: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology, Oxford: Blackwell Science; 2004. p. 125-177
dc.identifier.citationTredici MR. Mass production of microalgae: photobioreactors. En: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology, Oxford: Blackwell Science; 2004. p. 178-214
dc.identifier.citationJanssen M, Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. Journal of Biotechnology (2000); 78: 123-137
dc.identifier.citationRosello Sastre R, Fleck-Schneider P, Posten C. Die function der polysaccharide der mickroalge P. purpureum in ihrer produktionskinetik. Chemie Ingenieur Technik (2006); 78 (9): 1393.
dc.identifier.citationYang Ch, Hua Q, Shimizu K. Energetics and carbon metabolismo during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/darkheterotrophic conditions. Biochemical Engineering Journal (2000); 6: 87-102
dc.identifier.citationSánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry (2008); 43: 398-405
dc.identifier.citationGreque de Morais M, Viera Costa JA. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus in a three-stage serial tubular photobioreactor. Journal of Biotechnology (2007); 129: 439-445
dc.identifier.citationVunjak-Novanovik G, Kim Y, Wu X, Berzin I, Merchuk JC. Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Ind. Eng. Chem. Res. (2005); 44: 6154-6163
dc.identifier.citationLidén G. Understanding the bioreactor. Bioprocess and Biosystems Engineering (2002); 24: 273-279
dc.identifier.citationMuffler K, Ulber R. Downstream processing in marine biotechnology. Advances in Biochemical Engineering/Biotechnology (2005); 97: 63-103
dc.identifier.citationGudin C, Therpenier C. Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Proc (1986); 6 (): 73-110
dc.identifier.citationWood AM, Everroad RC, Wingard LM. Measuring growth rates in microalgal cultures. En: Robert A. Andersen, editor. Algal Culturing Techniques. USA: Academic Press; 2005. p. 269 – 285
dc.identifier.citationSTATGRAPHICS PLUS 5.0 [CD-ROM]. Copyright by statistical graphics coporation. Estados Unidos. 2000.
dc.identifier.citationBox GEP, Hunter WG, Hunter JS. Statistics for experimenters: an introduction to design, data analysis and model building. New York: John Wiley & Sons; 1978. (Series in probability and mathematical statistics)
dc.identifier.citationSharma SK, Mulvaney SJ, Rizvi SSH. Food processing engineering: theory and laboratory experiments. New York: John Wiley & Sons; 1999.
dc.identifier.citationPruvost J, Cornet J-F, Legrand J. Hydrodynamics influence on light conversion in photobioreactors: an energetically consistent analysis. Chemical Engineering Science (2008); 63 (14): 3679-3694
dc.identifier.citationMohn FH. Experiencies and strategies in the recovery of biomass from mass cultures of microalgae. En: Sheler G. Soeder CJ, editors. Algae biomass. Amsterdam: Elsevier; 1980. p. 547–571.
dc.identifier.citationMolina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites: process, options and economics. Biotechnology Advances (2003); 20 (7-8): 491-515
dc.identifier.citationHansman E. Pigment analysis. En: Stain JR, editor. Hanbook of phycological methods, culture metods, and growth measurements. Cambridge: Cambridge University Press, 1973. p. 359-368.
dc.identifier.citationAcién Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering (1998); 58 (6): 605-616
dc.identifier.citationMeijer EA, Wijffels RH. Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnology Techniques (1998); 12 (5): 353-358
dc.identifier.citationBradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem (1976); 72: 248-254
dc.identifier.citationGordon S, Weber R. Colorimetric estimation of indole acetic acid. Plant Physiology (1950); 26: 192-195
dc.identifier.citationYemm EW, Willis JA. The estimation of carbohydrates in plant extracts by anthrone. Journal of Biochemistry (1954); 57 (3): 508-514
dc.identifier.citationBand CJ. Efecto de la composición bioquímica de micralgas sobre el valor nutritivo de dos cepas de Artemia. [Tesis de Maestría]. La Paz: Centro Interdisciplinario de Ciencias Nacional, Instituto Politécnico Nacional; 1999.
dc.identifier.citationLewin RA. Extracellular polysaccharides of green algae. Canadian Journal of Microbiology (1956); 2: 665-672
dc.identifier.citationMoore BG, Tischer RG. Extracellular polysaccharides of algae: effects on life-support systems. Science (1964); 145 (3632): 586-587
dc.identifier.citationMazur H, Konop A, Synak R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. Journal of Applied Phycology (2001); 13 (1): 35-42
dc.identifier.citation. Wazer JR Van, Lyons JW, Kim KY, Colewell RE. Viscosity and flow measurements: a laboratory handbook of rheology. New York: John Wiley & Sons; 1963.
dc.identifier.citationDoran PM. Bioprocess Engineering Principles. London: Academic Press; 1995.
dc.identifier.citationCsögör Z, Herrenbauer M, Perner I, Schmidt K, Posten C. Design of a photo-bioreactor for modeling purposes. Chemical Engineering and Processing (1999); 38: 517-523
dc.identifier.citationTredici MR. Bioreactors, Photo. En: Flickinger MC, Drew SW, editors. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparations. New York: John Wiley & Sons; 1999
dc.identifier.citationAcién Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering (1997); 55 (5): 701-714
dc.identifier.citationBurguess G, Fernández-Velasco JG, Lovegrove K. Materials, geometry, and net energy ratio of tubular photobioreactors for microalgal hydrogen production. En: Memories of the 16th World Hydrogen Energy Congress. Lyon, France 13-16 June. pp. 12.
dc.identifier.citationQiang H, Faiman D, Richmond AE. Optimal tilt angles of enclosed reactors fro growing photoautotrophic microorganisms outdoors. Journal of Fermentation and Bioengineering (1998); 85 (2): 230-236
dc.identifier.citationOsborne BA, Raven JA. Growth light level and photon absorption by cells of Chlamydomonas rheinhardii, Dunaliella tertiolecta (Chlorophyceae, Volvocales), Scenedesmus obliquus (Chlorophyceae, Chlorococcales) and Euglena viridis (Euglenophyceae, Euglenales). European Journal of Phycology (1986); 21: 303-313
dc.identifier.citationMolina Grima E, Fernández Sevilla JM, Sánchez Pérez JA, García Camacho F. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. Journal of Biotechnology (1996); 45: 59-69
dc.identifier.citationJanssen M, Tramper J, Mur LR, Wijffels RH. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering (2003); 81 (2): 193-210
dc.identifier.citationPirt SJ. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. The New Phytologist (1986); 102: 3-37
dc.identifier.citationBonardi V, Pesaresi P, Becker T, Wagner R, Pfannschmidt T, Jahns P, Leister D. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature Letters (2005); 437: 1179-1182
dc.identifier.citationRenaud SM, Thinh L-V, Lambrinidis G, Parry DV. Effecto of temperatura on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture (2002); 211 (1-4): 195-214
dc.identifier.citationGuil-Guerrero JL, Rebolloso-Fuentes MM. Nutrient composition of Chlorella spp. And Monodus subterraneus cultured in a bubble column bioreactor. Food Biotechnology (2008); 22 (): 218-233
dc.identifier.citationTarackhovskaya ER, Maslov YuI, Shishova MF. Phytohormones in algae. Russian Journal of Plant Physiology (2007); 54 (2): 163-170
dc.identifier.citationOgbonna JC, Tanaka H. Light requirements and photosynthetic cell cultivation: development of process for efficient light utilization in photobioreactors. Journal of Applied Phycology (2000); 12: 207-218
dc.identifier.citationRoselers, 2008. Hydrodynamics influence on light conversion in photobioreactors: an energetically consistent analysis. Chemical Engineering Science (2008); 20: 3679- 3694
dc.identifier.citationSingh S, Arad S, Richmond A. Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. Journal of Applied Phycology (2000); 12: 269-275
dc.identifier.citationLee Y-K, Pirt SJ. Energetics of photosynthetic algal growth: influence of intermittent illumination in short (40 s) cycles. Journal of General Microbiology (1981); 124: 926- 935
dc.identifier.citationWu X, Merchuk JC. A model integrating fluid dynamics in the photosynthesis and photoinhibition process. Chemical Engineering Science (2001); 56: 3527-3538
dc.identifier.citationMerchuk JC, García-Camacho F, Molina-Grima E. Photobioreactor design and fluid dynamics. Chemical and Biochemical Engineering (2007); 21 (4): 354-355
dc.identifier.citationMärkl et al. 1991, Bronnenmeier, Wittek B. The resistance of microorganism to hydrodynamic stress. Int Chem Eng (1991); 31: 185-197
dc.identifier.citationGrobbelaar JU. Turbulence in mass algal cultures and the role of light/dark fluctuations. Journal of Applied Phycology (1994); 6: 331-335
dc.identifier.citationDayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass and Bioenergy (2007); 31: 87-93
dc.identifier.citationRebolloso Fuentes MM, García Sánchez JL, Fernández Sevilla JM, Acién Fernández FG, Sánchez Pérez JA, Molina Grima E. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative análisis of the daily cyclic variation of culture parameters. Journal of Biotechnology (1999); 70 (): 271-288
dc.identifier.citationMiller RL, Fredrickson AG, Brown AH, Tsuchiya HM. Hydromechanical method to increase efficiency of algal photosynthesis. I&C Process Design and Development (1964); 3 (2): 134-143
dc.identifier.citationBentley-Mowat JA. Do plant growth substances affect development and ecology of unicellular algae? Wiss. Z. Univ. Rostock, math. Naturwiss (1967). Reihe 16: 445-449
dc.identifier.citationMazur H, Konop A, Synak R. Indole-3-acetic acid in the culture médium of two axenic green microalgae. Journal of Applied Phycology (2001); 13: 35-42
dc.identifier.urihttp://hdl.handle.net/10818/7481
dc.description116 páginas
dc.description.abstractA partir de la evaluación del crecimiento de las microalgas, Scenedesmus obliquus y Chlorella vulgaris, se estandarizaron las condiciones de producción y se seleccionó a Scenedesmus obliquus para la optimización e identificación de los parámetros de proceso relevantes en su producción. Aplicando un diseño factorial 23 por metodología de screening se evaluó el efecto e interacciones de tres variables de proceso, en la productividad y producción de exopolisacáridos (EPS) y fitohormonas en el sobrenadante (IAA, ácido indol acético). Las pruebas experimentales entregaron condiciones óptimas para las variables de respuesta consideradas con μ 0.64 d-1, EPS y IAA de 24.7 mg L-1 y 5.42 nM L-1 respectivamente, sobre un punto optimo ubicado en niveles máximos de las tres variables (11.000 lux, 4% mezcla CO2-aire, 1.200 rpm).es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectAnálisis de sueloses_CO
dc.subjectCultivo de algases_CO
dc.titleObtención de los parámetros de proceso requeridos para el escalamiento de un bioproceso orientado al desarrollo de mejoradores de suelo a base de extractos de microalgases_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem