Mostrar el registro sencillo del ítem

dc.contributor.advisorKlotz Ceberio, Bernadette
dc.contributor.advisorAguilar Rivera, Catalina
dc.contributor.authorMejía Cano, Angélica María
dc.date.accessioned2013-03-15T22:10:43Z
dc.date.available2013-03-15T22:10:43Z
dc.date.created2012
dc.date.issued2013-03-15
dc.identifier.citationAdekunte, A., Tiwari , B.K., Scannell , A., Cullen, P.J. y O'Donnell, C. (2010). Modelling of yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 137: 116– 120.
dc.identifier.citationAdekunte, A.O., Tiwari, B.K., Cullen, P.J., Scannell, A.G.M. y O’Donnell, C.P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry doi: 10.1016/j.foodchem.2010.01.026.
dc.identifier.citationAdekunte, M. A., Valdramidis, V.P. , Tiwari, B.K., Slone, N., Cullen, P.J., O’Donnell, C.P. y Scannell, A.(2010). Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: A quantitative approach on microbial responses. International Journal of Food Microbiology, 142: 53–59
dc.identifier.citationAleman, G., Farkas, D.F., Torres, J.A., Wilhelmsen, E. y McIntyre, S. (1994). Ultra high pressure pasteurization of fresh cut pineapple. Journal of Food Protection, 57(10):931–934.
dc.identifier.citationAlliger, H. (1975). Ultrasonic disruption. American Laboratory, 10:75-85.
dc.identifier.citationÁlvarez, I., Pagan, R., Raso, J., Codo, S. y Sala, F.J. (2000). Microbial Inactivation by Ultrasound. Food Technology, University of Zaeagoza, Miguel Servet, 177. 50013.
dc.identifier.citationÁlvarez, I., Mañas, P., Sala, F. J. y S. Condón, S. (2003). Inactivation of Salmonella enterica Serovar Enteritidis by Ultrasonic Waves under Pressure at Different Water Activities. Applied and Environmental Microbiology, p. 668–672.
dc.identifier.citationAnanta, E., Voigt, D., Zenker, M., Heinz, V. y Knorr, D. (2005). Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. Journal of Applied Microbiology. 99: 271–278.
dc.identifier.citationArroyo,C., Cebrián, G., Pagán, R. y Condón, S. (2011). Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. International Journal of Food Microbiology, 144: 446–454.
dc.identifier.citationArnold, G., Leiteritz, S., Zahn, S. y Rohm, H. (2009). Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. International Dairy Journal, 19: 314-320.
dc.identifier.citationAshokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K. y Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve funcionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologics. 9, 155-160.
dc.identifier.citationBaranyi, J., Pin, C., y Roos, T. (1999). Validating and comparing predictive models. International Journal of Food Microbiology, 48: 159-166.
dc.identifier.citationBermúdez-Aguirre, D. y Barbosa-Cánovas, G. V. (2006). Microstructure of fat globules in whole milk after thermo-sonication treatments. Presented at IFT Annual Meeting, Orlando, FL, 24– 28.
dc.identifier.citationBermúdez-Aguirre, D. yBarbosa-Canovas, G.V. (2008). Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Innovative Food Science and Emerging Technologies, 9: 176-185.
dc.identifier.citationBermúdez-Aguirre, D., Mawson, R., Verstee, K. y Barbosa-Canovas, G (2009). Composition Properties, Physicochemical Characteristics And Shelf Life Of Whole Milk After Thermal And Thermo-Sonication Treatments. Journal Of Food Quality, 32: 283–302.
dc.identifier.citationBoone, D.R., 2001. Bergey`s Manual of Systematic Bacterology: 2nd edition. Vol 1: 1208 1234.
dc.identifier.citationBoistier-Marquis, E., Lagsir-Oulagal, N. y Callard, M. (1999). Aplications Des ultrasons de puissances en industries alimentaires. Industrial. Alimentary . Agriculture, 116: 23-31.
dc.identifier.citationBrown, T., James, S.J. y Purnell, G.L. (2005). Cutting forces in foods: experimental measurements. Journal of Food Engineering, 70: 165-170.
dc.identifier.citationBuchanan, R. (1993). Predictive food microbiology. Trends Food Science Technology, 4: 6 11.
dc.identifier.citationCabeza, M.C., Cárcel, J.A., Ordóñez, J.A., Cambero, I., De la Hoza, L., Garcia, M.L. y Benedito, J. (2010). Relationships among selected variables affecting the resistance of Salmonella enterica, serovar Enteritidis to thermosonication. Journal of Food Engineering, 98: 71–75.
dc.identifier.citationCameron, M., McMaster y L., Britz, T. (2008). Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15, 960:964.
dc.identifier.citationCameron, M., McMaster y L., Britz, T. (2009). Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Science Technology, 89: 83-98.
dc.identifier.citationCamino, N.A., Pérez, O.E. y Pilosof, A. (2009).Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloids, 23: 1089–1095.
dc.identifier.citationCao, S., Hu, Z. y Pang, B. (2010). Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biology and Technology, 55: 150–153.
dc.identifier.citationCao, S., Hu, Z., Pang, B., Wang, H., Xie, H. y Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21: 529–532.
dc.identifier.citationCarrasco E., García-Gimeno, R., Seselovsky, R., Valero, A., Pérez, F., Zurera, G. y Todd, E. (2006). Predictive model of Listeria Monocytogenes’ growth rate under different temperatures and acids. Food Science Technology International, 12(1):47–56.
dc.identifier.citationCartwright, D. (1998). "Off the-shelf” ultrasound instrumentation for the food industry. In Ultrasound in food processing. Povey, M. J. W. and T. J. Mason (ed.). Blackie Academic y Professional. London.
dc.identifier.citationCielo D. Char, C., Mitilinaki, E., Guerrero, S.N y Alzamora, S. (2010). Use of high-intensity ultrasound and UV-C Llght to inactivate some microorganisms in fruit juices. Food Bioprocess Technology., 3:797–803.
dc.identifier.citationChemat, F., Huma, Z y Khan, M. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18: 813–835.
dc.identifier.citationChouliara, E., Georgogianni, K.G., Kanellopoulou, N. y Kontominas, M.G. (2010). Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. International Dairy Journal, in press: 1–7.
dc.identifier.citationCoroller,L., Leguerinel, I., Mettler, E., Savy, N. y Mafart, P. (2006). General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied and Environmental Microbiology: 6493–6502
dc.identifier.citationCoupland, J.N. (2004). Low intensity ultrasound. Food Research International, 37: 537–543.
dc.identifier.citationCohen, J.S. y Yang, T.C.S. (1995). Progress in food dehydration. Trend food Science Technology, 6: 20-25.
dc.identifier.citationCzank, C., Simmer, K y Hartmann, P. (2010). Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: effect on milk quality. Journal of Dairy Research, 77: 183–189.
dc.identifier.citationChow, R., Blindt, R., Chivers, R. y Povey, M. (2005). A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics, 43: 227-230.
dc.identifier.citationD`Amico, D. J., Silk, T. M., Wu, J. y Mingruo, G. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69: 556-563.
dc.identifier.citationDe la Fuente Blanco, S., Riera-Franco de Sarabia, E., y Gallego Juárez, J. A. (2004). Estudio de los parámetros involucrados en el proceso de deshidratación ultrasónica de vegetales. Revista de Acústica, 35: 25-30
dc.identifier.citationDe LLanos, R., Querol, A., Pemán, J. , Gobernado, M. y Fernández-espinar, M.T. (2006). Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of human systemic infections. International Journal of Food Microbiology, 110: 286–290.
dc.identifier.citationDemirdôven, A. y Baysal, T. (2009). The Use of Ultrasound and CombinedTechnologies in Food Preservation. Food Reviews International, 25:1–11
dc.identifier.citationDeng, Y. y Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41: 1575-1585.
dc.identifier.citationDrakopoulou, S., Terzakis, S., Fountoulakis, M.S., Mantzavinos, D. y Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16: 629–634.
dc.identifier.citationDukhin, A. S., Goetz, P. J. y Travers, B. (2005). Use of Ultrasound for Characterizing Dairy Products. J. Dairy Sci. 88:1320–1334.
dc.identifier.citationEarnshaw, R. G., Appleyard, J. y Hurst, R. M. (1995). Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology, 28, 197-219
dc.identifier.citationElvira, L., Sampedro, L., Matesanz, J., Gómez-Ullate, Y., Resa, P., Iglesias J.R., Echevarría, F.J. y Montero de Espinosa, F. (2005). Non-invasive and non-destructive ultrasonic technique for the detection of microbial contamination in packed UHT milk. Food Research International, 38: 631–638.
dc.identifier.citationEnsminger, D. (1988) Acoustic and electroacoustic methods of dewatering and drying. Drying Technology. 6: 473
dc.identifier.citationEng, R.H.K., Drehmel, R., Smith, S.M., Goldstein, E.J.C., 1984. Saccharomyces cerevisiae infections in man. Journal of Medical Veterinay Mycology, 22: 403–407.
dc.identifier.citationErtugay, M.F., Sengül, M. y Sengül, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkey Journal of Veterinary Animal Science., 28: 303-308
dc.identifier.citationFactores que influyen en el crecimiento y supervivencia de los microorganismos. Revisado el 9 de Noviembre de 2011 de: http://www.ecured.cu/index.php/Factores_que_influyen_en_el_crecimiento_y_supervivencia_de _los_microorganismos
dc.identifier.citationFernandes, F.A.N., Linhares Jr., F.E. y Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasound sonochemistry, 15: 1049-1054.
dc.identifier.citationFloros, J. D., y Liang, H. (1994). Acoustically assisted diffusion through membranes and biomaterials: High-intensity ultrasound accelerates diffusion and can be used to improve food processes. Food Technology, 79.
dc.identifier.citationFuruta , M., Yamaguchi, M. Tsukamoto, T., Yim, B., Stavarache, C.E.., Hasiba, K. y Y. Maeda, Y. (2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics Sonochemistry, 11: 57–60.
dc.identifier.citationGabriel, A. y Nakano, H. (2010). Responses of E. coli O157:H7, L. monocytogenes ½ c and salmonella enteritidis to pH, aw and temperature stress combinations. Food Control, 21: 644-650.
dc.identifier.citationallego-Juarez, J.A., Rodrigues-Corral, G., Acosta- Aparicio, V.M., Andres-Gallego, E., Blanco-Blanco, A. y Montoya-Vitini, F. (2002). Procedimiento y sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada . Sp. Patente, 2002 02113.
dc.identifier.citationGaze, J. (2005). A review: Microbiological aspects of thermally processed foods. Journal of Applied Microbiology, 98: 1381 - 1386
dc.identifier.citationGeeraerd, A.H., Herremans, C.H. y Van Impe, J.F. (2000). Structural model requirements to describe microbial inactivation during a mild heat treatment. International Journal of Food Microbiology, 59 (3), 185-209
dc.identifier.citationGolberg, A., Rae, S. y Rubinsky, B. (2012). Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold. Biochimica et Biophysica Acta, 1818: 689–694.
dc.identifier.citationGomez-López, V.M., Orsolani, L., Martínes Yepes, A. y Tapía, M.S. (2010). Microbiological and sensory quality of sonicated calcium-added orange juice. LWT - Food Science and Technology, 43: 808–813
dc.identifier.citationGould, G.W. (1996). Methods for preservation and extension of shelf life.International Journal of Food Microbiology, 33: 51-64.
dc.identifier.citationGuerrero, S., López-Malo, S. y Alzamora, S.M. (2001). Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innovative Food Science y Emerging Technologies, 2: 31-39.
dc.identifier.citationHajmeer, M.N. y Cliver D.O. (2002). Microbiology of food preservation and sanitation. foodborne diseases. 2nd Ed. Cliver, D.O. and Riemann, H. (Eds.) Academic Press, New York, NY. Chapter 22. Pp. 330-352.
dc.identifier.citationHauben, K. J. A., Bernaerts, K., Michiels, C. W. (1998). Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. Journal of Applied Microbiology, 85: 678-684.
dc.identifier.citationHorwitz, William (2005). Official methods of analysis of AOAC International. 18th ed. Gaithersburg, Md.: AOAC International.
dc.identifier.citationHülsen, U. (1999). Alternative heat treatment processes. European Dairy Magazine, 3: 20-24
dc.identifier.citationInce, N., Belen, R. (2001). Aqueous phase disinfection with power ultrasound: process kinetics and effect of solid catalysts. Enviromental Science and Technology, 35 (9).
dc.identifier.citationInternational Journal of Food Microbiology 110 (2006) 286–290 Sigma Aldrich: Material safety Data Sheet. Recuperado el 15 de Agosto de 2011 de: http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do
dc.identifier.citationJambrak., A.R., Lelas, V., Mason, T.J., Kresic, G. y Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93: 386-393.
dc.identifier.citationJambrak., A.R., Lelas, V., Mason, T.J., Herseg, Z. y Herseg, I.L (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86: 281-287.
dc.identifier.citationJambrak., A.R., Mason, T.J., Paniwnyk, L. y Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81: 88-97.
dc.identifier.citationKnorr, D., Zenker, M., Heinz, V. y Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science y Technology, 15: 261-266
dc.identifier.citationKuldiloke, J. (2002). Effect of Ultrasound, Temperature and Pressure Treatments on Enzyme Activity and Quality Indicators of Fruit and Vegetable Juices. PhD Thesis. Technical University of Berlin. 118 Páginas.
dc.identifier.citationLee, H., Zhou, B., Liang, W., Feng, H. y Martin, S. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93: 354–364
dc.identifier.citationLee, D. U., Heinz, V., y Knorr, D. (2003). Effects of combination treatments of nisin and high-intensity ultrasound with pressure on the microbial inactivation in liquid whole egg. Innovative Food Science and Emerging Technologies, 4: 387-393.
dc.identifier.citationLida, Y., Tuziuti, T., Yasui, K., Towata, A. y Kosuka, T. (2008). Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. . Innovative Food Science and Emerging Technologies, 9: 140-146.
dc.identifier.citationLilliard, H.S. (1994). Decontamination of poultry skin by sonication. Food Technology, 48 (12): 72-73.
dc.identifier.citationLi, B. y Sun D.W. (2002a). Effect of power ultrasound on freezing rate during immersion freezing of potatoes. Journal of Food Engineering, 55: 277-282.
dc.identifier.citationLi, B. y Sun D.W. (2002b). Novel methods for rapid freezing and thawing of foods-a review. Journal of Food Engineering, 54: 175-182.
dc.identifier.citationLópez, P., Sala, F. J., Fuente, J. L., Condón, S., Raso, J., y Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42: 252-256
dc.identifier.citationMcClements, J. (1995). Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology. 6: 293-299.
dc.identifier.citationMadigan M., Martinko, J. y Parker, J. (2008). Brock: Biologia de los microorganismos. 12va Edición. Prentice Hall. Iberia. Madrid
dc.identifier.citationMason T., Paniwnyk, L. y Lorimer, J. (1996). The uses of ultrasound in food technology.Ultrasonics Sonochemistry, 3: 253-260
dc.identifier.citationMason, I. L. (1996). A world dictionary of livestock breeds, types and varities. 4 Ed. CABI Publishing. Wallingford, UK.
dc.identifier.citationMongenot, N., Charrier, S. y Chalier, P. (2000). Effect of ultrasound emulsification on cheese aroma encapsulation by carbohydrates. Journal of Agricultural Food Chemistry, 48: 861- 867.
dc.identifier.citationMcDonald, K. y Sun, D.W. (1999). Predictive food microbiology for the meat industry. Internacional Journal of Food Microbiology, 52: 1-27
dc.identifier.citationMossel, D.A.A., Corry, J.E.L., Struijk, C.B. y Baird, R.M. (1995). A113–A116. Essentials of the Microbiology of Foods. Wiley, West Sussex, Doherty, A., McMahon, C.M.M., Sheridan, J.J., 1998. Thermal UK
dc.identifier.citationMurphy, A. y Kavanagh, K. (1999). Emergence of Saccharomyces cerevisiae as a human pathogen. Implications for biotechnology. Enzyme Microbiology Technology, 25: 551–557 (Review).
dc.identifier.citationNyborg, W. L. (1965). Acoustic Streaming, Vol. 2B, Academic Press, New York.
dc.identifier.citationO’Brien, W.D. (2007). Ultrasound–biophysics mechanisms. Progress in Biophysics and Molecular Biology, 93: 212-255.
dc.identifier.citationOrdoñez, J. A., Aguilera, M.A., García, M.L. y Sanz, B. (1987). Effect of combined ultrasonic and heat treatment (thermoultrasonication) on the survival of a strain of Staphylococcus aureus. Journal of Dairy Science, 54: 61-67
dc.identifier.citationO’Donnell, C.P. Tiwari, B.K., Bourke, P. y Cullen, P.J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science y Technology, 21: 358-367
dc.identifier.citationPagán, R., Mañas, P., Álvarez, I. y Condón, S. (1999). Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology, 16: 139-148.
dc.identifier.citationParish, M.E. (1998). Orange juice quality after treatment by thermal pasteurization or isostatic high pressure. Lebensmittel Wissenschaft und Technologie, 31(5): 439–442.
dc.identifier.citationPhilippe, M., Gaucheron, F., Le graet, Y., Michel, F. y Garem F. (2007). Physicochemical characterization of calcium-supplemented skim milk. Lait, 83: 45-59
dc.identifier.citationPiyasena, P., Mohareb, E. & McKellar, R.C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87: 207– 216
dc.identifier.citationPresser, K. A., Ross, T. y Ratkowsky, D. A. (1998).Modelling the Growth Limits (Growth/No Growth Interface) of Escherichia coli as a Function of Temperature, pH, Lactic Acid Concentration, and Water Activity. Applied and Environmental Microbiology, 64,( 5): 1773–1779.
dc.identifier.citationPovey, M.J.W y Mason, T. J. (1998). Ultrasound in Food Processing. Springer. Berlin.
dc.identifier.citationRoberts R.T., 1993. High intensity ultrasonics in food processing. Chemical Industry, 15: 119-121.
dc.identifier.citationRodriguez, G., Riera, E., Gallego-Juárez, J.A., Acosta, V.M., Pinto, A., Martínez, I. y Blanco, A. (2010). Experimental study of defoaming by air-borne power ultrasonic technology. Physic procedia, 3: 135-139.
dc.identifier.citationSaccharomyces cerevisiae. Recuperado el 5 de Julio de 2011 de: http://hongosalergenicos.reviberoammicol.com/files/039.PDF
dc.identifier.citationSagong, H., Lee, S., Chang, P., Heu, S., Ryu, S., Choi, Y. y Kang, D. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology. Accepted manuscript. doi: 10.1016/j.ijfoodmicro.2011.01.010.
dc.identifier.citationSala, F. J., Burgos, J., Condón, S., López, P., y Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. G. W. Gould, New methods of food preservation. Blackie Academic and Professional. pp. 176-204. London, England.
dc.identifier.citationSarabia Alegria, Jose Marí (2005). Curso Básico de estadística Economía y Administración de Empresas. Recuperado el 11 de Diciembre de 2011 de: http://books.google.com.co/books?id=QEp1dROP0OACypg=PA111ylpg=PA111ydq=medidas+de+b ondad+y+ajusteysource=blyots=UVGsk9fvUxysig=JmF76440dyyHEuAnpEHpKvNlg8yhl=esysa=Xyei=LrrpTtHnLcyftwfKl7i1Cgyved=0CFgQ6AEwCQ#
dc.identifier.citationShoh, A. (1998). In: Ultrasound:Chemical, Biological and Physical Effects. Ed. Suslick, K. S. pp 97-122.
dc.identifier.citationSimal, S., Benedito, J., Sanchez, E.S. y Rosello, C. (1998). Use of ultrasound to increase mass transport rates during`smotic dehydration. Journal of Food Engineering, 36: 323-336
dc.identifier.citationSkinner, G.E. y Larkin, J.W. (1994). Mathematical modelling of bacterial growth. Journal Food Safety, 14: 175-217
dc.identifier.citationSmith, D., Metzgar, D., Wills, C. y Fierer, J. (2002). Fatal Saccharomyces cerevisiae aortic graft infection. Journal of Clinical Microbiology, 40: 2691–2692.
dc.identifier.citationSoh, W.K. y Willis, B. (2002). A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble. Faculty of Engineering, University of Wollongong, New South Wales 2522, Australia
dc.identifier.citationSoria, A. C. y Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science y Technology, 21: 323-331
dc.identifier.citationSun, D.W. y Li, B. (2003). Microstructutral change of potato tissues frozen by ultrasoundassisted immersion freezing. Journal of Food Engineering, 57:337-345.
dc.identifier.citationSuslick, K. S. (1998). In: Ultrasound:Chemical, Biological and Physical Effects. Ed. Suslick, K. S.,pp.:123-163.
dc.identifier.citationSuslick, K. S., y Hammerton, D. A. (1985).Determination of local temperatures caused by acoustic cavitation, IEEE Ultrasonics Symposium Process, 4: 1116.
dc.identifier.citationSzent, A. (1933). Chemical and biological effects of ultra-sonic radiation. Nature, 131: 278.
dc.identifier.citationTaylor, M. J. y Richardson, T. (1980). Antioxidant activity of skim milk: effect of sonication. Journal of Dairy Science, 63: 1938-1942.
dc.identifier.citationTiwari, B.K., Muthukumarappana, K., O’Donella, C.P. y Cullen, P.J. (2009). Innovative Food Science and Emerging Technologies, 10: 166-171
dc.identifier.citationValdramidis, V.P. Cullen, P.J., Tiwari, B.K. y O’Donnell, C.P. (2010).Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96: 449–454.
dc.identifier.citationVercet, A., Lopez, P. y Burgos, J. (1999). Inactivation of heat resistant pectinmethylesterase from orange by manothermosonication. Journal of Agricultural Food Chemical, 47: 432-437.
dc.identifier.citationVilkhu, K., Mawson, R., Simons, L. y Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry: A review. Innovative Food Science and Emerging Technologies, 9: 161–169.
dc.identifier.citationVillamiel, M. y de Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Department of Process Innovation, NIZO Food Research. The Netherlands. Journal of Agriculture and Food Chemistry, 48:472-478
dc.identifier.citationWalkling-Ribeiro, M. , Noci, F., Cronin, D.A., Riener, J., Lyng, J.G. y Morgan D.J. (2008). Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. Journal of Food Engineering, 89: 267–273.
dc.identifier.citationWhiting, R. C. y Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiology, 10: 175-177
dc.identifier.citationWrigley, D. M. y Llorca, N. G. (1992). Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment. Journal of Food Protection, 55: 678-680.
dc.identifier.citationWu, H. Hulbert, G.J. y Mount, J.R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1: 211- 218
dc.identifier.citationYang P, Zhao B, Basir OA, y Mittal GS. (2007). Measures of similarity and detection of miniature foreign bodies in packaged foods. Food Research International, 40 (6): 742-747.
dc.identifier.citationZenker M, Heinz V y Knorr D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66 (9): 1642- 1649.
dc.identifier.citationZhao BS, Basir OA y Mittal GS. (2003). Detection of metal, glass and plastic pieces in bottled beverages using ultrasound. Food Research International, 36 (5): 513-521.
dc.identifier.citationZhao B, Basir OA y Mittal GS. (2003). A self-aligning ultrasound sensor for detecting foreign bodies in glass containers. Ultrasonics, 41 (3): 217-222.
dc.identifier.citationZhao B, Basir OA y Mittal GS. (2003). Correlation analysis between beverage apparent viscosity and ultrasound velocity. International Journal of Food Properties, 6 (3): 443-448.
dc.identifier.citationZhao B, Basir OA y Mittal GS. (2007). Hybrid of multi-signal processing methods for detection of small objects in containers filled with beverages using ultrasound. Lwt-Food Science and Technology, 40 (4): 655-660.
dc.identifier.citationZhao B, Basir OA, yMittal GS. (2009). Detection of occluded small objects in glass bottles filled with beverages via ultrasound center frequency tracing. Lwt-Food Science and Technology, 42 (1): 162-167.
dc.identifier.citationZhao B, Jiang Y, Basir OA y Mittal GS. (2004). Foreign body detection in foods using the ultrasound pulse/echo method. Journal of Food Quality, 27 (4): 274-288
dc.identifier.citationZwietering, M.H., Jongenburger, I., Rombouts, F. M. y Van 't Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56: 1875-1881.
dc.identifier.citationZuo, J.Y., Kn9oerzer, K., Mawson, R., Kentish, S. y Ashokkumar, M. (2009). The pasting properties of sonicated waxy rice starch suspensions. Ultrasonic sonochemistry, 16: 462-468.
dc.identifier.urihttp://hdl.handle.net/10818/6372
dc.description126 páginas.
dc.description.abstractEl ultrasonido de alta intensidad (UAI), se perfila como una tecnología promisoria para la conservación de alimentos. Sin embargo, hacen falta estudios sistemáticos del efecto de propiedades intrínsecas del medio sobre la efectividad de los tratamientos que permitan determinar su potencial de aplicación real. En este trabajo se evaluó el efecto del UAI sobre tres cepas microbianas de importancia en alimentos y con características diferenciales a nivel de pared celular: Listeria monocytogenes, Escherichia coli y Saccharomyces cerevisiae, y se determinó la influencia de diferentes condiciones intrínsecas del medio (glucosa, NaCl, grasa y pH) sobre la inactivación microbiana. Los resultados mostraron que la concentración celular de L. monocytogenes, E. coli y S. cereviciae, se redujo luego de 10 minutos de tratamiento y se encontró que los factores intrínsecos del medio ejercen un efecto significativo sobre la cinética de inactivación microbiana por ultrasonido. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/8779es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectUltrasonido en biologíaes_CO
dc.subjectAlimentos -- Preservaciónes_CO
dc.subjectMicrobiologíaes_CO
dc.titleEvaluación del efecto de factores intrínsecos de una matriz líquida sobre la inactivación microbiana mediante la aplicación de ultrasonido de alta intensidad.es_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.localTE05792
dc.identifier.local159383
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagister en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem