dc.contributor.advisor | Klotz Ceberio, Bernadette | |
dc.contributor.advisor | Aguilar Rivera, Catalina | |
dc.contributor.author | Mejía Cano, Angélica María | |
dc.date.accessioned | 2013-03-15T22:10:43Z | |
dc.date.available | 2013-03-15T22:10:43Z | |
dc.date.created | 2012 | |
dc.date.issued | 2013-03-15 | |
dc.identifier.citation | Adekunte, A., Tiwari , B.K., Scannell , A., Cullen, P.J. y O'Donnell, C. (2010). Modelling of
yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 137: 116–
120. | |
dc.identifier.citation | Adekunte, A.O., Tiwari, B.K., Cullen, P.J., Scannell, A.G.M. y O’Donnell, C.P. (2010). Effect of
sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry doi:
10.1016/j.foodchem.2010.01.026. | |
dc.identifier.citation | Adekunte, M. A., Valdramidis, V.P. , Tiwari, B.K., Slone, N., Cullen, P.J., O’Donnell, C.P. y
Scannell, A.(2010). Resistance of Cronobacter sakazakii in reconstituted powdered infant formula
during ultrasound at controlled temperatures: A quantitative approach on microbial responses.
International Journal of Food Microbiology, 142: 53–59 | |
dc.identifier.citation | Aleman, G., Farkas, D.F., Torres, J.A., Wilhelmsen, E. y McIntyre, S. (1994). Ultra high
pressure pasteurization of fresh cut pineapple. Journal of Food Protection, 57(10):931–934. | |
dc.identifier.citation | Alliger, H. (1975). Ultrasonic disruption. American Laboratory, 10:75-85. | |
dc.identifier.citation | Álvarez, I., Pagan, R., Raso, J., Codo, S. y Sala, F.J. (2000). Microbial Inactivation by
Ultrasound. Food Technology, University of Zaeagoza, Miguel Servet, 177. 50013. | |
dc.identifier.citation | Álvarez, I., Mañas, P., Sala, F. J. y S. Condón, S. (2003). Inactivation of Salmonella enterica
Serovar Enteritidis by Ultrasonic Waves under Pressure at Different Water Activities. Applied and
Environmental Microbiology, p. 668–672. | |
dc.identifier.citation | Ananta, E., Voigt, D., Zenker, M., Heinz, V. y Knorr, D. (2005). Cellular injuries upon
exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. Journal of
Applied Microbiology. 99: 271–278. | |
dc.identifier.citation | Arroyo,C., Cebrián, G., Pagán, R. y Condón, S. (2011). Inactivation of Cronobacter sakazakii
by ultrasonic waves under pressure in buffer and foods. International Journal of Food
Microbiology, 144: 446–454. | |
dc.identifier.citation | Arnold, G., Leiteritz, S., Zahn, S. y Rohm, H. (2009). Ultrasonic cutting of cheese:
composition affects cutting work reduction and energy demand. International Dairy Journal, 19:
314-320. | |
dc.identifier.citation | Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K. y Versteeg, C.
(2008). Modification of food ingredients by ultrasound to improve funcionality: A preliminary
study on a model system. Innovative Food Science and Emerging Technologics. 9, 155-160. | |
dc.identifier.citation | Baranyi, J., Pin, C., y Roos, T. (1999). Validating and comparing predictive models.
International Journal of Food Microbiology, 48: 159-166. | |
dc.identifier.citation | Bermúdez-Aguirre, D. y Barbosa-Cánovas, G. V. (2006). Microstructure of fat globules in
whole milk after thermo-sonication treatments. Presented at IFT Annual Meeting, Orlando, FL, 24–
28. | |
dc.identifier.citation | Bermúdez-Aguirre, D. yBarbosa-Canovas, G.V. (2008). Study of butter fat content in milk
on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Innovative Food Science
and Emerging Technologies, 9: 176-185. | |
dc.identifier.citation | Bermúdez-Aguirre, D., Mawson, R., Verstee, K. y Barbosa-Canovas, G (2009). Composition
Properties, Physicochemical Characteristics And Shelf Life Of Whole Milk After Thermal And
Thermo-Sonication Treatments. Journal Of Food Quality, 32: 283–302. | |
dc.identifier.citation | Boone, D.R., 2001. Bergey`s Manual of Systematic Bacterology: 2nd edition. Vol 1: 1208
1234. | |
dc.identifier.citation | Boistier-Marquis, E., Lagsir-Oulagal, N. y Callard, M. (1999). Aplications Des ultrasons de
puissances en industries alimentaires. Industrial. Alimentary . Agriculture, 116: 23-31. | |
dc.identifier.citation | Brown, T., James, S.J. y Purnell, G.L. (2005). Cutting forces in foods: experimental
measurements. Journal of Food Engineering, 70: 165-170. | |
dc.identifier.citation | Buchanan, R. (1993). Predictive food microbiology. Trends Food Science Technology, 4: 6
11. | |
dc.identifier.citation | Cabeza, M.C., Cárcel, J.A., Ordóñez, J.A., Cambero, I., De la Hoza, L., Garcia, M.L. y
Benedito, J. (2010). Relationships among selected variables affecting the resistance of Salmonella
enterica, serovar Enteritidis to thermosonication. Journal of Food Engineering, 98: 71–75. | |
dc.identifier.citation | Cameron, M., McMaster y L., Britz, T. (2008). Electron microscopic analysis of dairy
microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15, 960:964. | |
dc.identifier.citation | Cameron, M., McMaster y L., Britz, T. (2009). Impact of ultrasound on dairy spoilage
microbes and milk components. Dairy Science Technology, 89: 83-98. | |
dc.identifier.citation | Camino, N.A., Pérez, O.E. y Pilosof, A. (2009).Molecular and functional modification of
hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloids, 23: 1089–1095. | |
dc.identifier.citation | Cao, S., Hu, Z. y Pang, B. (2010). Optimization of postharvest ultrasonic treatment of
strawberry fruit. Postharvest Biology and Technology, 55: 150–153. | |
dc.identifier.citation | Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. y Wu, F. (2010). Effect of ultrasound treatment
on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21: 529–532. | |
dc.identifier.citation | Carrasco E., García-Gimeno, R., Seselovsky, R., Valero, A., Pérez, F., Zurera, G. y Todd, E.
(2006). Predictive model of Listeria Monocytogenes’ growth rate under different temperatures
and acids. Food Science Technology International, 12(1):47–56. | |
dc.identifier.citation | Cartwright, D. (1998). "Off the-shelf” ultrasound instrumentation for the food industry. In
Ultrasound in food processing. Povey, M. J. W. and T. J. Mason (ed.). Blackie Academic y
Professional. London. | |
dc.identifier.citation | Cielo D. Char, C., Mitilinaki, E., Guerrero, S.N y Alzamora, S. (2010). Use of high-intensity
ultrasound and UV-C Llght to inactivate some microorganisms in fruit juices. Food Bioprocess
Technology., 3:797–803. | |
dc.identifier.citation | Chemat, F., Huma, Z y Khan, M. (2011). Applications of ultrasound in food technology:
Processing, preservation and extraction. Ultrasonics Sonochemistry, 18: 813–835. | |
dc.identifier.citation | Chouliara, E., Georgogianni, K.G., Kanellopoulou, N. y Kontominas, M.G. (2010). Effect of
ultrasonication on microbiological, chemical and sensory properties of raw, thermized and
pasteurized milk. International Dairy Journal, in press: 1–7. | |
dc.identifier.citation | Coroller,L., Leguerinel, I., Mettler, E., Savy, N. y Mafart, P. (2006). General model, based
on two mixed Weibull distributions of bacterial resistance, for describing various shapes of
inactivation curves. Applied and Environmental Microbiology: 6493–6502 | |
dc.identifier.citation | Coupland, J.N. (2004). Low intensity ultrasound. Food Research International, 37: 537–543. | |
dc.identifier.citation | Cohen, J.S. y Yang, T.C.S. (1995). Progress in food dehydration. Trend food Science
Technology, 6: 20-25. | |
dc.identifier.citation | Czank, C., Simmer, K y Hartmann, P. (2010). Simultaneous pasteurization and
homogenization of human milk by combining heat and ultrasound: effect on milk quality. Journal
of Dairy Research, 77: 183–189. | |
dc.identifier.citation | Chow, R., Blindt, R., Chivers, R. y Povey, M. (2005). A study on the primary and secondary
nucleation of ice by power ultrasound. Ultrasonics, 43: 227-230. | |
dc.identifier.citation | D`Amico, D. J., Silk, T. M., Wu, J. y Mingruo, G. (2006). Inactivation of microorganisms in
milk and apple cider treated with ultrasound. Journal of Food Protection, 69: 556-563. | |
dc.identifier.citation | De la Fuente Blanco, S., Riera-Franco de Sarabia, E., y Gallego Juárez, J. A. (2004). Estudio
de los parámetros involucrados en el proceso de deshidratación ultrasónica de vegetales. Revista
de Acústica, 35: 25-30 | |
dc.identifier.citation | De LLanos, R., Querol, A., Pemán, J. , Gobernado, M. y Fernández-espinar, M.T. (2006).
Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of
human systemic infections. International Journal of Food Microbiology, 110: 286–290. | |
dc.identifier.citation | Demirdôven, A. y Baysal, T. (2009). The Use of Ultrasound and CombinedTechnologies in
Food Preservation. Food Reviews International, 25:1–11 | |
dc.identifier.citation | Deng, Y. y Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopretreatments on
glass transition temperature, texture, microstructure and calcium penetration of dried apples
(Fuji). LWT - Food Science and Technology, 41: 1575-1585. | |
dc.identifier.citation | Drakopoulou, S., Terzakis, S., Fountoulakis, M.S., Mantzavinos, D. y Manios, T. (2009).
Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated
municipal wastewater. Ultrasonics Sonochemistry, 16: 629–634. | |
dc.identifier.citation | Dukhin, A. S., Goetz, P. J. y Travers, B. (2005). Use of Ultrasound for Characterizing Dairy
Products. J. Dairy Sci. 88:1320–1334. | |
dc.identifier.citation | Earnshaw, R. G., Appleyard, J. y Hurst, R. M. (1995). Understanding physical inactivation
processes: combined preservation opportunities using heat, ultrasound and pressure.
International Journal of Food Microbiology, 28, 197-219 | |
dc.identifier.citation | Elvira, L., Sampedro, L., Matesanz, J., Gómez-Ullate, Y., Resa, P., Iglesias J.R., Echevarría,
F.J. y Montero de Espinosa, F. (2005). Non-invasive and non-destructive ultrasonic technique for
the detection of microbial contamination in packed UHT milk. Food Research International, 38:
631–638. | |
dc.identifier.citation | Ensminger, D. (1988) Acoustic and electroacoustic methods of dewatering and drying.
Drying Technology. 6: 473 | |
dc.identifier.citation | Eng, R.H.K., Drehmel, R., Smith, S.M., Goldstein, E.J.C., 1984. Saccharomyces cerevisiae
infections in man. Journal of Medical Veterinay Mycology, 22: 403–407. | |
dc.identifier.citation | Ertugay, M.F., Sengül, M. y Sengül, M. (2004). Effect of ultrasound treatment on milk
homogenisation and particle size distribution of fat. Turkey Journal of Veterinary Animal Science.,
28: 303-308 | |
dc.identifier.citation | Factores que influyen en el crecimiento y supervivencia de los microorganismos. Revisado
el 9 de Noviembre de 2011 de:
http://www.ecured.cu/index.php/Factores_que_influyen_en_el_crecimiento_y_supervivencia_de
_los_microorganismos | |
dc.identifier.citation | Fernandes, F.A.N., Linhares Jr., F.E. y Rodrigues, S. (2008). Ultrasound as pre-treatment for
drying of pineapple. Ultrasound sonochemistry, 15: 1049-1054. | |
dc.identifier.citation | Floros, J. D., y Liang, H. (1994). Acoustically assisted diffusion through membranes and
biomaterials: High-intensity ultrasound accelerates diffusion and can be used to improve food
processes. Food Technology, 79. | |
dc.identifier.citation | Furuta , M., Yamaguchi, M. Tsukamoto, T., Yim, B., Stavarache, C.E.., Hasiba, K. y Y. Maeda,
Y. (2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics Sonochemistry, 11:
57–60. | |
dc.identifier.citation | Gabriel, A. y Nakano, H. (2010). Responses of E. coli O157:H7, L. monocytogenes ½ c and
salmonella enteritidis to pH, aw and temperature stress combinations. Food Control, 21: 644-650. | |
dc.identifier.citation | allego-Juarez, J.A., Rodrigues-Corral, G., Acosta- Aparicio, V.M., Andres-Gallego, E.,
Blanco-Blanco, A. y Montoya-Vitini, F. (2002). Procedimiento y sistema ultrasónico de
desespumación mediante emisores con placa vibrante escalonada . Sp. Patente, 2002 02113. | |
dc.identifier.citation | Gaze, J. (2005). A review: Microbiological aspects of thermally processed foods. Journal of
Applied Microbiology, 98: 1381 - 1386 | |
dc.identifier.citation | Geeraerd, A.H., Herremans, C.H. y Van Impe, J.F. (2000). Structural model requirements to
describe microbial inactivation during a mild heat treatment. International Journal of Food
Microbiology, 59 (3), 185-209 | |
dc.identifier.citation | Golberg, A., Rae, S. y Rubinsky, B. (2012). Listeria monocytogenes cell wall constituents
exert a charge effect on electroporation threshold. Biochimica et Biophysica Acta, 1818: 689–694. | |
dc.identifier.citation | Gomez-López, V.M., Orsolani, L., Martínes Yepes, A. y Tapía, M.S. (2010). Microbiological
and sensory quality of sonicated calcium-added orange juice. LWT - Food Science and Technology,
43: 808–813 | |
dc.identifier.citation | Gould, G.W. (1996). Methods for preservation and extension of shelf life.International
Journal of Food Microbiology, 33: 51-64. | |
dc.identifier.citation | Guerrero, S., López-Malo, S. y Alzamora, S.M. (2001). Effect of ultrasound on the survival
of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innovative Food
Science y Emerging Technologies, 2: 31-39. | |
dc.identifier.citation | Hajmeer, M.N. y Cliver D.O. (2002). Microbiology of food preservation and sanitation.
foodborne diseases. 2nd Ed. Cliver, D.O. and Riemann, H. (Eds.) Academic Press, New York, NY.
Chapter 22. Pp. 330-352. | |
dc.identifier.citation | Hauben, K. J. A., Bernaerts, K., Michiels, C. W. (1998). Protective effect of calcium on
inactivation of Escherichia coli by high hydrostatic pressure. Journal of Applied Microbiology, 85:
678-684. | |
dc.identifier.citation | Horwitz, William (2005). Official methods of analysis of AOAC International. 18th ed.
Gaithersburg, Md.: AOAC International. | |
dc.identifier.citation | Hülsen, U. (1999). Alternative heat treatment processes. European Dairy Magazine, 3: 20-24 | |
dc.identifier.citation | Ince, N., Belen, R. (2001). Aqueous phase disinfection with power ultrasound: process
kinetics and effect of solid catalysts. Enviromental Science and Technology, 35 (9). | |
dc.identifier.citation | International Journal of Food Microbiology 110 (2006) 286–290 Sigma Aldrich: Material
safety Data Sheet. Recuperado el 15 de Agosto de 2011 de:
http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do | |
dc.identifier.citation | Jambrak., A.R., Lelas, V., Mason, T.J., Kresic, G. y Badanjak, M. (2009). Physical properties
of ultrasound treated soy proteins. Journal of Food Engineering, 93: 386-393. | |
dc.identifier.citation | Jambrak., A.R., Lelas, V., Mason, T.J., Herseg, Z. y Herseg, I.L (2008). Effect of ultrasound
treatment on solubility and foaming properties of whey protein suspensions. Journal of Food
Engineering, 86: 281-287. | |
dc.identifier.citation | Jambrak., A.R., Mason, T.J., Paniwnyk, L. y Lelas, V. (2007). Accelerated drying of button
mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration
properties. Journal of Food Engineering, 81: 88-97. | |
dc.identifier.citation | Knorr, D., Zenker, M., Heinz, V. y Lee, D. (2004). Applications and potential of ultrasonics in
food processing. Trends in Food Science y Technology, 15: 261-266 | |
dc.identifier.citation | Kuldiloke, J. (2002). Effect of Ultrasound, Temperature and Pressure Treatments on
Enzyme Activity and Quality Indicators of Fruit and Vegetable Juices. PhD Thesis. Technical
University of Berlin. 118 Páginas. | |
dc.identifier.citation | Lee, H., Zhou, B., Liang, W., Feng, H. y Martin, S. (2009). Inactivation of Escherichia coli
cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial
responses and kinetics modeling. Journal of Food Engineering, 93: 354–364 | |
dc.identifier.citation | Lee, D. U., Heinz, V., y Knorr, D. (2003). Effects of combination treatments of nisin and
high-intensity ultrasound with pressure on the microbial inactivation in liquid whole egg.
Innovative Food Science and Emerging Technologies, 4: 387-393. | |
dc.identifier.citation | Lida, Y., Tuziuti, T., Yasui, K., Towata, A. y Kosuka, T. (2008). Control of viscosity in starch
and polysaccharide solutions with ultrasound after gelatinization. . Innovative Food Science and
Emerging Technologies, 9: 140-146. | |
dc.identifier.citation | Lilliard, H.S. (1994). Decontamination of poultry skin by sonication. Food Technology, 48
(12): 72-73. | |
dc.identifier.citation | Li, B. y Sun D.W. (2002a). Effect of power ultrasound on freezing rate during immersion
freezing of potatoes. Journal of Food Engineering, 55: 277-282. | |
dc.identifier.citation | Li, B. y Sun D.W. (2002b). Novel methods for rapid freezing and thawing of foods-a review.
Journal of Food Engineering, 54: 175-182. | |
dc.identifier.citation | López, P., Sala, F. J., Fuente, J. L., Condón, S., Raso, J., y Burgos, J. (1994). Inactivation of
peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of
Agricultural and Food Chemistry, 42: 252-256 | |
dc.identifier.citation | McClements, J. (1995). Advances in the application of ultrasound in food analysis and
processing. Trends in Food Science and Technology. 6: 293-299. | |
dc.identifier.citation | Madigan M., Martinko, J. y Parker, J. (2008). Brock: Biologia de los microorganismos. 12va
Edición. Prentice Hall. Iberia. Madrid | |
dc.identifier.citation | Mason T., Paniwnyk, L. y Lorimer, J. (1996). The uses of ultrasound in food
technology.Ultrasonics Sonochemistry, 3: 253-260 | |
dc.identifier.citation | Mason, I. L. (1996). A world dictionary of livestock breeds, types and varities. 4 Ed. CABI
Publishing. Wallingford, UK. | |
dc.identifier.citation | Mongenot, N., Charrier, S. y Chalier, P. (2000). Effect of ultrasound emulsification on
cheese aroma encapsulation by carbohydrates. Journal of Agricultural Food Chemistry, 48: 861-
867. | |
dc.identifier.citation | McDonald, K. y Sun, D.W. (1999). Predictive food microbiology for the meat industry.
Internacional Journal of Food Microbiology, 52: 1-27 | |
dc.identifier.citation | Mossel, D.A.A., Corry, J.E.L., Struijk, C.B. y Baird, R.M. (1995). A113–A116. Essentials of the
Microbiology of Foods. Wiley, West Sussex, Doherty, A., McMahon, C.M.M., Sheridan, J.J., 1998.
Thermal UK | |
dc.identifier.citation | Murphy, A. y Kavanagh, K. (1999). Emergence of Saccharomyces cerevisiae as a human
pathogen. Implications for biotechnology. Enzyme Microbiology Technology, 25: 551–557
(Review). | |
dc.identifier.citation | Nyborg, W. L. (1965). Acoustic Streaming, Vol. 2B, Academic Press, New York. | |
dc.identifier.citation | O’Brien, W.D. (2007). Ultrasound–biophysics mechanisms. Progress in Biophysics and Molecular
Biology, 93: 212-255. | |
dc.identifier.citation | Ordoñez, J. A., Aguilera, M.A., García, M.L. y Sanz, B. (1987). Effect of combined ultrasonic
and heat treatment (thermoultrasonication) on the survival of a strain of Staphylococcus aureus.
Journal of Dairy Science, 54: 61-67 | |
dc.identifier.citation | O’Donnell, C.P. Tiwari, B.K., Bourke, P. y Cullen, P.J. (2010). Effect of ultrasonic processing
on food enzymes of industrial importance. Trends in Food Science y Technology, 21: 358-367 | |
dc.identifier.citation | Pagán, R., Mañas, P., Álvarez, I. y Condón, S. (1999). Resistance of Listeria monocytogenes
to ultrasonic waves under pressure at sublethal (manosonication) and lethal
(manothermosonication) temperatures. Food Microbiology, 16: 139-148. | |
dc.identifier.citation | Parish, M.E. (1998). Orange juice quality after treatment by thermal pasteurization or
isostatic high pressure. Lebensmittel Wissenschaft und Technologie, 31(5): 439–442. | |
dc.identifier.citation | Philippe, M., Gaucheron, F., Le graet, Y., Michel, F. y Garem F. (2007). Physicochemical
characterization of calcium-supplemented skim milk. Lait, 83: 45-59 | |
dc.identifier.citation | Piyasena, P., Mohareb, E. & McKellar, R.C. (2003). Inactivation of microbes using
ultrasound: a review. International Journal of Food Microbiology, 87: 207– 216 | |
dc.identifier.citation | Presser, K. A., Ross, T. y Ratkowsky, D. A. (1998).Modelling the Growth Limits (Growth/No
Growth Interface) of Escherichia coli as a Function of Temperature, pH, Lactic Acid Concentration,
and Water Activity. Applied and Environmental Microbiology, 64,( 5): 1773–1779. | |
dc.identifier.citation | Povey, M.J.W y Mason, T. J. (1998). Ultrasound in Food Processing. Springer. Berlin. | |
dc.identifier.citation | Roberts R.T., 1993. High intensity ultrasonics in food processing. Chemical Industry, 15:
119-121. | |
dc.identifier.citation | Rodriguez, G., Riera, E., Gallego-Juárez, J.A., Acosta, V.M., Pinto, A., Martínez, I. y Blanco,
A. (2010). Experimental study of defoaming by air-borne power ultrasonic technology. Physic
procedia, 3: 135-139. | |
dc.identifier.citation | Saccharomyces cerevisiae. Recuperado el 5 de Julio de 2011 de: http://hongosalergenicos.reviberoammicol.com/files/039.PDF | |
dc.identifier.citation | Sagong, H., Lee, S., Chang, P., Heu, S., Ryu, S., Choi, Y. y Kang, D. (2011). Combined effect
of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and
Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology.
Accepted manuscript. doi: 10.1016/j.ijfoodmicro.2011.01.010. | |
dc.identifier.citation | Sala, F. J., Burgos, J., Condón, S., López, P., y Raso, J. (1995). Effect of heat and ultrasound
on microorganisms and enzymes. G. W. Gould, New methods of food preservation. Blackie
Academic and Professional. pp. 176-204. London, England. | |
dc.identifier.citation | Sarabia Alegria, Jose Marí (2005). Curso Básico de estadística Economía y Administración
de Empresas. Recuperado el 11 de Diciembre de 2011 de:
http://books.google.com.co/books?id=QEp1dROP0OACypg=PA111ylpg=PA111ydq=medidas+de+b
ondad+y+ajusteysource=blyots=UVGsk9fvUxysig=JmF76440dyyHEuAnpEHpKvNlg8yhl=esysa=Xyei=LrrpTtHnLcyftwfKl7i1Cgyved=0CFgQ6AEwCQ# | |
dc.identifier.citation | Shoh, A. (1998). In: Ultrasound:Chemical, Biological and Physical Effects. Ed. Suslick, K. S.
pp 97-122. | |
dc.identifier.citation | Simal, S., Benedito, J., Sanchez, E.S. y Rosello, C. (1998). Use of ultrasound to increase
mass transport rates during`smotic dehydration. Journal of Food Engineering, 36: 323-336 | |
dc.identifier.citation | Skinner, G.E. y Larkin, J.W. (1994). Mathematical modelling of bacterial growth. Journal
Food Safety, 14: 175-217 | |
dc.identifier.citation | Smith, D., Metzgar, D., Wills, C. y Fierer, J. (2002). Fatal Saccharomyces cerevisiae aortic
graft infection. Journal of Clinical Microbiology, 40: 2691–2692. | |
dc.identifier.citation | Soh, W.K. y Willis, B. (2002). A flow visualization study on the movements of solid particles
propelled by a collapsing cavitation bubble. Faculty of Engineering, University of Wollongong, New
South Wales 2522, Australia | |
dc.identifier.citation | Soria, A. C. y Villamiel, M. (2010). Effect of ultrasound on the technological properties and
bioactivity of food: a review. Trends in Food Science y Technology, 21: 323-331 | |
dc.identifier.citation | Sun, D.W. y Li, B. (2003). Microstructutral change of potato tissues frozen by ultrasoundassisted immersion freezing. Journal of Food Engineering, 57:337-345. | |
dc.identifier.citation | Suslick, K. S. (1998). In: Ultrasound:Chemical, Biological and Physical Effects. Ed. Suslick, K.
S.,pp.:123-163. | |
dc.identifier.citation | Suslick, K. S., y Hammerton, D. A. (1985).Determination of local temperatures caused by
acoustic cavitation, IEEE Ultrasonics Symposium Process, 4: 1116. | |
dc.identifier.citation | Szent, A. (1933). Chemical and biological effects of ultra-sonic radiation. Nature, 131: 278. | |
dc.identifier.citation | Taylor, M. J. y Richardson, T. (1980). Antioxidant activity of skim milk: effect of sonication.
Journal of Dairy Science, 63: 1938-1942. | |
dc.identifier.citation | Tiwari, B.K., Muthukumarappana, K., O’Donella, C.P. y Cullen, P.J. (2009). Innovative Food
Science and Emerging Technologies, 10: 166-171 | |
dc.identifier.citation | Valdramidis, V.P. Cullen, P.J., Tiwari, B.K. y O’Donnell, C.P. (2010).Quantitative modelling
approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during
ultrasound processing. Journal of Food Engineering, 96: 449–454. | |
dc.identifier.citation | Vercet, A., Lopez, P. y Burgos, J. (1999). Inactivation of heat resistant pectinmethylesterase
from orange by manothermosonication. Journal of Agricultural Food Chemical, 47: 432-437. | |
dc.identifier.citation | Vilkhu, K., Mawson, R., Simons, L. y Bates, D. (2008). Applications and opportunities for
ultrasound assisted extraction in the food industry: A review. Innovative Food Science and
Emerging Technologies, 9: 161–169. | |
dc.identifier.citation | Villamiel, M. y de Jong, P. (2000). Influence of high-intensity ultrasound and heat
treatment in continuous flow on fat, proteins, and native enzymes of milk. Department of Process
Innovation, NIZO Food Research. The Netherlands. Journal of Agriculture and Food Chemistry,
48:472-478 | |
dc.identifier.citation | Walkling-Ribeiro, M. , Noci, F., Cronin, D.A., Riener, J., Lyng, J.G. y Morgan D.J. (2008).
Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet
irradiation, pre-heating and pulsed electric fields. Journal of Food Engineering, 89: 267–273. | |
dc.identifier.citation | Whiting, R. C. y Buchanan, R. L. (1993). A classification of models for predictive
microbiology. Food Microbiology, 10: 175-177 | |
dc.identifier.citation | Wrigley, D. M. y Llorca, N. G. (1992). Decrease of Salmonella typhimurium in skim milk and
egg by heat and ultrasonic wave treatment. Journal of Food Protection, 55: 678-680. | |
dc.identifier.citation | Wu, H. Hulbert, G.J. y Mount, J.R. (2000). Effects of ultrasound on milk homogenization
and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1: 211-
218 | |
dc.identifier.citation | Yang P, Zhao B, Basir OA, y Mittal GS. (2007). Measures of similarity and detection of
miniature foreign bodies in packaged foods. Food Research International, 40 (6): 742-747. | |
dc.identifier.citation | Zenker M, Heinz V y Knorr D. (2003). Application of ultrasound-assisted thermal processing
for preservation and quality retention of liquid foods. Journal of Food Protection, 66 (9): 1642-
1649. | |
dc.identifier.citation | Zhao BS, Basir OA y Mittal GS. (2003). Detection of metal, glass and plastic pieces in
bottled beverages using ultrasound. Food Research International, 36 (5): 513-521. | |
dc.identifier.citation | Zhao B, Basir OA y Mittal GS. (2003). A self-aligning ultrasound sensor for detecting foreign
bodies in glass containers. Ultrasonics, 41 (3): 217-222. | |
dc.identifier.citation | Zhao B, Basir OA y Mittal GS. (2003). Correlation analysis between beverage apparent
viscosity and ultrasound velocity. International Journal of Food Properties, 6 (3): 443-448. | |
dc.identifier.citation | Zhao B, Basir OA y Mittal GS. (2007). Hybrid of multi-signal processing methods for
detection of small objects in containers filled with beverages using ultrasound. Lwt-Food Science
and Technology, 40 (4): 655-660. | |
dc.identifier.citation | Zhao B, Basir OA, yMittal GS. (2009). Detection of occluded small objects in glass bottles
filled with beverages via ultrasound center frequency tracing. Lwt-Food Science and Technology,
42 (1): 162-167. | |
dc.identifier.citation | Zhao B, Jiang Y, Basir OA y Mittal GS. (2004). Foreign body detection in foods using the
ultrasound pulse/echo method. Journal of Food Quality, 27 (4): 274-288 | |
dc.identifier.citation | Zwietering, M.H., Jongenburger, I., Rombouts, F. M. y Van 't Riet, K. (1990). Modeling of
the Bacterial Growth Curve. Applied and Environmental Microbiology, 56: 1875-1881. | |
dc.identifier.citation | Zuo, J.Y., Kn9oerzer, K., Mawson, R., Kentish, S. y Ashokkumar, M. (2009). The pasting
properties of sonicated waxy rice starch suspensions. Ultrasonic sonochemistry, 16: 462-468. | |
dc.identifier.uri | http://hdl.handle.net/10818/6372 | |
dc.description | 126 páginas. | |
dc.description.abstract | El ultrasonido de alta intensidad (UAI), se perfila como una tecnología promisoria para la conservación de alimentos. Sin embargo, hacen falta estudios sistemáticos del efecto de propiedades intrínsecas del medio sobre la efectividad de los tratamientos que permitan determinar su potencial de aplicación real. En este trabajo se evaluó el efecto del UAI sobre tres cepas microbianas de importancia en alimentos y con características diferenciales a nivel de pared celular: Listeria monocytogenes, Escherichia coli y Saccharomyces cerevisiae, y se determinó la influencia de diferentes condiciones intrínsecas del medio (glucosa, NaCl, grasa y pH) sobre la inactivación microbiana. Los resultados mostraron que la concentración celular de L. monocytogenes, E. coli y S. cereviciae, se redujo luego de 10 minutos de tratamiento y se encontró que los factores intrínsecos del medio ejercen un efecto significativo sobre la cinética de inactivación microbiana por ultrasonido. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/8779 | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Ultrasonido en biología | es_CO |
dc.subject | Alimentos -- Preservación | es_CO |
dc.subject | Microbiología | es_CO |
dc.title | Evaluación del efecto de factores intrínsecos de una matriz líquida sobre la inactivación microbiana mediante la aplicación de ultrasonido de alta intensidad. | es_CO |
dc.type | masterThesis | |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | |
dc.publisher.department | Facultad de Ingeniería | |
dc.identifier.local | TE05792 | |
dc.identifier.local | 159383 | |
dc.type.local | Tesis de maestría | |
dc.type.hasVersion | publishedVersion | |
dc.rights.accessRights | openAccess | |
dc.creator.degree | Magister en Diseño y Gestión de Procesos | |