Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno J.
dc.contributor.authorCobo M.
dc.contributor.authorBuendia F.
dc.contributor.authorSánchez N.
dc.date.accessioned2025-01-15T20:49:01Z
dc.date.available2025-01-15T20:49:01Z
dc.date.issued2025
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85210646033&doi=10.1016%2fj.rser.2024.115151&partnerID=40&md5=f59ddbf26d68220700448c011a1b63c5
dc.identifier.urihttp://hdl.handle.net/10818/63271
dc.description.abstractSteam gasification offers a pathway to generate synthesis gas (syngas) rich in hydrogen (H2), a crucial element in efforts to decarbonize and mitigate greenhouse gas emissions. However, the intricate web of reactions involved in the process demands predictive tools to enable its large-scale application. While models based on stoichiometry, chemical equilibrium, and data algorithms have made strides, previous works lack comprehensive comparative studies on their efficacy and adaptability. This study addresses this gap by developing and juxtaposing four models: stoichiometric, equilibrium-based, data-driven, and a hybrid approach to forecast steam gasification products against experimental data gleaned from a systematic literature review. Among these models, the hybrid variant emerges as the most accurate in predicting syngas composition, boasting an average root mean square error (RMSE) of 5.63 and an average R2 of 0.59. Moreover, it yields predictions for tar, char, and gas with respective RMSEs of 42.79 g/Nm3 syngas, 72.99 g/kg biomass, and 0.33 Nm3 syngas/kg biomass. Notably, the robust validation process of this model enhances its versatility while maintaining commendable prediction accuracy compared to the existing literature. Future enhancements could entail integrating advanced kinetic and equilibrium expressions and incorporating fresh experimental data into the training phases of data-driven models. © 2024 The Authorsen
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherRenewable and Sustainable Energy Reviewses_CO
dc.relation.ispartofseriesRenewable and Sustainable Energy Reviews vol. 210
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherChar
dc.subject.otherHybrid Model
dc.subject.otherHydrogen
dc.subject.otherSyngas
dc.subject.otherTar
dc.titleEnhancing predictive models for steam gasification: A comparative study of stoichiometric, equilibrium, data-driven, and hybrid approachesen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1016/j.rser.2024.115151


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional