Mostrar el registro sencillo del ítem

dc.contributor.authorArciniegas-Alarcón S.
dc.contributor.authorGarcía-Peña M.
dc.contributor.authorKrzanowski W.J.
dc.contributor.authorRengifo C.
dc.date.accessioned2024-11-12T13:42:54Z
dc.date.available2024-11-12T13:42:54Z
dc.date.issued2024
dc.identifier.issn15427528
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85193508562&doi=10.1080%2f15427528.2024.2349610&partnerID=40&md5=2f0056cc8a4138f62393e56c931795ee
dc.identifier.urihttp://hdl.handle.net/10818/62747
dc.description.abstractIn this paper we consider the Gabriel form of cross-validation (CV) and we investigate how to estimate the optimum rank for lower rank approximations of any dataset that can be written in matrix form, with particular application in multivariate analysis and in the analysis of multienvironment trials. The literature related to the method suggests that it can produce overfitting and poor-quality predictions, characteristics that result in overestimation of the rank. Because of this, it is proposed to change the rank selection criterion, testing thirteen statistics both in the original method and in four proposed extensions that seek to solve the above problems. A comparison is made with two gold standard methods for CV through a simulation study and through the analysis of seventeen real datasets, two of which are general multivariate and fifteen are from experiments with genotype-by-environment interaction. It is concluded that from a predictive point of view, the highest accuracy in estimating the rank is obtained by using a regularized singular value decomposition. © 2024 Informa UK Limited, trading as Taylor & Francis Group.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherJournal of Crop Improvementes_CO
dc.relation.ispartofseriesJournal of Crop Improvement Vol. 38 N° 4
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherEigenvaluesen
dc.subject.otherEigenvectorsen
dc.subject.otherMatrix dataen
dc.subject.otherRegularizationen
dc.subject.otherSingular value decompositionen
dc.titleCross-validation to select the optimum rank for a reduced-rank approximation to multivariate dataen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1080/15427528.2024.2349610


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International