Mostrar el registro sencillo del ítem

dc.contributor.authorGamboa-Mora M
dc.contributor.authorVivián-Mohr F
dc.contributor.authorAhumada De La Rosa V
dc.contributor.authorVera-Monroy S
dc.contributor.authorMejía-Camacho A.
dc.date.accessioned2024-10-09T14:28:25Z
dc.date.available2024-10-09T14:28:25Z
dc.date.issued2024
dc.identifier.issn1242121
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85197254135&doi=10.17081%2feduhum.26.47.6379&partnerID=40&md5=a3d33846b32d20270a6a40f8dbff9b46
dc.identifier.urihttp://hdl.handle.net/10818/61945
dc.description.abstractFor higher education institutions, predicting the risk of academic loss is a priority issue due to the resources invested by institutions, students and the academic community in general. Objective: the objective of this research was to propose a suitable model that allows predicting students who are at risk of academic loss in a chemistry course. Methodology: the quasi-experimental, predictive, longitudinal research was developed with data from 103 students from four Colombian universities. To build the model, a comparison of five algorithms was implemented. Data was processed with Jupyter-Python. Results: the logistic regression model (LR) was built based on the students’ results on the Saber 11 test (Colombian nation-wide university admission exam), in which the penalty of false positives with different weights from the false negatives improved the performance of the model. Conclusions: it is concluded that LR is substantially better than grasping or a guessing approach, furthermore, it was shown to perform better than a neural network model. © 2024, Simon Bolivar University (Barranquilla). All rights reserved.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherEducacion y Humanismoes_CO
dc.relation.ispartofseriesEducacion y Humanismo Vol. 26 N° 47
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherAcademic lossen
dc.subject.otherChemistry courseen
dc.subject.otherComparisonen
dc.subject.otherHigher educationen
dc.subject.otherLogistic regression modelen
dc.titlePredictive model for the classification of university students at risk of academic lossen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.17081/eduhum.26.47.6379


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International