dc.contributor.advisor | Barraza Botet, Cesar Luis | |
dc.contributor.advisor | Uribe Laverde, Miguel Angel | |
dc.contributor.author | Robayo Rueda, Daniel | |
dc.date.accessioned | 2024-06-28T11:35:15Z | |
dc.date.available | 2024-06-28T11:35:15Z | |
dc.date.issued | 2024-02-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/60725 | |
dc.description | 165 páginas | es_CO |
dc.description.abstract | Air pollution in recent years has led to serious illnesses in humans, such as premature deaths, cardiovascular diseases, and lung cancer (World Health Organization, 2018). In 2013, the WHO (World Health Organization), along with the IARC (International Agency for Research on Cancer), established that air pollution is carcinogenic to humans. Bogotá is one of the cities with larger levels of emissions, which has exceeded recommended levels for particulate matter smaller than 10 micrometers (PM10) since 1998 (Observatorio ambiental de Bogotá, 2022). While this indicator has been under control on an annual average since 2012, there are still high levels in certain sectors of the city (Observatorio Ambiental de Bogotá, 2022) compared to the limits set by Resolution 2254 of 2017 (Ministerio de ambiente y desarrollo sostenible, 2018). | en |
dc.description.abstract | La contaminación del aire ha producido en los últimos años graves enfermedades en los seres humanos, tales como: muertes prematuras, enfermedades cardiovasculares y cáncer de pulmón (World Health Organization, 2018). En el año 2013, la OMS (Organización Mundial de la Salud) junto con la IARC (World Health Organization Internacional Agency for Research on cancer), establecieron que la contaminación del aire es cancerígena para los seres humanos. Bogotá es una de la ciudades donde se presenta contaminación del aire, la cual desde el año 1998 excedió los niveles recomendados para el material particulado menor a 10 micrómetros (PM10)(Observatorio ambiental de Bogotá, 2022), controlando este indicador desde el año 2012 en promedio anual, pero mostrando altos índices para algunos sectores de la ciudad (Observatorio Ambiental de Bogotá, 2022) en comparación a los límites establecidos por la resolución 2254 del 2017 (Ministerio de ambiente y desarrollo sostenible, 2018). | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | Analizador de gases | |
dc.subject.other | Ciclo típico de conducción | |
dc.subject.other | Dinamómetro de chasis | |
dc.subject.other | Factores de emisión IVDR | |
dc.subject.other | k-means | |
dc.subject.other | Metaheurística | |
dc.title | Desarrollo y validación de una metodología para la evaluación del desempeño ambiental del parque automotor liviano de Bogotá región a partir de ciclos típicos de conducción desarrollados por métodos estadísticos y de aprendizaje automático | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | 3DATX. (2023). par SYNC FLEX PNC Brochure. https://3datx.com/wpcontent/uploads/3DATX_parSYNC_FLEX-PNC_brochure_EU_06-02-23_v2.pdf | |
dcterms.references | Alves, C. A., Lopes, D. J., Calvo, A. I., Evtyugina, M., Rocha, S., & Nunes, T. (2015). Emissions from
light-duty diesel and gasoline in-use vehicles measured on chassis dynamometer test cycles. Aerosol
and Air Quality Research, 15(1), 99–116. https://doi.org/10.4209/aaqr.2014.01.0006 | |
dcterms.references | Berthold, M. R., Lenz, H.-J., Bradley, E., Kruse, R., & Borgelt, C. (2003). LNCS 2810 - Advances in
Intelligent Data Analysis V. | |
dcterms.references | Cano, J. R., Herrera, F., Sanchez, L., Cano, J. R., Cordón, O., Herrera, F., & Sánchez, L. (2002). A greedy
randomized adaptive search procedure applied to the clusterin gproblem as an initialization process
using K-Means as a local search procedure. Journal of Intelligent & Fuzzy Systems, 12, 235–242.
https://www.researchgate.net/publication/220256785 | |
dcterms.references | Chauhan, B., Pithawala, C. K., Joshi, G., Vallabhbhai, S., Chauhan, B. P., Joshi, G. J., & Parida, P.
(2020). Development of Candidate Driving Cycles for an Urban Arterial Corridor of Vadodara
City. https://www.researchgate.net/publication/348252664 | |
dcterms.references | Clarkson, D., & Middleton, J. T. (1962). The california control program for motor vehicle created air
pollution. Journal of the Air Pollution Control Association, 12(1), 22–28.
https://doi.org/10.1080/00022470.1962.10468042 | |
dcterms.references | DANE. (2019). Estructura de población : Bogotá D . C ., CG 2005 y CNPV 2018 Hombres Mujeres.
https://sitios.dane.gov.co/cnpv/app/views/informacion/fichas/11.pdf | |
dcterms.references | Desineedi, R. M., Mahesh, S., & Ramadurai, G. (2020). Developing driving cycles using k-means
clustering and determining their optimal duration. Transportation Research Procedia, 48(2018),
2083–2095. https://doi.org/10.1016/j.trpro.2020.08.268 | |
dcterms.references | Division, C., & Agency, U. S. E. P. (1993). Federal Test Procedure Review Project : Preliminary
Technical Report May 1993. Environmental Protection, May | |
dcterms.references | Doenhoff, von, Marks II, R. J., Choi, J. J., Healy, M., Tsao, C. K., Bezdek, J. C., Pal, N. R., Kohonen, F.,
Krishna, K., & Narasimha Murty, M. (1999). Dynamic parameter encoding for genetic algorithms.
In Pattern Recognit (Vol. 29, Issue 3). Morgan Kauffman. | |
dcterms.references | Duran, A., & Earleywine, M. (2012). GPS data filtration method for drive cycle analysis applications.
SAE Technical Papers. https://doi.org/10.4271/2012-01-0743 | |
dcterms.references | Echeverry Mejía, J. M. (2018). Metodología para reducir el gasto de combustible en rutas fijas mediante
el uso de hábitos de conducción eficiente, empleando un sistema IVDR y ciclos de conducción. | |
dcterms.references | Echeverry-Mejía, J., Arenas-Uribe, F., Contreras, D., & Vásquez, V. (2022). Design and Validation of an
In-Vehicle Data Recorder System for Testing Purposes. IEEE Latin America Transactions,
100(XXX). https://latamt.ieeer9.org/index.php/transactions/article/view/6489/1654 | |
dcterms.references | Fotouhi, A., & Montazeri-Gh, M. (2013). Tehran driving cycle development using the k-means clustering
method. Scientia Iranica, 20(2), 286–293. https://doi.org/10.1016/j.scient.2013.04.001 | |
dcterms.references | Freescale. (2014). KEA128 Sub-Family Reference Manual | |
dcterms.references | Frey, C., & Eichenberger, D. (1997). Remote Sensing of Mobile Source Air Pollutant Emissions :
Variability and Uncertainty in On-Road Emissions Estimates of Carbon Monoxide and
Hydrocarbons for School and Transit Buses. June, 168. | |
dcterms.references | Giakoumis, E. G. (2016). Driving and engine cycles. In Driving and Engine Cycles. Springer
International Publishing. https://doi.org/10.1007/978-3-319-49034-2 | |
dcterms.references | Gitelman, V., Bekhor, S., Doveh, E., Pesahov, F., Carmel, R., & Morik, S. (2018). Exploring
relationships between driving events identified by in-vehicle data recorders, infrastructure
characteristics and road crashes. Transportation Research Part C: Emerging Technologies,
91(April), 156–175. https://doi.org/10.1016/j.trc.2018.04.003 | |
dcterms.references | Hass, G. C., & Brubacher, M. L. (1962). A test procedure for motor vehicle exhaust emissions. Journal of
the Air Pollution Control Association, 12(11), 505–543.
https://doi.org/10.1080/00022470.1962.10468120 | |
dcterms.references | Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger
cars to estimate fuel consumption and vehicular emissions. Atmospheric Environment, 97, 353–362.
https://doi.org/10.1016/j.atmosenv.2014.08.042 | |
dcterms.references | Huertas, J. I. (2017). A new methodology to determine typical driving cycles for the design of vehicles
power trains. 12008. https://doi.org/10.1007/s12008-017-0379-y | |
dcterms.references | Huertas, J. I., Díaz, J., Cordero, D., & Cedillo, K. (2018). A new methodology to determine typical
driving cycles for the design of vehicles power trains. International Journal on Interactive Design
and Manufacturing, 12(1), 319–326. https://doi.org/10.1007/s12008-017-0379-y | |
dcterms.references | Huertas, J. I., Quirama, L. F., Giraldo, M., & Díaz, J. (2019). Comparison of three methods for
constructing real driving cycles. Energies, 12(4). https://doi.org/10.3390/en12040665 | |
dcterms.references | ICONTEC. (2012). Ntc 4983. Icontec, 571, 31. | |
dcterms.references | International Agency for Research on Cancer. (2013). IARC: Outdoor air pollution a leading
environmental cause of cancer deaths. 221, 1–4. https://doi.org/10.1002/em | |
dcterms.references | International Organization for Standardization (ISO). (2006). Road vehicles — Controller area network (
CAN ) — Part 1 : Data link layer and physical signalling. 2006, 1–6. | |
dcterms.references | Jia, X., Wang, H., Xu, L., Wang, Q., Li, H., Hu, Z., Li, J., & Ouyang, M. (2021). Constructing
representative driving cycle for heavy duty vehicle based on Markov chain method considering road
slope. Energy and AI, 6, 100115. https://doi.org/10.1016/J.EGYAI.2021.100115 | |
dcterms.references | Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in
multiple regression. Multivariate Behavioral Research, 35(1), 1–19.
https://doi.org/10.1207/S15327906MBR3501_1 | |
dcterms.references | Jun, G., Guensler, R., & Ogle, J. H. (2006). Smoothing methods to minimize impact of global positioning
system random error on travel distance, speed, and acceleration profile estimates. Transportation
Research Record, 1972, 141–150. https://doi.org/10.3141/1972-19 | |
dcterms.references | Khadse, V. M., Mahalle, P. N., & Shinde, G. R. (2020). Statistical study of machine learning algorithms
using parametric and non-parametric tests: A comparative analysis and recommendations.
International Journal of Ambient Computing and Intelligence, 11(3), 80–105.
https://doi.org/10.4018/IJACI.2020070105 | |
dcterms.references | Kharrazi, S., Almen, M., Frisk, E., Nielsen, L., Kharrazi, S., Almén, M., Frisk, E., & Nielsen, L. (2019).
Extending Behavioral Models to Generate Mission-Based Driving Cycles for Data-Driven Vehicle
Development Extending behavioral models to generate mission-based driving cycles for data-driven
vehicle development. | |
dcterms.references | Kim, Y., & Bang, H. (n.d.). Introduction to Kalman Filter and Its Applications. www.intechopen.com | |
dcterms.references | Lin, J., & Niemeier, D. A. (2002). An exploratory analysis comparing a stochastic driving cycle to
California’s regulatory cycle. Atmospheric Environment, 36(38), 5759–5770.
https://doi.org/10.1016/S1352-2310(02)00695-7 | |
dcterms.references | Liu, J., Wang, X., & Khattak, A. (2016). Customizing driving cycles to support vehicle purchase and use
decisions: Fuel economy estimation for alternative fuel vehicle users. Transportation Research Part
C: Emerging Technologies, 67, 280–298. https://doi.org/10.1016/j.trc.2016.02.016 | |
dcterms.references | Liu, Y., Xin Wu, Z., Zhou, H., Zheng Nan Yu, H., Pan An, X., Yuan Li, J., & Liang Li, M. (2020).
DEVELOPMENT OF CHINA LIGHT-DUTY VEHICLE TEST CYCLE. International Journal of
Automotive Technology, 21(5), 1233–1246. https://doi.org/10.1007/s12239−020−0117−5 | |
dcterms.references | Lundby, K. M., & Johnson, J. W. (2006). Relative Weights of Predictors What Is Important When Many
Forces Are Operating. | |
dcterms.references | Ministerio de Ambiente y Desarrollo Sostenible. (2017). Guía para la elaboración de Inventarios de
Emisiones Atmosféricas.
http://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/emisiones_atmo
sfericas_contaminantes/documentos_relacionados/GUIA_PARA_LA_ELABORACION_DE_INVE
NTARIOS_DE_EMISIONES_ATMOSFERICAS.pdf | |
dcterms.references | Ministerio de ambiente y desarrollo sostenible. (2018). Resolución 2254 de 2017.
https://www.icbf.gov.co/cargues/avance/docs/resolucion_minambienteds_2254_2017.htm | |
dcterms.references | Ministro Ambiente Y Desarrollo Sostenible. (2022). Resolución 0762 del 18 de Julio de 2022.
https://www.minambiente.gov.co/wp-content/uploads/2022/09/Resolucion-762-de-2022.pdf | |
dcterms.references | Moradi, E., & Miranda-Moreno, L. (2020). Vehicular fuel consumption estimation using real-world
measures through cascaded machine learning modeling. Transportation Research Part D: Transport
and Environment, 88. https://doi.org/10.1016/j.trd.2020.102576 | |
dcterms.references | NEO-6 u-blox 6 GPS Modules Data Sheet. (2011). www.u-blox.com | |
dcterms.references | Nguyen, Y.-L. T., Bui, N. D., Nghiem, T.-D., & Le, A.-T. (2020). GPS DATA PROCESSING FOR
DRIVING CYCLE DEVELOPMENT IN HANOI, VIETNAM. In Journal of Engineering Science
and Technology (Vol. 15, Issue 2) | |
dcterms.references | Nouri, P., & Morency, C. (2017). Evaluating microtrip definitions for developing driving cycles.
Transportation Research Record, 2627, 86–92. https://doi.org/10.3141/2627-10 | |
dcterms.references | Nyberg, P., Frisk, E., & Nielsen, L. (2014). Generation of equivalent driving cycles using Markov chains
and mean tractive force components. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 19,
Issue 3). IFAC. https://doi.org/10.3182/20140824-6-za-1003.02239 | |
dcterms.references | Observatorio Ambiental de Bogotá. (2022). Cifras e Indicadores de Medio Ambiente en Bogotá
Concentración de Material Particulado Inferior a 10 Micrómetros {PM10} Promedio Anual por
Estación - PM10PAE. https://oab.ambientebogota.gov.co/indicadores/?id=24341000-a6e7-11ebb6f5-a915ff441b6d | |
dcterms.references | Observatorio ambiental de Bogotá. (2022). Cifras e Indicadores de Medio Ambiente en Bogotá Material
Particulado Inferior a 10 Micras {µ} Promedio Anual - PM10.
https://oab.ambientebogota.gov.co/indicadores/?id=d2ccd170-0178-11ea-8cc7-8197075aabad | |
dcterms.references | Onnegren, P. (2013). Driving cycle generation using statistical analysis and markov chains. Department
of Electrical Engineering, LiTH-ISY-EX-13/4670--SE, 89. | |
dcterms.references | Pavlovic, J., Ciuffo, B., Fontaras, G., Valverde, V., & Marotta, A. (2018). How much difference in typeapproval CO2 emissions from passenger cars in Europe can be expected from changing to the new
test procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice,
111(February), 136–147. https://doi.org/10.1016/j.tra.2018.02.002 | |
dcterms.references | Peña, J. M., Lozano, J. A., & Larrañaga, P. (1999). An empirical comparison of four initialization
methods for the K-Means algorithm. www.elsevier.nl/locate/patrec | |
dcterms.references | Peng, Y., Zhuang, Y., & Yang, Y. (2020). A driving cycle construction methodology combining k-means
clustering and Markov model for urban mixed roads. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 234(2–3), 714–724.
https://doi.org/10.1177/0954407019848873 | |
dcterms.references | Qiu, D., Li, Y., & Qiao, D. (2018). Recurrent Neural Network Based Driving Cycle Development for
Light Duty Vehicles in Beijing. Transportation Research Procedia, 34, 147–154.
https://doi.org/10.1016/j.trpro.2018.11.026 | |
dcterms.references | R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing. | |
dcterms.references | Roy, F., & Morency, C. (2020). Comparing Driving Cycle Development Methods Based on Markov
Chains. Transportation Research Record, 2675(3), 212–221.
https://doi.org/10.1177/0361198120968829 | |
dcterms.references | Secretaría de Ambiente de Bogotá. (2022). Inventario de emisiones contaminantes atmosféricos 2020.
https://drive.google.com/file/d/1a8gyjx0h0OPa6Apx8J9h-9lgfiKN-Df-/view | |
dcterms.references | Selesnick, I. (2022). Least Squares with Examples in Signal Processing.
http://eeweb.poly.edu/iselesni/lecture_notes/ | |
dcterms.references | Shi, S., Lin, N., Zhang, Y., Cheng, J., Huang, C., Liu, L., & Lu, B. (2016). Research on Markov property
analysis of driving cycles and its application. Transportation Research Part D: Transport and
Environment, 47, 171–181. https://doi.org/10.1016/j.trd.2016.05.013 | |
dcterms.references | Society of Automotive Engineers. (2007). SAE J1979. | |
dcterms.references | Society of Automotive Engineers. (2016). SAE J1962 - Diagnostic Connector. In SAE Standards. | |
dcterms.references | Society of Automotive Engineers (SAE). (2010). SAE J1263 - Road load measurement and dynamometer
simulation using coastdown techniques. In SAE Technical Papers. https://doi.org/10.4271/810828 | |
dcterms.references | Society of Automotive Engineers (SAE). (2011). SAE J254 - Instrumentation and techniques for exhaust
gas emissions measurement. In SAE Standards.
https://www.sae.org/standards/content/j254_201106/ | |
dcterms.references | Society of Automotive Engineers (SAE). (2014). SAE J2951 - Drive Quality Evaluation for Chassis
Dynamometer Testing: Surface Vehicle Recommended Practice. In SURFACE VEHICLE
RECOMMENDED PRACTICE: Vol. SAE J2951.
https://www.sae.org/standards/content/j2951_201401/ | |
dcterms.references | The Mathworks Inc. (2022a). MATLAB (2022a). The Mathworks Inc. | |
dcterms.references | The Mathworks Inc. (2022b). Statistics and Machine Learning Toolbox (2022a). Mathworks Inc. | |
dcterms.references | The National Renewable Energy Laboratory. (n.d.). DriveCAT: Drive Cycle Analysis Tool. DriveCAT:
Drive Cycle Analysis Tool. Retrieved October 12, 2022, from
https://www.nrel.gov/transportation/drive-cycle-tool/ | |
dcterms.references | The National Renewable Energy Laboratory (NREL). (2015). Transportation Secure Data Center -
NREL. Drive Cycle Data. www.nrel.gov/tsdc. | |
dcterms.references | Toledo, T., Musicant, O., & Lotan, T. (2008). In-vehicle data recorders for monitoring and feedback on
drivers’ behavior. Transportation Research Part C: Emerging Technologies, 16(3), 320–331.
https://doi.org/10.1016/j.trc.2008.01.001 | |
dcterms.references | Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic, J., & Steven, H.
(2015). Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible
pathway for its introduction in the European legislation. Transportation Research Part D: Transport
and Environment, 40, 61–75. https://doi.org/10.1016/j.trd.2015.07.011 | |
dcterms.references | USEPA AP 42. (1995). AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1:
Stationary and Point Sources. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors,
Volume 1: Stationary and Point Sources, 1–10.
https://www3.epa.gov/ttnchie1/ap42/c00s00.pdf%0Ahttps://www3.epa.gov/ttn/chief/ap42/c00s00.pd
f | |
dcterms.references | World Health Organization. (2018). Ambient (outdoor) air pollution. Https://Www.Who.Int/En/NewsRoom/Fact-Sheets/Detail/Ambient-(Outdoor)-Air-Quality-and-Health. https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health | |
dcterms.references | World Health Organization. (2021a). WHO global air quality guidelines. | |
dcterms.references | World Health Organization. (2021b). WHO Global Air Quality Guidelines. | |
dcterms.references | Wu, Y., Zhang, W., Zhang, L., Qiao, Y., Yang, J., & Cheng, C. (2020). A multi-clustering algorithm to
solve driving cycle prediction problems based on unbalanced data sets: A Chinese case study.
Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092448 | |
dcterms.references | Yang, Y., Li, T., Hu, H., Zhang, T., Cai, X., Chen, S., & Qiao, F. (2019). Development and emissions
performance analysis of local driving cycle for small-sized passenger cars in Nanjing, China.
Atmospheric Pollution Research, 10(5), 1514–1523. https://doi.org/10.1016/j.apr.2019.04.009 | |
dcterms.references | Yuan, M., Kan, X., Chi, C. H., Cao, L., Shu, H., Fan, Y., & Yao, W. (2021). Study of Driving Cycle of
City Tour Bus Based on Coupled GA-K-Means and HMM Algorithms: A Case Study in Beijing.
IEEE Access, 9, 20331–20345. https://doi.org/10.1109/ACCESS.2021.3054118 | |
dcterms.references | Yuhui, P., Yuan, Z., & Huibao, Y. (2019). Development of a representative driving cycle for urban buses
based on the K-means cluster method. Cluster Computing, 22(s3), 6871–6880.
https://doi.org/10.1007/s10586-017-1673-y | |
dcterms.references | Zhang, C., Kotz, A., Kelly, K., & Rippelmeyer, L. (2021). Development of heavy-duty vehicle
representative driving cycles via decision tree regression. Transportation Research Part D:
Transport and Environment, 95(May), 102843. https://doi.org/10.1016/j.trd.2021.102843 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |