Mostrar el registro sencillo del ítem
Desarrollo y validación de una metodología para la evaluación del desempeño ambiental del parque automotor liviano de Bogotá región a partir de ciclos típicos de conducción desarrollados por métodos estadísticos y de aprendizaje automático
dc.contributor.advisor | Barraza Botet, Cesar Luis | |
dc.contributor.advisor | Uribe Laverde, Miguel Angel | |
dc.contributor.author | Robayo Rueda, Daniel | |
dc.date.accessioned | 2024-06-28T11:35:15Z | |
dc.date.available | 2024-06-28T11:35:15Z | |
dc.date.issued | 2024-02-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/60725 | |
dc.description | 165 páginas | es_CO |
dc.description.abstract | Air pollution in recent years has led to serious illnesses in humans, such as premature deaths, cardiovascular diseases, and lung cancer (World Health Organization, 2018). In 2013, the WHO (World Health Organization), along with the IARC (International Agency for Research on Cancer), established that air pollution is carcinogenic to humans. Bogotá is one of the cities with larger levels of emissions, which has exceeded recommended levels for particulate matter smaller than 10 micrometers (PM10) since 1998 (Observatorio ambiental de Bogotá, 2022). While this indicator has been under control on an annual average since 2012, there are still high levels in certain sectors of the city (Observatorio Ambiental de Bogotá, 2022) compared to the limits set by Resolution 2254 of 2017 (Ministerio de ambiente y desarrollo sostenible, 2018). | en |
dc.description.abstract | La contaminación del aire ha producido en los últimos años graves enfermedades en los seres humanos, tales como: muertes prematuras, enfermedades cardiovasculares y cáncer de pulmón (World Health Organization, 2018). En el año 2013, la OMS (Organización Mundial de la Salud) junto con la IARC (World Health Organization Internacional Agency for Research on cancer), establecieron que la contaminación del aire es cancerígena para los seres humanos. Bogotá es una de la ciudades donde se presenta contaminación del aire, la cual desde el año 1998 excedió los niveles recomendados para el material particulado menor a 10 micrómetros (PM10)(Observatorio ambiental de Bogotá, 2022), controlando este indicador desde el año 2012 en promedio anual, pero mostrando altos índices para algunos sectores de la ciudad (Observatorio Ambiental de Bogotá, 2022) en comparación a los límites establecidos por la resolución 2254 del 2017 (Ministerio de ambiente y desarrollo sostenible, 2018). | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | Analizador de gases | |
dc.subject.other | Ciclo típico de conducción | |
dc.subject.other | Dinamómetro de chasis | |
dc.subject.other | Factores de emisión IVDR | |
dc.subject.other | k-means | |
dc.subject.other | Metaheurística | |
dc.title | Desarrollo y validación de una metodología para la evaluación del desempeño ambiental del parque automotor liviano de Bogotá región a partir de ciclos típicos de conducción desarrollados por métodos estadísticos y de aprendizaje automático | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | 3DATX. (2023). par SYNC FLEX PNC Brochure. https://3datx.com/wpcontent/uploads/3DATX_parSYNC_FLEX-PNC_brochure_EU_06-02-23_v2.pdf | |
dcterms.references | Alves, C. A., Lopes, D. J., Calvo, A. I., Evtyugina, M., Rocha, S., & Nunes, T. (2015). Emissions from light-duty diesel and gasoline in-use vehicles measured on chassis dynamometer test cycles. Aerosol and Air Quality Research, 15(1), 99–116. https://doi.org/10.4209/aaqr.2014.01.0006 | |
dcterms.references | Berthold, M. R., Lenz, H.-J., Bradley, E., Kruse, R., & Borgelt, C. (2003). LNCS 2810 - Advances in Intelligent Data Analysis V. | |
dcterms.references | Cano, J. R., Herrera, F., Sanchez, L., Cano, J. R., Cordón, O., Herrera, F., & Sánchez, L. (2002). A greedy randomized adaptive search procedure applied to the clusterin gproblem as an initialization process using K-Means as a local search procedure. Journal of Intelligent & Fuzzy Systems, 12, 235–242. https://www.researchgate.net/publication/220256785 | |
dcterms.references | Chauhan, B., Pithawala, C. K., Joshi, G., Vallabhbhai, S., Chauhan, B. P., Joshi, G. J., & Parida, P. (2020). Development of Candidate Driving Cycles for an Urban Arterial Corridor of Vadodara City. https://www.researchgate.net/publication/348252664 | |
dcterms.references | Clarkson, D., & Middleton, J. T. (1962). The california control program for motor vehicle created air pollution. Journal of the Air Pollution Control Association, 12(1), 22–28. https://doi.org/10.1080/00022470.1962.10468042 | |
dcterms.references | DANE. (2019). Estructura de población : Bogotá D . C ., CG 2005 y CNPV 2018 Hombres Mujeres. https://sitios.dane.gov.co/cnpv/app/views/informacion/fichas/11.pdf | |
dcterms.references | Desineedi, R. M., Mahesh, S., & Ramadurai, G. (2020). Developing driving cycles using k-means clustering and determining their optimal duration. Transportation Research Procedia, 48(2018), 2083–2095. https://doi.org/10.1016/j.trpro.2020.08.268 | |
dcterms.references | Division, C., & Agency, U. S. E. P. (1993). Federal Test Procedure Review Project : Preliminary Technical Report May 1993. Environmental Protection, May | |
dcterms.references | Doenhoff, von, Marks II, R. J., Choi, J. J., Healy, M., Tsao, C. K., Bezdek, J. C., Pal, N. R., Kohonen, F., Krishna, K., & Narasimha Murty, M. (1999). Dynamic parameter encoding for genetic algorithms. In Pattern Recognit (Vol. 29, Issue 3). Morgan Kauffman. | |
dcterms.references | Duran, A., & Earleywine, M. (2012). GPS data filtration method for drive cycle analysis applications. SAE Technical Papers. https://doi.org/10.4271/2012-01-0743 | |
dcterms.references | Echeverry Mejía, J. M. (2018). Metodología para reducir el gasto de combustible en rutas fijas mediante el uso de hábitos de conducción eficiente, empleando un sistema IVDR y ciclos de conducción. | |
dcterms.references | Echeverry-Mejía, J., Arenas-Uribe, F., Contreras, D., & Vásquez, V. (2022). Design and Validation of an In-Vehicle Data Recorder System for Testing Purposes. IEEE Latin America Transactions, 100(XXX). https://latamt.ieeer9.org/index.php/transactions/article/view/6489/1654 | |
dcterms.references | Fotouhi, A., & Montazeri-Gh, M. (2013). Tehran driving cycle development using the k-means clustering method. Scientia Iranica, 20(2), 286–293. https://doi.org/10.1016/j.scient.2013.04.001 | |
dcterms.references | Freescale. (2014). KEA128 Sub-Family Reference Manual | |
dcterms.references | Frey, C., & Eichenberger, D. (1997). Remote Sensing of Mobile Source Air Pollutant Emissions : Variability and Uncertainty in On-Road Emissions Estimates of Carbon Monoxide and Hydrocarbons for School and Transit Buses. June, 168. | |
dcterms.references | Giakoumis, E. G. (2016). Driving and engine cycles. In Driving and Engine Cycles. Springer International Publishing. https://doi.org/10.1007/978-3-319-49034-2 | |
dcterms.references | Gitelman, V., Bekhor, S., Doveh, E., Pesahov, F., Carmel, R., & Morik, S. (2018). Exploring relationships between driving events identified by in-vehicle data recorders, infrastructure characteristics and road crashes. Transportation Research Part C: Emerging Technologies, 91(April), 156–175. https://doi.org/10.1016/j.trc.2018.04.003 | |
dcterms.references | Hass, G. C., & Brubacher, M. L. (1962). A test procedure for motor vehicle exhaust emissions. Journal of the Air Pollution Control Association, 12(11), 505–543. https://doi.org/10.1080/00022470.1962.10468120 | |
dcterms.references | Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric Environment, 97, 353–362. https://doi.org/10.1016/j.atmosenv.2014.08.042 | |
dcterms.references | Huertas, J. I. (2017). A new methodology to determine typical driving cycles for the design of vehicles power trains. 12008. https://doi.org/10.1007/s12008-017-0379-y | |
dcterms.references | Huertas, J. I., Díaz, J., Cordero, D., & Cedillo, K. (2018). A new methodology to determine typical driving cycles for the design of vehicles power trains. International Journal on Interactive Design and Manufacturing, 12(1), 319–326. https://doi.org/10.1007/s12008-017-0379-y | |
dcterms.references | Huertas, J. I., Quirama, L. F., Giraldo, M., & Díaz, J. (2019). Comparison of three methods for constructing real driving cycles. Energies, 12(4). https://doi.org/10.3390/en12040665 | |
dcterms.references | ICONTEC. (2012). Ntc 4983. Icontec, 571, 31. | |
dcterms.references | International Agency for Research on Cancer. (2013). IARC: Outdoor air pollution a leading environmental cause of cancer deaths. 221, 1–4. https://doi.org/10.1002/em | |
dcterms.references | International Organization for Standardization (ISO). (2006). Road vehicles — Controller area network ( CAN ) — Part 1 : Data link layer and physical signalling. 2006, 1–6. | |
dcterms.references | Jia, X., Wang, H., Xu, L., Wang, Q., Li, H., Hu, Z., Li, J., & Ouyang, M. (2021). Constructing representative driving cycle for heavy duty vehicle based on Markov chain method considering road slope. Energy and AI, 6, 100115. https://doi.org/10.1016/J.EGYAI.2021.100115 | |
dcterms.references | Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35(1), 1–19. https://doi.org/10.1207/S15327906MBR3501_1 | |
dcterms.references | Jun, G., Guensler, R., & Ogle, J. H. (2006). Smoothing methods to minimize impact of global positioning system random error on travel distance, speed, and acceleration profile estimates. Transportation Research Record, 1972, 141–150. https://doi.org/10.3141/1972-19 | |
dcterms.references | Khadse, V. M., Mahalle, P. N., & Shinde, G. R. (2020). Statistical study of machine learning algorithms using parametric and non-parametric tests: A comparative analysis and recommendations. International Journal of Ambient Computing and Intelligence, 11(3), 80–105. https://doi.org/10.4018/IJACI.2020070105 | |
dcterms.references | Kharrazi, S., Almen, M., Frisk, E., Nielsen, L., Kharrazi, S., Almén, M., Frisk, E., & Nielsen, L. (2019). Extending Behavioral Models to Generate Mission-Based Driving Cycles for Data-Driven Vehicle Development Extending behavioral models to generate mission-based driving cycles for data-driven vehicle development. | |
dcterms.references | Kim, Y., & Bang, H. (n.d.). Introduction to Kalman Filter and Its Applications. www.intechopen.com | |
dcterms.references | Lin, J., & Niemeier, D. A. (2002). An exploratory analysis comparing a stochastic driving cycle to California’s regulatory cycle. Atmospheric Environment, 36(38), 5759–5770. https://doi.org/10.1016/S1352-2310(02)00695-7 | |
dcterms.references | Liu, J., Wang, X., & Khattak, A. (2016). Customizing driving cycles to support vehicle purchase and use decisions: Fuel economy estimation for alternative fuel vehicle users. Transportation Research Part C: Emerging Technologies, 67, 280–298. https://doi.org/10.1016/j.trc.2016.02.016 | |
dcterms.references | Liu, Y., Xin Wu, Z., Zhou, H., Zheng Nan Yu, H., Pan An, X., Yuan Li, J., & Liang Li, M. (2020). DEVELOPMENT OF CHINA LIGHT-DUTY VEHICLE TEST CYCLE. International Journal of Automotive Technology, 21(5), 1233–1246. https://doi.org/10.1007/s12239−020−0117−5 | |
dcterms.references | Lundby, K. M., & Johnson, J. W. (2006). Relative Weights of Predictors What Is Important When Many Forces Are Operating. | |
dcterms.references | Ministerio de Ambiente y Desarrollo Sostenible. (2017). Guía para la elaboración de Inventarios de Emisiones Atmosféricas. http://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/emisiones_atmo sfericas_contaminantes/documentos_relacionados/GUIA_PARA_LA_ELABORACION_DE_INVE NTARIOS_DE_EMISIONES_ATMOSFERICAS.pdf | |
dcterms.references | Ministerio de ambiente y desarrollo sostenible. (2018). Resolución 2254 de 2017. https://www.icbf.gov.co/cargues/avance/docs/resolucion_minambienteds_2254_2017.htm | |
dcterms.references | Ministro Ambiente Y Desarrollo Sostenible. (2022). Resolución 0762 del 18 de Julio de 2022. https://www.minambiente.gov.co/wp-content/uploads/2022/09/Resolucion-762-de-2022.pdf | |
dcterms.references | Moradi, E., & Miranda-Moreno, L. (2020). Vehicular fuel consumption estimation using real-world measures through cascaded machine learning modeling. Transportation Research Part D: Transport and Environment, 88. https://doi.org/10.1016/j.trd.2020.102576 | |
dcterms.references | NEO-6 u-blox 6 GPS Modules Data Sheet. (2011). www.u-blox.com | |
dcterms.references | Nguyen, Y.-L. T., Bui, N. D., Nghiem, T.-D., & Le, A.-T. (2020). GPS DATA PROCESSING FOR DRIVING CYCLE DEVELOPMENT IN HANOI, VIETNAM. In Journal of Engineering Science and Technology (Vol. 15, Issue 2) | |
dcterms.references | Nouri, P., & Morency, C. (2017). Evaluating microtrip definitions for developing driving cycles. Transportation Research Record, 2627, 86–92. https://doi.org/10.3141/2627-10 | |
dcterms.references | Nyberg, P., Frisk, E., & Nielsen, L. (2014). Generation of equivalent driving cycles using Markov chains and mean tractive force components. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 19, Issue 3). IFAC. https://doi.org/10.3182/20140824-6-za-1003.02239 | |
dcterms.references | Observatorio Ambiental de Bogotá. (2022). Cifras e Indicadores de Medio Ambiente en Bogotá Concentración de Material Particulado Inferior a 10 Micrómetros {PM10} Promedio Anual por Estación - PM10PAE. https://oab.ambientebogota.gov.co/indicadores/?id=24341000-a6e7-11ebb6f5-a915ff441b6d | |
dcterms.references | Observatorio ambiental de Bogotá. (2022). Cifras e Indicadores de Medio Ambiente en Bogotá Material Particulado Inferior a 10 Micras {µ} Promedio Anual - PM10. https://oab.ambientebogota.gov.co/indicadores/?id=d2ccd170-0178-11ea-8cc7-8197075aabad | |
dcterms.references | Onnegren, P. (2013). Driving cycle generation using statistical analysis and markov chains. Department of Electrical Engineering, LiTH-ISY-EX-13/4670--SE, 89. | |
dcterms.references | Pavlovic, J., Ciuffo, B., Fontaras, G., Valverde, V., & Marotta, A. (2018). How much difference in typeapproval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice, 111(February), 136–147. https://doi.org/10.1016/j.tra.2018.02.002 | |
dcterms.references | Peña, J. M., Lozano, J. A., & Larrañaga, P. (1999). An empirical comparison of four initialization methods for the K-Means algorithm. www.elsevier.nl/locate/patrec | |
dcterms.references | Peng, Y., Zhuang, Y., & Yang, Y. (2020). A driving cycle construction methodology combining k-means clustering and Markov model for urban mixed roads. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(2–3), 714–724. https://doi.org/10.1177/0954407019848873 | |
dcterms.references | Qiu, D., Li, Y., & Qiao, D. (2018). Recurrent Neural Network Based Driving Cycle Development for Light Duty Vehicles in Beijing. Transportation Research Procedia, 34, 147–154. https://doi.org/10.1016/j.trpro.2018.11.026 | |
dcterms.references | R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. | |
dcterms.references | Roy, F., & Morency, C. (2020). Comparing Driving Cycle Development Methods Based on Markov Chains. Transportation Research Record, 2675(3), 212–221. https://doi.org/10.1177/0361198120968829 | |
dcterms.references | Secretaría de Ambiente de Bogotá. (2022). Inventario de emisiones contaminantes atmosféricos 2020. https://drive.google.com/file/d/1a8gyjx0h0OPa6Apx8J9h-9lgfiKN-Df-/view | |
dcterms.references | Selesnick, I. (2022). Least Squares with Examples in Signal Processing. http://eeweb.poly.edu/iselesni/lecture_notes/ | |
dcterms.references | Shi, S., Lin, N., Zhang, Y., Cheng, J., Huang, C., Liu, L., & Lu, B. (2016). Research on Markov property analysis of driving cycles and its application. Transportation Research Part D: Transport and Environment, 47, 171–181. https://doi.org/10.1016/j.trd.2016.05.013 | |
dcterms.references | Society of Automotive Engineers. (2007). SAE J1979. | |
dcterms.references | Society of Automotive Engineers. (2016). SAE J1962 - Diagnostic Connector. In SAE Standards. | |
dcterms.references | Society of Automotive Engineers (SAE). (2010). SAE J1263 - Road load measurement and dynamometer simulation using coastdown techniques. In SAE Technical Papers. https://doi.org/10.4271/810828 | |
dcterms.references | Society of Automotive Engineers (SAE). (2011). SAE J254 - Instrumentation and techniques for exhaust gas emissions measurement. In SAE Standards. https://www.sae.org/standards/content/j254_201106/ | |
dcterms.references | Society of Automotive Engineers (SAE). (2014). SAE J2951 - Drive Quality Evaluation for Chassis Dynamometer Testing: Surface Vehicle Recommended Practice. In SURFACE VEHICLE RECOMMENDED PRACTICE: Vol. SAE J2951. https://www.sae.org/standards/content/j2951_201401/ | |
dcterms.references | The Mathworks Inc. (2022a). MATLAB (2022a). The Mathworks Inc. | |
dcterms.references | The Mathworks Inc. (2022b). Statistics and Machine Learning Toolbox (2022a). Mathworks Inc. | |
dcterms.references | The National Renewable Energy Laboratory. (n.d.). DriveCAT: Drive Cycle Analysis Tool. DriveCAT: Drive Cycle Analysis Tool. Retrieved October 12, 2022, from https://www.nrel.gov/transportation/drive-cycle-tool/ | |
dcterms.references | The National Renewable Energy Laboratory (NREL). (2015). Transportation Secure Data Center - NREL. Drive Cycle Data. www.nrel.gov/tsdc. | |
dcterms.references | Toledo, T., Musicant, O., & Lotan, T. (2008). In-vehicle data recorders for monitoring and feedback on drivers’ behavior. Transportation Research Part C: Emerging Technologies, 16(3), 320–331. https://doi.org/10.1016/j.trc.2008.01.001 | |
dcterms.references | Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A., Pavlovic, J., & Steven, H. (2015). Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D: Transport and Environment, 40, 61–75. https://doi.org/10.1016/j.trd.2015.07.011 | |
dcterms.references | USEPA AP 42. (1995). AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary and Point Sources. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary and Point Sources, 1–10. https://www3.epa.gov/ttnchie1/ap42/c00s00.pdf%0Ahttps://www3.epa.gov/ttn/chief/ap42/c00s00.pd f | |
dcterms.references | World Health Organization. (2018). Ambient (outdoor) air pollution. Https://Www.Who.Int/En/NewsRoom/Fact-Sheets/Detail/Ambient-(Outdoor)-Air-Quality-and-Health. https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health | |
dcterms.references | World Health Organization. (2021a). WHO global air quality guidelines. | |
dcterms.references | World Health Organization. (2021b). WHO Global Air Quality Guidelines. | |
dcterms.references | Wu, Y., Zhang, W., Zhang, L., Qiao, Y., Yang, J., & Cheng, C. (2020). A multi-clustering algorithm to solve driving cycle prediction problems based on unbalanced data sets: A Chinese case study. Sensors (Switzerland), 20(9). https://doi.org/10.3390/s20092448 | |
dcterms.references | Yang, Y., Li, T., Hu, H., Zhang, T., Cai, X., Chen, S., & Qiao, F. (2019). Development and emissions performance analysis of local driving cycle for small-sized passenger cars in Nanjing, China. Atmospheric Pollution Research, 10(5), 1514–1523. https://doi.org/10.1016/j.apr.2019.04.009 | |
dcterms.references | Yuan, M., Kan, X., Chi, C. H., Cao, L., Shu, H., Fan, Y., & Yao, W. (2021). Study of Driving Cycle of City Tour Bus Based on Coupled GA-K-Means and HMM Algorithms: A Case Study in Beijing. IEEE Access, 9, 20331–20345. https://doi.org/10.1109/ACCESS.2021.3054118 | |
dcterms.references | Yuhui, P., Yuan, Z., & Huibao, Y. (2019). Development of a representative driving cycle for urban buses based on the K-means cluster method. Cluster Computing, 22(s3), 6871–6880. https://doi.org/10.1007/s10586-017-1673-y | |
dcterms.references | Zhang, C., Kotz, A., Kelly, K., & Rippelmeyer, L. (2021). Development of heavy-duty vehicle representative driving cycles via decision tree regression. Transportation Research Part D: Transport and Environment, 95(May), 102843. https://doi.org/10.1016/j.trd.2021.102843 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |