Mostrar el registro sencillo del ítem

dc.contributor.advisorFigueredo Medina, Manuel Alfredo
dc.contributor.advisorRengifo Gutiérrez, Camilo
dc.contributor.authorNovoa Ramírez, María Paula
dc.date.accessioned2024-06-11T16:44:55Z
dc.date.available2024-06-11T16:44:55Z
dc.date.issued2023-05-08
dc.identifier.urihttp://hdl.handle.net/10818/60384
dc.description97 páginases_CO
dc.description.abstractGiven the changes in a globalized world affected by climate change, distributed renewable energy sources have become a worldwide focus of study and development. Growing energy demand and increasing carbon emissions challenges and repercussions drive the scientific community and industry to find technological solutions to these complications. Power to Methane (PtM) systems have emerged in recent years as an attractive alternative for methane generation, carbon utilization, and renewable sources use (such as solar or wind energy); however, its analysis within Sabana Centro – Colombia’s context to identify its potential in those aspects have not been studied so far. Although few studies analyze the Power to Methane technology as an alternative in Colombia due to its resource availability, process simulation or behavior analysis in a particular context has not been studied, considering that Colombia has broad ecosystem diversity and, therefore, resource availability variation.en
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherPower to Methane
dc.subject.otherUtilización de carbono
dc.subject.otherEscenarios energéticos
dc.subject.otherElectrólisis
dc.titlePotencial energético y de utilización de CO2 para sistemas Power to Methane como parte de una futura Planta virtual de Potencia en Sabana Centro: Análisis por construcción de escenarios energéticos soportados en simulación estática y dinámica del procesoes_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dcterms.referencesBlanco, H., Nijs, W., Ruf, J., & Faaij, A. (2018). Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization. Applied Energy, 232(October), 323–340. https://doi.org/10.1016/j.apenergy.2018.08.027
dcterms.referencesBoudellal, M. (2018b). Power-to-Gas : Renewable Hydrogen Economy for the Energy Transition. http://search.ebscohost.com/login.aspx?direct=true&db=e00 0xww&AN=1710674&site=eds-live
dcterms.referencesBP. (2020). Statistical Review of World Energy, 2020 | 69th Edition. Bp, 66. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/statisticalreview/bp-stats-review-2020-full-report.pdf
dcterms.referencesChandrasekar, A., Flynn, D., & Syron, E. (2021). Operational challenges for low and high temperature electrolyzers exploiting curtailed wind energy for hydrogen production. International Journal of Hydrogen Energy, 46(57), 28900– 28911. https://doi.org/10.1016/j.ijhydene.2020.12.217
dcterms.referencesChen, K., Ren, Z., Mu, S., Sun, T. Q., & Mu, R. (2020). Integrating the Delphi survey into scenario planning for China’s renewable energy development strategy towards 2030. Technological Forecasting and Social Change, 158(June), 120157. https://doi.org/10.1016/j.techfore.2020.120157
dcterms.referencesCheng, Y., Liu, M., Chen, H., & Yang, Z. (2021). Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2- based electrothermal energy storage. Energy, 216, 119269. https://doi.org/10.1016/j.energy.2020.119269
dcterms.referencesCREG. (2020). Estrategias para la implementación de esquemas de señales de precios y cargo horarios a los usuarios finales en el SIN, para ser utilizados en programas de respuesta de demanda. https://www.creg.gov.co/sites/default/files/a_575_creg_- _presentacion_final.pdf
dcterms.referencesDANE. (2018). Proyecciones de viviendas y hogares. https://www.dane.gov.co/index.php/estadisticas-portema/demografia-y-poblacion/proyecciones-de-viviendas-yhogares
dcterms.referencesDANE. (2021). PIB total por departamentos. https://www.dane.gov.co/index.php/estadisticas-portema/cuentas-nacionales/cuentas-nacionales-departamentales
dcterms.referencesDannecker, C., Giraldo Tirado, V., & Plata Fajardo, A. M. (2016). El Mercado de Carbono en Colombia : elementos de diseño para lograr su eficiencia. South Pole Group, 1–7. http://blog.thesouthpolegroup.com/wpcontent/uploads/2016/08/160818_WhitePaper_CarbonCredit _ES_Letter_LR.pdf
dcterms.referencesDe Filippo, A., Lombardi, M., Milano, M., & Borghetti, A. (2017). Robust Optimization for Virtual Power Plants. AI*IA 2017: Advances in Artificial Intelligence, XVIth Inte, 17–30.
dcterms.referencesDepartamento Nacional de Planeación. (2023). Plan Nacional de Desarrollo (2022-2026): Colombia, potencial mundial de la vida. In BASES Plan Nacional de Desarrollo (2022-2026).
dcterms.referencesDNP. (2019). Pacto por los recursos mineroenergéticos para el desarrollo sostenible y la expansión de oportunidades en los territorios. Departamento Nacional de Planeación. https://www.dnp.gov.co/DNPN/Plan-Nacional-deDesarrollo/Paginas/Pactos-Transversales/Pacto-por-losrecursos-minero-energeticos/recursos-mineroenergeticospara-el-crecimiento-sostenible.aspx
dcterms.referencesDNP. (2022). Colombia Potencia Mundial de la Vida: Bases del Plan Nacional de Desarrollo 2022-2026. Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/portalDNP/PND 2022/Bases-PND2022-2026_compilado-CEVC15-10- 2022.pdf
dcterms.referencesDuan, J., Yang, Y., & Liu, F. (2022). International Journal of Electrical Power and Energy Systems Distributed optimization of integrated electricity-natural gas distribution networks considering wind power uncertainties. International Journal of Electrical Power and Energy Systems, 135(March 2021), 107460. https://doi.org/10.1016/j.ijepes.2021.107460
dcterms.referencesFambri, G., Diaz-Londono, C., Mazza, A., Badami, M., Sihvonen, T., & Weiss, R. (2022). Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration. Applied Energy, 312, 118743. https://doi.org/10.1016/j.apenergy.2022.118743
dcterms.referencesFecoc. (2016). Calculadora de emisiones FECOC 2016. http://www.upme.gov.co/calculadora_emisiones/aplicacion/c alculadora.htmlFecoc. (2016). Calculadora de emisiones FECOC 2016. http://www.upme.gov.co/calculadora_emisiones/aplicacion/c alculadora.html
dcterms.referencesGerloff, N. (2023). Levelized and environmental costs of power-togas generation in Germany. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.01.347
dcterms.referencesGestión Ambiental Estratégica. (2018). El mercado de carbono: balance, retos y oportunidades. https://ventanillaverde.cvc.gov.co/archivos/1542376669.pdf
dcterms.referencesGlobal Change Data Lab. (2022). Colombia: CO2 Country Profile. Our World In Data. https://ourworldindata.org/co2/country/colombia
dcterms.referencesGobernación de Cundinamarca. (2018). Línea Base Objetivos de Desarrollo Sostenible - Departamento de Cundinamarca Colombia. http://www.cundinamarca.gov.co/wcm/connect/8e7e1859- b9a6-493e-96bcbead0309355b/LBC+final.pdf?MOD=AJPERES&CVID=m bUIFsP&CVID=mbUIFsP&CVID=mbUIFsP&CVID=mbUI FsP&CVID=mbUIFsP
dcterms.referencesGobernación de Cundinamarca. (2022). Cundinamarca ¡Región que progresa! https://www.cundinamarca.gov.co/gobernacion/municipios/i ndex
dcterms.referencesGupta, R., Rüdisüli, M., Patel, M. K., & Parra, D. (2022). Smart power-to-gas deployment strategies informed by spatially explicit cost and value models. Applied Energy, 327, 120015. https://doi.org/10.1016/j.apenergy.2022.120015
dcterms.referencesHeaps, C. G. (2022). LEAP: The Low Emissions Analysis Platform (Software version: 2020.1.81). Stockholm Environmental Institute. https://leap.sei.org
dcterms.referencesIDEAM. (2015). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
dcterms.referencesIDEAM, PNUD, Alcaldia de Bogotá, Gobernación de Cundinamarca, CAR, Corpoguavio, Instituto Alexader von Humboldt, Parques Nacionales Naturales de Colombia, MASD, & DNP. (2012). Inventario de Gases Efecto Invernadero de la Región Capital. http://www.ideam.gov.co/documents/40860/609198/INFOR ME+TECNICO_Gases+Efecto+Invernadero.pdf/e9f9a51e4350-4914-944c-d767fefb0c61?version=1.2
dcterms.referencesIDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2016). Inventario Nacional y Departamental de Gases de Efecto Invernadero - Colombia.
dcterms.referencesIEA. (2020). Electricity. Fuels & Technologies. https://www.iea.org/fuels-and-technologies/electricity
dcterms.referencesJu, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., & Wang, W. (2019). A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Applied Energy, 250(January), 1336– 1355. https://doi.org/10.1016/j.apenergy.2019.05.027
dcterms.referencesKolb, S., Plankenbühler, T., Frank, J., Dettelbacher, J., Ludwig, R., Karl, J., & Dillig, M. (2021). Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach. Renewable and Sustainable Energy Reviews, 139(October 2020), 110696. https://doi.org/10.1016/j.rser.2020.110696
dcterms.referencesLi, L., Wang, J., Zhong, X., Lin, J., Wu, N., Zhang, Z., Meng, C., Wang, X., Shah, N., Brandon, N., Xie, S., & Zhao, Y. (2022). Combined multi-objective optimization and agentbased modeling for a 100% renewable island energy system considering power-to-gas technology and extreme weather conditions. Applied Energy, 308, 118376. https://doi.org/10.1016/j.apenergy.2021.118376
dcterms.referencesLitheko, A., Oboirien, B., & Patel, B. (2022). Analysis of the application of power-to-gas (P2G) technology in the road transport system of South Africa. Sustainable Energy Technologies and Assessments, 52, 102219. https://doi.org/10.1016/j.seta.2022.102219
dcterms.referencesLiu, Z., Guo, J., Li, Y., Wu, D., Zhang, S., Yang, X., Ge, H., & Cai, Z. (2021). Multi-scenario analysis and collaborative optimization of a novel distributed energy system coupled with hybrid energy storage for a nearly zero-energy community. Journal of Energy Storage, 41(June), 102992. https://doi.org/10.1016/j.est.2021.102992
dcterms.referencesMa, Y., Wang, H., Hong, F., Yang, J., Chen, Z., Cui, H., & Feng, J. (2021). Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system. Energy, 236, 121392. https://doi.org/10.1016/j.energy.2021.121392
dcterms.referencesMinambiente. (2018). Colombia finaliza el proceso de ratificación del Acuerdo de París frente al cambio climático. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/index.php/noticias/4013- colombia-finaliza-el-proceso-de-ratificacion-del-acuerdo-deparis-frente-al-cambio-climatico
dcterms.referencesMinisterio de Minas y Energía. (2016). Informe EITI 2016: Perfiles-Gas. EITI Colombia. Iniciativa Para La Transparencia de Las Industrias Extractivas. https://www.eiticolombia.gov.co/es/informes-eiti/informe2016/perfiles-hidrocarburos/perfiles-gas/
dcterms.referencesMonzer, D., Rivera-Tinoco, R., & Bouallou, C. (2021). Investigation of the Techno-Economical Feasibility of the Power-to-Methane Process Based on Molten Carbonate Electrolyzer. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.650303
dcterms.referencesNieves, J. A., Aristizábal, A. J., Dyner, I., Báez, O., & Ospina, D. H. (2019). Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy, 169, 380–397. https://doi.org/10.1016/j.energy.2018.12.051
dcterms.referencesNorouzi, N., Fani, M., & Ziarani, Z. K. (2020). The fall of oil Age:A scenario planning approach over the last peak oil of human history by 2040. Journal of Petroleum Science and Engineering, 188(December 2019), 106827. https://doi.org/10.1016/j.petrol.2019.106827
dcterms.referencesPeters, R., Baltruweit, M., Grube, T., Samsun, R. C., & Stolten, D. (2019). A techno economic analysis of the power to gas route. Journal of CO2 Utilization, 34(August), 616–634. https://doi.org/10.1016/j.jcou.2019.07.009
dcterms.referencesPongthanaisawan, J., Wangjiraniran, W., Chuenwong, K., & Pimonsree, L. (2018). Scenario planning for low carbon tourism city: A case study of NAN. Energy Procedia, 152, 715–724. https://doi.org/10.1016/j.egypro.2018.09.235
dcterms.referencesUN. (2015). 7: Affordable and Clean Energy. United Nations - Sustainable Development Goals. https://www.un.org/sustainabledevelopment/energy/
dcterms.referencesUnited Nations Framework Convention on Climate Change. (2021). History of the Convention. https://unfccc.int/process/the-convention/history-of-theconvention#eq-1
dcterms.referencesUPME. (2015). Integración de las energías renovables no convencionales en Colombia. http://www.upme.gov.co/Estudios/2015/Integracion_Energia s_Renovables/INTEGRACION_ENERGIAS_RENOVANL ES_WEB.pdf
dcterms.referencesUPME. (2018). Boletín Estadístico de Minas y Energía 2016-2018. https://www1.upme.gov.co/PromocionSector/SeccionesInter es/Documents/Boletines/Boletin_Estadistico_2018.pdf
dcterms.referencesUPME. (2020). Plan Energético Nacional 2020-2050. Unidad de Planeación Minero Energética, 2015. https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_ 2050/Plan_Energetico_Nacional_2020_2050.pdf
dcterms.referencesUPME. (2021a). BECO. Unidad de Planeación Minero Energética. https://www1.upme.gov.co/DemandayEficiencia/Paginas/BE CO.aspx
dcterms.referencesUPME. (2021b). Capacidad Efectiva de Generación (SIN). Unidad de Planeación Minero Energética. http://www.upme.gov.co/Reports/Default.aspx?ReportPath= %2FSIEL+UPME%2FGeneración%2FCapacidad+Efectiva+ de+Generación+(SIN)
dcterms.referencesUPME. (2021c). Generación. Unidad de Planeación Minero Energética. http://www.upme.gov.co/Reports/Default.aspx?ReportPath= %252fSIEL+UPME%252fGeneraci%25u00f3n%252fGener aci%25u00f3n+(Gerencial)
dcterms.referencesVidal, E., & Fontalvo, C. (2018). Alternativa para la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología “Power to Gas” en Colombia. Revista Fuentes El Reventón Energético, 16(1), 71–79. https://doi.org/10.18273/revfue.v16n1-2018006
dcterms.referencesWang, L., Rao, M., Diethelm, S., Lin, T. E., Zhang, H., Hagen, A., Maréchal, F., & Van herle, J. (2019). Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation. Applied Energy, 250(December 2018), 1432–1445. https://doi.org/10.1016/j.apenergy.2019.05.098
dcterms.referencesWitt, T., Dumeier, M., & Geldermann, J. (2020). Combining scenario planning, energy system analysis, and multi-criteria analysis to develop and evaluate energy scenarios. Journal of Cleaner Production, 242, 118414. https://doi.org/10.1016/j.jclepro.2019.118414
dcterms.referencesYilmaz, H. Ü., Kimbrough, S. O., van Dinther, C., & Keles, D. (2022). Power-to-gas: Decarbonization of the European electricity system with synthetic methane. Applied Energy, 323, 119538. https://doi.org/10.1016/j.apenergy.2022.119538
dcterms.referencesZhang, D., Zhu, H., Zhang, H., Goh, H. H., Liu, H., & Wu, T. (2021). An Optimized Design of Residential Integrated Energy System Considering the Power-to-Gas Technology with Multi-Functional Characteristics. Energy, 238, 121774. https://doi.org/10.1016/j.energy.2021.121774
dcterms.referencesZhang, J., Meerman, H., Benders, R., & Faaij, A. (2022). Potential role of natural gas infrastructure in China to supply lowcarbon gases during 2020–2050. Applied Energy, 306, 117989. https://doi.org/10.1016/j.apenergy.2021.117989
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional