dc.contributor.advisor | Figueredo Medina, Manuel Alfredo | |
dc.contributor.advisor | Rengifo Gutiérrez, Camilo | |
dc.contributor.author | Novoa Ramírez, María Paula | |
dc.date.accessioned | 2024-06-11T16:44:55Z | |
dc.date.available | 2024-06-11T16:44:55Z | |
dc.date.issued | 2023-05-08 | |
dc.identifier.uri | http://hdl.handle.net/10818/60384 | |
dc.description | 97 páginas | es_CO |
dc.description.abstract | Given the changes in a globalized world affected by climate change, distributed renewable energy sources have become a worldwide focus of study and development. Growing energy demand and increasing carbon emissions challenges and repercussions drive the scientific community and industry to find technological solutions to these complications. Power to Methane (PtM) systems have emerged in recent years as an attractive alternative for methane generation, carbon utilization, and renewable sources use (such as solar or wind energy); however, its analysis within Sabana Centro – Colombia’s context to identify its potential in those aspects have not been studied so far. Although few studies analyze the Power to Methane technology as an alternative in Colombia due to its resource availability, process simulation or behavior analysis in a particular context has not been studied, considering that Colombia has broad ecosystem diversity and, therefore, resource availability variation. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | Power to Methane | |
dc.subject.other | Utilización de carbono | |
dc.subject.other | Escenarios energéticos | |
dc.subject.other | Electrólisis | |
dc.title | Potencial energético y de utilización de CO2 para sistemas Power to Methane como parte de una futura Planta virtual de Potencia en Sabana Centro: Análisis por construcción de escenarios energéticos soportados en simulación estática y dinámica del proceso | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dcterms.references | Blanco, H., Nijs, W., Ruf, J., & Faaij, A. (2018). Potential of
Power-to-Methane in the EU energy transition to a low
carbon system using cost optimization. Applied Energy,
232(October), 323–340.
https://doi.org/10.1016/j.apenergy.2018.08.027 | |
dcterms.references | Boudellal, M. (2018b). Power-to-Gas : Renewable Hydrogen
Economy for the Energy Transition.
http://search.ebscohost.com/login.aspx?direct=true&db=e00
0xww&AN=1710674&site=eds-live | |
dcterms.references | BP. (2020). Statistical Review of World Energy, 2020 | 69th
Edition. Bp, 66.
https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/statisticalreview/bp-stats-review-2020-full-report.pdf | |
dcterms.references | Chandrasekar, A., Flynn, D., & Syron, E. (2021). Operational
challenges for low and high temperature electrolyzers
exploiting curtailed wind energy for hydrogen production.
International Journal of Hydrogen Energy, 46(57), 28900–
28911. https://doi.org/10.1016/j.ijhydene.2020.12.217 | |
dcterms.references | Chen, K., Ren, Z., Mu, S., Sun, T. Q., & Mu, R. (2020). Integrating
the Delphi survey into scenario planning for China’s
renewable energy development strategy towards 2030.
Technological Forecasting and Social Change, 158(June),
120157. https://doi.org/10.1016/j.techfore.2020.120157 | |
dcterms.references | Cheng, Y., Liu, M., Chen, H., & Yang, Z. (2021). Optimization of
multi-carrier energy system based on new operation
mechanism modelling of power-to-gas integrated with CO2-
based electrothermal energy storage. Energy, 216, 119269.
https://doi.org/10.1016/j.energy.2020.119269 | |
dcterms.references | CREG. (2020). Estrategias para la implementación de esquemas
de señales de precios y cargo horarios a los usuarios finales
en el SIN, para ser utilizados en programas de respuesta de
demanda.
https://www.creg.gov.co/sites/default/files/a_575_creg_-
_presentacion_final.pdf | |
dcterms.references | DANE. (2018). Proyecciones de viviendas y hogares.
https://www.dane.gov.co/index.php/estadisticas-portema/demografia-y-poblacion/proyecciones-de-viviendas-yhogares | |
dcterms.references | DANE. (2021). PIB total por departamentos.
https://www.dane.gov.co/index.php/estadisticas-portema/cuentas-nacionales/cuentas-nacionales-departamentales | |
dcterms.references | Dannecker, C., Giraldo Tirado, V., & Plata Fajardo, A. M. (2016).
El Mercado de Carbono en Colombia : elementos de diseño para lograr su eficiencia. South Pole Group, 1–7.
http://blog.thesouthpolegroup.com/wpcontent/uploads/2016/08/160818_WhitePaper_CarbonCredit
_ES_Letter_LR.pdf | |
dcterms.references | De Filippo, A., Lombardi, M., Milano, M., & Borghetti, A. (2017).
Robust Optimization for Virtual Power Plants. AI*IA 2017:
Advances in Artificial Intelligence, XVIth Inte, 17–30. | |
dcterms.references | Departamento Nacional de Planeación. (2023). Plan Nacional de
Desarrollo (2022-2026): Colombia, potencial mundial de la
vida. In BASES Plan Nacional de Desarrollo (2022-2026). | |
dcterms.references | DNP. (2019). Pacto por los recursos mineroenergéticos para el
desarrollo sostenible y la expansión de oportunidades en los
territorios. Departamento Nacional de Planeación.
https://www.dnp.gov.co/DNPN/Plan-Nacional-deDesarrollo/Paginas/Pactos-Transversales/Pacto-por-losrecursos-minero-energeticos/recursos-mineroenergeticospara-el-crecimiento-sostenible.aspx | |
dcterms.references | DNP. (2022). Colombia Potencia Mundial de la Vida: Bases del
Plan Nacional de Desarrollo 2022-2026. Departamento
Nacional de Planeación.
https://colaboracion.dnp.gov.co/CDT/portalDNP/PND
2022/Bases-PND2022-2026_compilado-CEVC15-10-
2022.pdf | |
dcterms.references | Duan, J., Yang, Y., & Liu, F. (2022). International Journal of
Electrical Power and Energy Systems Distributed
optimization of integrated electricity-natural gas distribution
networks considering wind power uncertainties.
International Journal of Electrical Power and Energy
Systems, 135(March 2021), 107460.
https://doi.org/10.1016/j.ijepes.2021.107460 | |
dcterms.references | Fambri, G., Diaz-Londono, C., Mazza, A., Badami, M., Sihvonen,
T., & Weiss, R. (2022). Techno-economic analysis of
Power-to-Gas plants in a gas and electricity distribution
network system with high renewable energy penetration.
Applied Energy, 312, 118743.
https://doi.org/10.1016/j.apenergy.2022.118743 | |
dcterms.references | Fecoc. (2016). Calculadora de emisiones FECOC 2016.
http://www.upme.gov.co/calculadora_emisiones/aplicacion/c
alculadora.htmlFecoc. (2016). Calculadora de emisiones FECOC 2016.
http://www.upme.gov.co/calculadora_emisiones/aplicacion/c
alculadora.html | |
dcterms.references | Gerloff, N. (2023). Levelized and environmental costs of power-togas generation in Germany. International Journal of
Hydrogen Energy.
https://doi.org/10.1016/j.ijhydene.2023.01.347 | |
dcterms.references | Gestión Ambiental Estratégica. (2018). El mercado de carbono:
balance, retos y oportunidades.
https://ventanillaverde.cvc.gov.co/archivos/1542376669.pdf | |
dcterms.references | Global Change Data Lab. (2022). Colombia: CO2 Country Profile.
Our World In Data.
https://ourworldindata.org/co2/country/colombia | |
dcterms.references | Gobernación de Cundinamarca. (2018). Línea Base Objetivos de
Desarrollo Sostenible - Departamento de Cundinamarca
Colombia.
http://www.cundinamarca.gov.co/wcm/connect/8e7e1859-
b9a6-493e-96bcbead0309355b/LBC+final.pdf?MOD=AJPERES&CVID=m
bUIFsP&CVID=mbUIFsP&CVID=mbUIFsP&CVID=mbUI
FsP&CVID=mbUIFsP | |
dcterms.references | Gobernación de Cundinamarca. (2022). Cundinamarca ¡Región
que progresa!
https://www.cundinamarca.gov.co/gobernacion/municipios/i
ndex | |
dcterms.references | Gupta, R., Rüdisüli, M., Patel, M. K., & Parra, D. (2022). Smart
power-to-gas deployment strategies informed by spatially
explicit cost and value models. Applied Energy, 327,
120015. https://doi.org/10.1016/j.apenergy.2022.120015 | |
dcterms.references | Heaps, C. G. (2022). LEAP: The Low Emissions Analysis Platform
(Software version: 2020.1.81). Stockholm Environmental
Institute. https://leap.sei.org | |
dcterms.references | IDEAM. (2015). Atlas de Radiación Solar, Ultravioleta y Ozono de
Colombia.
http://atlas.ideam.gov.co/visorAtlasRadiacion.html | |
dcterms.references | IDEAM, PNUD, Alcaldia de Bogotá, Gobernación de
Cundinamarca, CAR, Corpoguavio, Instituto Alexader von
Humboldt, Parques Nacionales Naturales de Colombia,
MASD, & DNP. (2012). Inventario de Gases Efecto
Invernadero de la Región Capital.
http://www.ideam.gov.co/documents/40860/609198/INFOR
ME+TECNICO_Gases+Efecto+Invernadero.pdf/e9f9a51e4350-4914-944c-d767fefb0c61?version=1.2 | |
dcterms.references | IDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2016).
Inventario Nacional y Departamental de Gases de Efecto
Invernadero - Colombia. | |
dcterms.references | IEA. (2020). Electricity. Fuels & Technologies.
https://www.iea.org/fuels-and-technologies/electricity | |
dcterms.references | Ju, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., & Wang, W. (2019). A
multi-objective robust scheduling model and solution
algorithm for a novel virtual power plant connected with
power-to-gas and gas storage tank considering uncertainty
and demand response. Applied Energy, 250(January), 1336–
1355. https://doi.org/10.1016/j.apenergy.2019.05.027 | |
dcterms.references | Kolb, S., Plankenbühler, T., Frank, J., Dettelbacher, J., Ludwig, R.,
Karl, J., & Dillig, M. (2021). Scenarios for the integration of
renewable gases into the German natural gas market – A
simulation-based optimisation approach. Renewable and
Sustainable Energy Reviews, 139(October 2020), 110696.
https://doi.org/10.1016/j.rser.2020.110696 | |
dcterms.references | Li, L., Wang, J., Zhong, X., Lin, J., Wu, N., Zhang, Z., Meng, C.,
Wang, X., Shah, N., Brandon, N., Xie, S., & Zhao, Y.
(2022). Combined multi-objective optimization and agentbased modeling for a 100% renewable island energy system
considering power-to-gas technology and extreme weather
conditions. Applied Energy, 308, 118376.
https://doi.org/10.1016/j.apenergy.2021.118376 | |
dcterms.references | Litheko, A., Oboirien, B., & Patel, B. (2022). Analysis of the
application of power-to-gas (P2G) technology in the road
transport system of South Africa. Sustainable Energy
Technologies and Assessments, 52, 102219.
https://doi.org/10.1016/j.seta.2022.102219 | |
dcterms.references | Liu, Z., Guo, J., Li, Y., Wu, D., Zhang, S., Yang, X., Ge, H., & Cai,
Z. (2021). Multi-scenario analysis and collaborative
optimization of a novel distributed energy system coupled
with hybrid energy storage for a nearly zero-energy
community. Journal of Energy Storage, 41(June), 102992.
https://doi.org/10.1016/j.est.2021.102992 | |
dcterms.references | Ma, Y., Wang, H., Hong, F., Yang, J., Chen, Z., Cui, H., & Feng, J.
(2021). Modeling and optimization of combined heat and
power with power-to-gas and carbon capture system in
integrated energy system. Energy, 236, 121392.
https://doi.org/10.1016/j.energy.2021.121392 | |
dcterms.references | Minambiente. (2018). Colombia finaliza el proceso de ratificación
del Acuerdo de París frente al cambio climático. Ministerio
de Ambiente y Desarrollo Sostenible.
https://www.minambiente.gov.co/index.php/noticias/4013-
colombia-finaliza-el-proceso-de-ratificacion-del-acuerdo-deparis-frente-al-cambio-climatico | |
dcterms.references | Ministerio de Minas y Energía. (2016). Informe EITI 2016:
Perfiles-Gas. EITI Colombia. Iniciativa Para La
Transparencia de Las Industrias Extractivas.
https://www.eiticolombia.gov.co/es/informes-eiti/informe2016/perfiles-hidrocarburos/perfiles-gas/ | |
dcterms.references | Monzer, D., Rivera-Tinoco, R., & Bouallou, C. (2021).
Investigation of the Techno-Economical Feasibility of the
Power-to-Methane Process Based on Molten Carbonate
Electrolyzer. Frontiers in Energy Research, 9.
https://doi.org/10.3389/fenrg.2021.650303 | |
dcterms.references | Nieves, J. A., Aristizábal, A. J., Dyner, I., Báez, O., & Ospina, D.
H. (2019). Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy,
169, 380–397. https://doi.org/10.1016/j.energy.2018.12.051 | |
dcterms.references | Norouzi, N., Fani, M., & Ziarani, Z. K. (2020). The fall of oil
Age:A scenario planning approach over the last peak oil of
human history by 2040. Journal of Petroleum Science and
Engineering, 188(December 2019), 106827.
https://doi.org/10.1016/j.petrol.2019.106827 | |
dcterms.references | Peters, R., Baltruweit, M., Grube, T., Samsun, R. C., & Stolten, D.
(2019). A techno economic analysis of the power to gas
route. Journal of CO2 Utilization, 34(August), 616–634.
https://doi.org/10.1016/j.jcou.2019.07.009 | |
dcterms.references | Pongthanaisawan, J., Wangjiraniran, W., Chuenwong, K., &
Pimonsree, L. (2018). Scenario planning for low carbon
tourism city: A case study of NAN. Energy Procedia, 152,
715–724. https://doi.org/10.1016/j.egypro.2018.09.235 | |
dcterms.references | UN. (2015). 7: Affordable and Clean Energy. United Nations -
Sustainable Development Goals.
https://www.un.org/sustainabledevelopment/energy/ | |
dcterms.references | United Nations Framework Convention on Climate Change.
(2021). History of the Convention.
https://unfccc.int/process/the-convention/history-of-theconvention#eq-1 | |
dcterms.references | UPME. (2015). Integración de las energías renovables no
convencionales en Colombia.
http://www.upme.gov.co/Estudios/2015/Integracion_Energia
s_Renovables/INTEGRACION_ENERGIAS_RENOVANL
ES_WEB.pdf | |
dcterms.references | UPME. (2018). Boletín Estadístico de Minas y Energía 2016-2018.
https://www1.upme.gov.co/PromocionSector/SeccionesInter
es/Documents/Boletines/Boletin_Estadistico_2018.pdf | |
dcterms.references | UPME. (2020). Plan Energético Nacional 2020-2050. Unidad de
Planeación Minero Energética, 2015.
https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_
2050/Plan_Energetico_Nacional_2020_2050.pdf | |
dcterms.references | UPME. (2021a). BECO. Unidad de Planeación Minero Energética.
https://www1.upme.gov.co/DemandayEficiencia/Paginas/BE
CO.aspx | |
dcterms.references | UPME. (2021b). Capacidad Efectiva de Generación (SIN). Unidad de Planeación Minero Energética.
http://www.upme.gov.co/Reports/Default.aspx?ReportPath=
%2FSIEL+UPME%2FGeneración%2FCapacidad+Efectiva+
de+Generación+(SIN) | |
dcterms.references | UPME. (2021c). Generación. Unidad de Planeación Minero
Energética.
http://www.upme.gov.co/Reports/Default.aspx?ReportPath=
%252fSIEL+UPME%252fGeneraci%25u00f3n%252fGener
aci%25u00f3n+(Gerencial) | |
dcterms.references | Vidal, E., & Fontalvo, C. (2018). Alternativa para la generación de
gas natural sintético a partir de una fuente de energía
renovable mediante tecnología “Power to Gas” en Colombia.
Revista Fuentes El Reventón Energético, 16(1), 71–79.
https://doi.org/10.18273/revfue.v16n1-2018006 | |
dcterms.references | Wang, L., Rao, M., Diethelm, S., Lin, T. E., Zhang, H., Hagen, A.,
Maréchal, F., & Van herle, J. (2019). Power-to-methane via
co-electrolysis of H2O and CO2: The effects of pressurized
operation and internal methanation. Applied Energy,
250(December 2018), 1432–1445.
https://doi.org/10.1016/j.apenergy.2019.05.098 | |
dcterms.references | Witt, T., Dumeier, M., & Geldermann, J. (2020). Combining
scenario planning, energy system analysis, and multi-criteria
analysis to develop and evaluate energy scenarios. Journal of
Cleaner Production, 242, 118414.
https://doi.org/10.1016/j.jclepro.2019.118414 | |
dcterms.references | Yilmaz, H. Ü., Kimbrough, S. O., van Dinther, C., & Keles, D.
(2022). Power-to-gas: Decarbonization of the European
electricity system with synthetic methane. Applied Energy,
323, 119538.
https://doi.org/10.1016/j.apenergy.2022.119538 | |
dcterms.references | Zhang, D., Zhu, H., Zhang, H., Goh, H. H., Liu, H., & Wu, T.
(2021). An Optimized Design of Residential Integrated
Energy System Considering the Power-to-Gas Technology
with Multi-Functional Characteristics. Energy, 238, 121774.
https://doi.org/10.1016/j.energy.2021.121774 | |
dcterms.references | Zhang, J., Meerman, H., Benders, R., & Faaij, A. (2022). Potential
role of natural gas infrastructure in China to supply lowcarbon gases during 2020–2050. Applied Energy, 306,
117989. https://doi.org/10.1016/j.apenergy.2021.117989 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |