Show simple item record

dc.contributor.authorJuan A.A.
dc.contributor.authorCorlu C.G.
dc.contributor.authorTordecilla R.D.
dc.contributor.authorde la Torre R.
dc.contributor.authorFerrer A.
dc.date.accessioned2024-05-20T19:13:57Z
dc.date.available2024-05-20T19:13:57Z
dc.date.issued2020
dc.identifier.citationJuan, A.A., Corlu, C.G., Tordecilla, R.D., de la Torre, R., Ferrer, A. On the use of biased-randomized algorithms for solving non-smooth optimization problems (2020) Algorithms, 13 (1), art. no. 8es_CO
dc.identifier.issn19994893
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078707679&doi=10.3390%2fa13010008&partnerID=40&md5=5c57ccb39439901f93814d0aefb94dbf
dc.identifier.urihttp://hdl.handle.net/10818/60142
dc.description.abstractSoft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines. © 2019 by the authors.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherAlgorithmses_CO
dc.relation.ispartofseriesAlgorithms Vol. 13 N° 1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherBiased-randomized algorithmsen
dc.subject.otherHeuristicsen
dc.subject.otherNon-smooth optimizationen
dc.subject.otherSoft constraintsen
dc.titleOn the use of biased-randomized algorithms for solving non-smooth optimization problemsen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.3390/a13010008


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International