Apresentar o registro simples

dc.contributor.authorTornede T.
dc.contributor.authorTornede A.
dc.contributor.authorHanselle J.
dc.contributor.authorMohr F.
dc.contributor.authorWever M.
dc.contributor.authorHüllermeier E.
dc.date.accessioned2024-04-19T15:52:59Z
dc.date.available2024-04-19T15:52:59Z
dc.date.issued2023
dc.identifier.citationTornede, T., Tornede, A., Hanselle, J., Mohr, F., Wever, M., Hüllermeier, E. Towards Green Automated Machine Learning: Status Quo and Future Directions (2023) Journal of Artificial Intelligence Research, 77, pp. 427-457.es_CO
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85162139256&doi=10.1613%2fjair.1.14340&partnerID=40&md5=481642dd2a5d19af0d537a99530d66d7
dc.identifier.urihttp://hdl.handle.net/10818/59843
dc.description30 páginas
dc.description.abstractAutomated machine learning (AutoML) strives for the automatic configuration of machine learning algorithms and their composition into an overall (software) solution - a machine learning pipeline - tailored to the learning task (dataset) at hand. Over the last decade, AutoML has developed into an independent research field with hundreds of contributions. At the same time, AutoML is being criticized for its high resource consumption as many approaches rely on the (costly) evaluation of many machine learning pipelines, as well as the expensive large-scale experiments across many datasets and approaches. In the spirit of recent work on Green AI, this paper proposes Green AutoML, a paradigm to make the whole AutoML process more environmentally friendly. Therefore, we first elaborate on how to quantify the environmental footprint of an AutoML tool. Afterward, different strategies on how to design and benchmark an AutoML tool w.r.t. their "greenness", i.e., sustainability, are summarized. Finally, we elaborate on how to be transparent about the environmental footprint and what kind of research incentives could direct the community in a more sustainable AutoML research direction. As part of this, we propose a sustainability checklist to be attached to every AutoML paper featuring all core aspects of Green AutoML. © 2023 The Authors.en
dc.language.isoenges_CO
dc.publisherJournal of Artificial Intelligence Researches_CO
dc.relation.ispartofseriesJournal of Artificial Intelligence Research 77, 427-457
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherLarge Dataseten
dc.subject.otherLearning algorithmsen
dc.subject.otherPetroleum reservoir evaluationen
dc.subject.otherPipelinesen
dc.subject.otherSustainable developmenten
dc.subject.otherAutomated machinesen
dc.titleTowards Green Automated Machine Learning: Status Quo and Future Directionsen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1613/jair.1.14340


Arquivos deste item

ArquivosTamanhoFormatoVisualização

Não existem arquivos associados a este item.

Este item aparece na(s) seguinte(s) coleção(s)

Apresentar o registro simples

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International