Mostrar el registro sencillo del ítem

dc.contributor.advisorGuerrero Rueda, William Javier
dc.contributor.advisorYepes Borrero, Juan Camilo
dc.contributor.authorMoreno Cortés, Jessica Ximena
dc.date.accessioned2024-02-29T14:00:33Z
dc.date.available2024-02-29T14:00:33Z
dc.date.issued2023-10-13
dc.identifier.urihttp://hdl.handle.net/10818/59337
dc.description69 paginases_CO
dc.description.abstractLa programación de horarios de clases académicas en una Institución de Educación Superior (IES) es una actividad que se realiza antes de iniciar cada período académico establecido para un programa de educación superior. Donde el horizonte de planeación puede ser semestral, trimestral, cuatrimestral o mensual dependiendo de periodicidad establecida para un programa académico y en este se establecen los horarios para la cantidad de periodos académicos establecidos en el plan de estudios y los espacios académicos. Actualmente, puede ser una de las actividades donde se emplean tiempos prolongados, se requiere personal especializado para su planeación y ejecución, con el fin de dar cumplimiento a los requisitos, lineamientos, reglamentaciones, limitaciones de infraestructura o aspectos relevantes determinados por el departamento o departamentos que intervienen en la programación académica para este programa, de acuerdo con el plan de estudios, prerrequisitos y la pertinencia de los aspectos curriculares, escenarios de aprendizaje y la organización de las actividades académicas.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherHorarios universitarios
dc.subject.otherRestricciones
dc.titleModelo para la programación horaria de un programa académico en una Institución de Educación Superior (IES)es_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcEducación superior
dc.subject.armarcPlanificación estratégica
dcterms.referencesAbduljabbar, I. A., & Abdullah, S. M. (2022). An evolutionary algorithm for solving academic courses timetable scheduling problem. Baghdad Science Journal, 19(2), 399–408. https://doi.org/10.21123/BSJ.2022.19.2.0399
dcterms.referencesAlansari, M. M. (2022). Optimized Automatic Course Timetabling Service Architecture for Integration with Vendor Management Systems. International Journal of Advanced Computer Science and Applications, 13(10), 878–890. https://doi.org/10.14569/IJACSA.2022.01310104
dcterms.referencesAlkallak, I. N., Shaban, R. Z., & Alnema, Y. H. S. (2022). Intelligent university timetable scheduling system using sudoku grid with magic square. Bulletin of Electrical Engineering and Informatics, 11(3), 1526– 1534. https://doi.org/10.11591/eei.v11i3.3694
dcterms.referencesAkkan, C., Gülcü, A., & Kuş, Z. (2022). Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation. Journal of Scheduling, 25(4), 477–501. https://doi.org/10.1007/s10951-022-00722-0
dcterms.referencesAlmonteros, J. R., Pacot, M. P. B., & Pitogo, V. A. (2022). Automation of Curriculum-based Student-Subject Encoding: A Web Application. ACM International Conference Proceeding Series, 328–333. https://doi.org/10.1145/3579895.3579944
dcterms.referencesArbaoui, T., Boufflet, J. P., & Moukrim, A. (2019). Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems. Computers and Operations Research, 106, 133–142. https://doi.org/10.1016/j.cor.2019.02.013
dcterms.referencesAssi, M., Halawi, B., & Haraty, R. A. (2018). Genetic Algorithm Analysis using the Graph Coloring Method for Solving the University 55 Timetable Problem. Procedia Computer Science, 126, 899–906. https://doi.org/10.1016/j.procS.2018.08.024
dcterms.referencesBababeik, M., Zerguini, S., Farjad-Amin, M., Khademi, N., & Bagheri, M. (2019). Developing a train timetable according to track maintenance plans: A stochastic optimization of buffer time schedules. Transportation Research Procedia, 37 (September 2018), 27–34. https://doi.org/10.1016/j.trpro.2018.12.162
dcterms.referencesBarnhart, C., Bertsimas, D., Delarue, A., & Yan, J. (2022). Course Scheduling Under Sudden Scarcity: Applications to Pandemic Planning. Manufacturing and Service Operations Management, 24(2), 727–745. https://doi.org/10.1287/msom.2021.0996
dcterms.referencesBehrenk, A. B., Güçlükol Ergin, S., & Toy, A. Ö. (2023). Course Scheduling Problem and Real-Life Implementation. 749–758. https://doi.org/10.1007/978-3-031-24457-5_59
dcterms.referencesChen, D., Li, S., Li, J., Ni, S., & Liu, X. (2019). Optimal High-Speed Railway Timetable by Stop Schedule Adjustment for Energy-Saving. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/4213095
dcterms.referencesÇimen, M., Belbağ, S., Soysal, M., & Sel, Ç. (2022). INVIGILATORS ASSIGNMENT IN PRACTICAL EXAMINATION TIMETABLING PROBLEMS. International Journal of Industrial Engineering : Theory Applications and Practice, 29(3), 351–371. https://doi.org/10.23055/ijietap.2022.29.3.6943
dcterms.referencesDiveev, A. I., Bobr, O. V., Kazaryan, D. E., & Hussein, O. (2019). Some methods of solving the NP-difficult problem of optimal schedule for the university. Procedia Computer Science, 150, 410–415. https://doi.org/10.1016/j.procs.2019.02.071
dcterms.referencesDimitsas, A., Nastos, V., Gogos, C., & Valouxis, C. (2022). An exact based approach for the Post Enrollment Course Timetabling Problem. ACM International Conference Proceeding Series, 77–82. https://doi.org/10.1145/3575879.3575970
dcterms.referencesDobrynin, A. S., Kulakov, S. M., & Taraborina, E. N. (2018). About the algorithm for construction of coordinated university timetables. IOP Conference Series: Materials Science and Engineering, 351(1), 5–9. https://doi.org/10.1088/1757-899X/354/1/012007
dcterms.referencesDunke, F., & Nickel, S. (2023). A matheuristic for customized multilevel multi-criteria university timetabling. Annals of Operations Research, 10479. https://doi.org/10.1007/s10479-023-05325-2
dcterms.referencesDrábek, M. (2018). Irregularities in Czech integrated periodic timetable. MATEC Web of Conferences, 235(3), 10–13. https://doi.org/10.1051/matecconf/201823500012
dcterms.referencesGestrelius, S., Aronsson, M., & Peterson, A. (2017). A MILP-based heuristic for a commercial train timetabling problem. Transportation Research Procedia, 27, 569–576. https://doi.org/10.1016/j.trpro.2017.12.118
dcterms.referencesGhaffar, A., Sattar, M. U., Munir, M., & Qureshi, Z. (2022). Multiobjective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem. EAI Endorsed Transactions on Scalable Information Systems, 9(4). https://doi.org/10.4108/eai.16-12- 2021.172435
dcterms.referencesGüler, M. G., Geçici, E., Köroğlu, T., & Becit, E. (2021). A web-based decision support system for examination timetabling. Expert Systems with Applications, 183. https://doi.org/10.1016/j.eswa.2021.115363
dcterms.referencesGülcü, A., & Akkan, C. (2020). Robust university course timetabling problem subject to single and multiple disruptions. En European Journal of 57 Operational Research (Vol. 283, Número 2, pp. 630–646). https://doi.org/10.1016/j.ejor.2019.11.024
dcterms.referencesHussein, S. I., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019). Optimization of university course scheduling problem using particle swarm optimization with selective search. Expert systems with applications, 127, 9-24.
dcterms.referencesHolm, D. S., Mikkelsen, R. Ø., Sørensen, M., & Stidsen, T. J. R. (2022). A graph-based MIP formulation of the International Timetabling Competition 2019. Journal of Scheduling, 25(4), 405–428. https://doi.org/10.1007/s10951-022-00724-y
dcterms.referencesIsobe, Y., Hatsugai, H., Tanaka, A., Oiwa, Y., Ambe, T., Okada, A., Kitamura, S., Fukuta, Y., & Kunifuji, T. (2019). Automatic generation of train timetables from mesoscopic railway models by SMT-solver. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2, 325–335. https://doi.org/10.1587/transfun.E102.A.325
dcterms.referencesJiang, F., Yu, D. Ben, & Ni, S. Q. (2017). An objective train timetabling quality evaluation method. Mathematical Problems in Engineering, 2017. https://doi.org/10.1155/2017/3047963
dcterms.referencesJoyce, J., Gitomer, D. H., & Iaconangelo, C. J. (2018). Classroom assignments as measures of teaching quality. Learning and Instruction, 54, 48–61. https://doi.org/10.1016/j.learninstruc.2017.08.001
dcterms.referencesLan, Z., He, S., Song, R., & Hao, S. (2019). Optimizing Vehicle Scheduling Based on Variable Timetable by Benders-and-Price Approach. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/2781590
dcterms.referencesLemos, A., Melo, F. S., Monteiro, P. T., & Lynce, I. (2019). Room usage optimization in timetabling: A case study at Universidade de Lisboa. Operations Research Perspectives, 6(July 2018), 100092. https://doi.org/10.1016/j.orp.2018.100092
dcterms.referencesLemos, A., Monteiro, P. T., & Lynce, I. (2022). Introducing UniCorT: an iterative university course timetabling tool with MaxSAT. Journal of Scheduling, 25(4), 371–390. https://doi.org/10.1007/s10951-021-00695-6
dcterms.referencesLi, W., Peng, Q., Wen, C., & Xu, X. (2019). Comprehensive Optimization of a Metro Timetable Considering Passenger Waiting Time and Energy Efficiency. IEEE Access, 7, 160144–160167. https://doi.org/10.1109/ACCESS.2019.2950814
dcterms.referencesLiu, Y., Ming, H., Luo, X., Hu, L., & Sun, Y. (2022). Research on multiobjective course scheduling optimization of college teaching building under intermittent heating mode. Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture and Technology, 54(5), 710–717. https://doi.org/10.15986/j.1006-7930.2022.05.009
dcterms.referencesLiu, Y., Ming, H., Luo, X., Hu, L., & Sun, Y. (2023). Timetabling optimization of classrooms and self-study rooms in university teaching buildings based on the building controls virtual test bed platform considering energy efficiency. Building Simulation, 16(2), 263–277. https://doi.org/10.1007/s12273-022-0938-4
dcterms.referencesLindahl, M., Mason, A. J., Stidsen, T., & Sørensen, M. (2018). A strategic view of University timetabling. European Journal of Operational Research, 266(1), 35–45. https://doi.org/10.1016/j.ejor.2017.09.022
dcterms.referencesLiu, T., & Ceder, A. (Avi). (2018). Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A biobjective bi-level model using deficit function approach. Transportation Research Part B: Methodological, 117, 935–955. https://doi.org/10.1016/j.trb.2017.08.024
dcterms.referencesMeng, L., Muneeb Abid, M., Jiang, X., Khattak, A., & Babar Khan, M. (2019). Increasing Robustness by Reallocating the Margins in the Timetable. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/1382394
dcterms.referencesMikkelsen, R. Ø., & Holm, D. S. (2022). A parallelized matheuristic for the International Timetabling Competition 2019. Journal of Scheduling, 25(4), 429–452. https://doi.org/10.1007/s10951-022-00728-8
dcterms.referencesMohd Zaulir, Z., Aziz, N. L. A., & Aizam, N. A. H. (2022). A General Mathematical Model for University Courses Timetabling: Implementation to a Public University in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 18(1), 82–94. https://doi.org/10.11113/MJFAS.V18N1.2408
dcterms.referencesMuklason, A., Irianti, R. G., & Marom, A. (2019). Automated Course Timetabling Optimization Using Tabu-Variable Neighborhood Search Based Hyper-Heuristic Algorithm. Procedia Computer Science, 161, 656– 664. https://doi.org/10.1016/j.procs.2019.11.169
dcterms.referencesMuklason, A., Syahrani, G. B., & Marom, A. (2019). Great Deluge Based Hyper-heuristics for Solving Real-world University Examination Timetabling Problem: New Data set and Approach. Procedia Computer Science, 161, 647–655. https://doi.org/10.1016/j.procs.2019.11.168
dcterms.referencesNand, R., Sharma, B., & Chaudhary, K. (2022). An introduction of preference based stepping ahead firefly algorithm for the uncapacitated examination timetabling. PeerJ Computer Science, 8. https://doi.org/10.7717/peerj-cs.1068
dcterms.referencesOktavia, M. (2020). Sobre el algoritmo para la construcción de horarios universitarios coordinados Sobre el algoritmo para la construcción de horarios universitarios coordinados F ; 5–9.
dcterms.referencesPalmqvist, C. W., Olsson, N. O. E., & Winslott Hiselius, L. (2018). The Planners’ Perspective on Train Timetable Errors in Sweden. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/8502819
dcterms.referencesRappos, E., Thiémard, E., Robert, S., & Hêche, J.-F. (2022). A mixedinteger programming approach for solving university course timetabling problems. Journal of Scheduling, 25(4), 391–404. https://doi.org/10.1007/s10951-021-00715-5
dcterms.referencesShen, Y., Ren, G., & Liu, Y. (2018). Timetable design for minimizing passenger travel time and congestion for a single metro line. Promet - Traffic - Traffico, 30(1), 21–33. https://doi.org/10.7307/ptt.v30i1.2281
dcterms.referencesSong, T., Liu, S., Tang, X., Peng, X., & Chen, M. (2018). An iterated local search algorithm for the University Course Timetabling Problem. Applied Soft Computing Journal, 68, 597–608. https://doi.org/10.1016/j.asoc.2018.04.034
dcterms.referencesSong, T., Chen, M., Xu, Y., Wang, D., Song, X., & Tang, X. (2021). Competition-guided multi-neighborhood local search algorithm for the university course timetabling problem. Applied Soft Computing, 110. https://doi.org/10.1016/j.asoc.2021.107624
dcterms.referencesStucchi, L., Falckenheiner, S., Hermoza, A., & Casafranca, F. (2014). Optimización de un problema de asignación generalizada a partir de un algoritmo de colonia de hormigas que incorpora un mecanismo de difusión.
dcterms.referencesThepphakorn, T., & Pongcharoen, P. (2023). Modified and hybridised bi-objective firefly algorithms for university course scheduling. Soft Computing, 7810. https://doi.org/10.1007/s00500-022-07810-5
dcterms.referencesXu, W., Tan, Y., Sharma, B., & Wang, Z. (2019). Cyclic Timetable Scheduling Problem on High-speed Railway Line. Periodica Polytechnica Transportation Engineering, 48(1), 31–38. https://doi.org/10.3311/PPtr.12312
dcterms.referencesYasari, P., Ranjbar, M., Jamili, N., & Shaelaie, M. H. (2019a). A twostage stochastic programming approach for a multi-objective course timetabling problem with courses cancelation risk. Computers and Industrial Engineering, 130(February), 650–660. https://doi.org/10.1016/j.cie.2019.02.050
dcterms.referencesYasari, P., Ranjbar, M., Jamili, N., & Shaelaie, M. H. (2019b). A twostage stochastic programming approach for a multi-objective course timetabling problem with courses cancelation risk. Computers and Industrial Engineering, 130, 650–660. https://doi.org/10.1016/j.cie.2019.02.050
dcterms.referencesZhang, J., Lam, W. H. K., & Chen, B. Y. (2016). On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. European Journal of Operational Research, 249(1), 144–154. https://doi.org/10.1016/j.ejor.2015.08.050
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional