Mostrar el registro sencillo del ítem
Influence of soil-structure interaction on the fragility curves of medium-height moment resisting frames and thin-walled buildings located in Bogotá, Colombia
dc.contributor.advisor | Arroyo Amell, Orlando Daniel | |
dc.contributor.advisor | Carrillo León, Wilmer Julián | |
dc.contributor.advisor | Sarmiento Díaz, Miguel Enrique | |
dc.contributor.author | Osorio Castellanos, Angie Viviana | |
dc.date.accessioned | 2024-01-22T16:46:21Z | |
dc.date.available | 2024-01-22T16:46:21Z | |
dc.date.issued | 2023-10-20 | |
dc.identifier.uri | http://hdl.handle.net/10818/59144 | |
dc.description | 102 páginas | es_CO |
dc.description | 102 páginas | es_CO |
dc.description.abstract | Nowadays, Bogotá’s population accounts for 15% of the total Colombian population. The population influx the city has experienced has increased the construction of buildings in the past decades. Mid-rise buildings represent over 24% from the total building stock of the city and have been constructed mainly using reinforced concrete (RC) structural systems such as moment resisting frames and thin walls. The vulnerability of such systems has been studied and documented through fragility curves that are constructed based on structural analysis results and laboratory tests. The common practice among practicing engineers to carry on the structural analysis is assuming a fixed base building, which means that the structure is founded on rock or soils with a considerable strength, neglecting the displacements that can be produced due to the presence of the foundation and the soil beneath. Such assumption may lead to inaccurate results in the case of Bogotá where an important percentage of the foundation subgrade are soft clays with high compressibility and low bearing capacity. This type of soils has been proved to affect considerably the seismic performance of buildings during earthquakes. Therefore, this research studied the influence of the soil-structure interaction on structural analysis of RC moment resisting frames and thin walls mid-rise buildings founded on the soft soils area of Bogotá by means of dynamic analysis using OpenSees. Results showed that considering both the foundation and the soil, the stiffness and the system ductility reduce, and the fragility compared to the common fixed base approach increases | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | Construcciones de concreto armado | |
dc.subject.other | Construcciones antisísmicas | |
dc.subject.other | Cimientos | |
dc.title | Influence of soil-structure interaction on the fragility curves of medium-height moment resisting frames and thin-walled buildings located in Bogotá, Colombia | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Edificios -- Diseño y construcción | |
dcterms.references | C. Jian, B. Guobin, Y. Chun, C. Qingjun, and Z. Zhiliang, “Calculation Methods for Inter Story Drifts of Building Structures,” Advances in Structural Engineering, vol. 5, pp. 735– 745, 2014. | |
dcterms.references | . . anjbar and . Naderpour, “ robabilistic evaluation of seismic resilience for typical vital buildings in terms of vulnerability curves,” Structures, vol. 23, pp. 314–323, Feb. 2020, doi: 10.1016/j.istruc.2019.10.017 | |
dcterms.references | A. G. Tyapin, Soil-structure Interaction in Seismic Analysis. 2019 | |
dcterms.references | Y. Ohsaki, “Niigata Earthquakes, 1 Building Damage and Soil Condition,” Soil and Foundation, vol. VII, no. 2, pp. 14–37, 1966 | |
dcterms.references | M. . omo, “Clay Behavior, Ground esponse and Soil-Structure Interaction Studies in Mexico City Studies in Mexico City,” in Third Internation Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1995. [Online]. Available: https://scholarsmine.mst.edu/icrageesd/03icrageesd/session16/8 | |
dcterms.references | P. A. Marín, M. M. Suárez, and S. ópez, “Interacción Dinámica Suelo-Estructura Aplicada a Distintas Geometrías de Cimentación (Vibración Transmitida del Suelo a la Estructura),” México, 2016. | |
dcterms.references | . Savaris, . . allak, and . C. A. Maia, “ nderstanding the Mechanism of Static Soil Structure Interaction-A Case Study,” Soils and Rocks, vol. 34, no. 3, pp. 195–206, Dec. 2011. | |
dcterms.references | H. Asadi-Ghoozhdi and . Attarnejad, “A inkler-based model for inelastic response of soil–structure systems with embedded foundation considering kinematic and inertial interaction effects,” Structures, vol. 28, pp. 589–603, Dec. 2020, doi: 10.1016/J.ISTRUC.2020.09.009 | |
dcterms.references | ederal Emergency Management Agency, “FEMA -2091, A Practical Guide to Soil Structure Interaction,” 2 2 . Online . Available: www.ATCouncil.org | |
dcterms.references | NE , “Selecting and Scaling Earthquake Ground Motions for erforming esponse- istory Analyses,” 2 11. | |
dcterms.references | E. Kausel and M. Irfan Baig, “ aplace transform of products of Bessel functions: A visitation of earlier formulas,” Q Appl Math, vol. 70, no. 1, pp. 77–97, Sep. 2011, doi: 10.1090/s0033-569x-2011-01239-2. | |
dcterms.references | J. Dominguez and J. M. oesset, “Dynamic stiffness of rectangular foundations,” Aug. 1978. | |
dcterms.references | S. Kleiven, . alldin, and D. Zenkert, “Dynamic Finite Element Methods,” Stockholm, 2001. | |
dcterms.references | M. Novak, “Scholars’ Mine Scholars’ Mine iles nder Dynamic oads iles nder Dynamic oads iles nder Dynamic oads,” in Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soli Dynamics, 1991. [Online]. Available: https://scholarsmine.mst.edu/icrageesd/02icrageesd/session14/12 | |
dcterms.references | B. Bapir, L. Abrahamczyk, T. Wichtmann, and L. F. Prada-Sarmiento, “Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismicresponse of building structures,” Frontiers in Built Environment, vol. 9. Frontiers Media S.A., Feb. 03, 2023. doi: 10.3389/fbuil.2023.1120351. | |
dcterms.references | V. Anand and S. . Satish Kumar, “Seismic Soil-structure Interaction: A State-of-the-Art eview,” Structures, vol. 16. Elsevier Ltd, pp. 317–326, Nov. 01, 2018. doi: 10.1016/j.istruc.2018.10.009. | |
dcterms.references | . . Boulanger, C. J. Curras, B. . Kutter, D. . ilson, and A. Abghari, “Seismic Soil Pile-Structure Interaction Experiments and Analyses,” 1999. | |
dcterms.references | ] G. Gazetas, Foundation Engineering Handbook. New York, 1991 | |
dcterms.references | J. E. Bowles, Foundation analysis and design. McGraw-Hill, 1996. | |
dcterms.references | E. D. Booth, J. . appin, J. . Mills, M. . Degg, and . S. Steedman, “The Mexican Earthquake of 19th September 1 5,” England, Sep. 1 . | |
dcterms.references | L. E. Pérez- ocha and J. Avilés, “Evaluación de Efectos de Interacción en esistencias Inelásticas,” Revista de Ingeniería Sísmica, vol. 69, pp. 45–71, 2003. | |
dcterms.references | J. Avilés and L. E. Pérez- ocha, “Bases para las Nuevas Disposiciones Reglamentarias Sobre Interacción Dinámica Suelo-Estructura,” Revista de Ingeniería Sísmica No, vol. 71, pp. 1–36, 2004 | |
dcterms.references | J. Avilés and L. E. Pérez- ocha, “Design concepts for yielding structures on flexible foundation,” Eng Struct, vol. 27, no. 3, pp. 443–454, Feb. 2005, doi: 10.1016/j.engstruct.2004.11.005 | |
dcterms.references | A. Bárcena and . Esteva, “Influence of dynamic soil-structure interaction on the nonlinear response and seismic reliability of multistorey systems,” Earthq Eng Struct Dyn, vol. 36, no. 3, pp. 327–346, 2007, doi: 10.1002/eqe.633. | |
dcterms.references | ] . . Fernández Sola and J. Avilés ópez, “Efectos de Interacción Suelo-Estructura en Edificios con lanta Baja Blanda,” Revista de Ingeniería Sísmica, vol. 79, pp. 71–90, 2008 | |
dcterms.references | J. Avilés and L. E. Pérez- ocha, “Effects of foundation embedment during building-soil interaction,” Earthq Eng Struct Dyn, vol. 27, no. 12, pp. 1523–1540, Dec. 1998, doi: 10.1002/(SICI)1096-9845(199812)27:12<1523::AID-EQE798>3.0.CO;2-5. | |
dcterms.references | INGEOMINAS and Universidad de Los Andes, “Microzonificacion sismica de santa fe de bogota,” 1 7 | |
dcterms.references | A. B. Acevedo et al., “Seismic risk assessment for the residential buildings of the major three cities in Colombia: Bogotá, Medellín, and Cali,” Earthquake Spectra, vol. 36, no. 1_suppl, pp. 298–320, Oct. 2020, doi: 10.1177/8755293020942537. | |
dcterms.references | M. Villar-Vega et al., “Development of a Fragility Model for the Residential Building Stock in South America,” 2 17. | |
dcterms.references | . Melendez and E. Santisteban, “Enaluación de la Vulnerabilidad Sísmica del ospital San Ignacio y su ehabilitación Basados en Curvas de Fragilidad,” ontificia Universidad Javeriana, Bogotá, 2014. | |
dcterms.references | O. Arroyo, D. Feliciano, J. Carrillo, and M. A. ube, “Seismic performance of mid-rise thin concrete wall buildings lightly reinforced with deformed bars or welded wire mesh,” Eng Struct, vol. 241, Aug. 2021, doi: 10.1016/j.engstruct.2021.112455. | |
dcterms.references | N. Bahamon, “Análisis de Interacción Suelo Estructura en Conjunto con un Análisis PushOver en una Edificación de 10 Pisos en Pórticos de Concreto, en Zonas Lacustres de la Microzonificación Sísmica de Bogotá,” niversidad Miliar Nueva Granada, Bogotá, 2018. | |
dcterms.references | Fondo de revención y Atención de Emergencia, “Zonificación sísmica de Bogotá para el diseño sismo resistente de edificaciones,” Bogotá, 2 1 . | |
dcterms.references | J. . Stewart, . B. Seed, and G. . Fenves, “Seismic Soil-Structure Interaction in Buildings. II: Empirical Findings,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 1, pp. 38–48, Jan. 1999, doi: 10.1061/(ASCE)1090-0241(1999)125:1(38). | |
dcterms.references | G. Mylonakis and G. Gazetas, “Seismic soil-structure interaction: Beneficial or detrimental?,” Journal of Earthquake Engineering, vol. 4, no. 3, pp. 277–301, 2000, doi: 10.1080/13632460009350372. | |
dcterms.references | S. Soltani-Azar, “Evaluation of the Seismic esponse of einforced Concrete Buildings Based on Time-History Analysis considering Nonlinear Soil Effects,” Journal of Earthquake Engineering, vol. 27, no. 7, pp. 1690–1710, 2023, doi: 10.1080/13632469.2022.2087795 | |
dcterms.references | S. Bandyopadhyay, Y. M. arulekar, and A. Sengupta, “MSA-based seismic fragility analysis of RC structures considering soil nonlinearity effects and time histories compatible to uniform hazard spectra,” Structures, vol. 54, pp. 330–347, Aug. 2023, doi: 10.1016/j.istruc.2023.05.076. | |
dcterms.references | I. Kraus and D. Džakić, “Soil-structure interaction effects on seismic behaviour of reinforced concrete frames,” in International Conference on Earthquake Engineering , Skopje, 2013 | |
dcterms.references | A. Bakhshi and M. Ansari, “Development of seismic fragility curves for reinforced concrete tall buildings,” in Proceedings of the International Conference on Structural Dynamic , EURODYN, 2014. | |
dcterms.references | M. . Akhoondi and F. Behnamfar, “Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters,” Soil Dynamics and Earthquake Engineering, vol. 143, Apr. 2021, doi: 10.1016/j.soildyn.2021.106609. | |
dcterms.references | A. Anvarsamarin, F. . ofooei, and M. Nekooei, “Soil-Structure Interaction Effect on Fragility Curve of 3D Models of Concrete Moment- esisting Buildings,” Shock and Vibration, vol. 2018, 2018, doi: 10.1155/2018/7270137 | |
dcterms.references | I. Oz, S. M. Senel, M. alanci, and A. Kalkan, “Effect of soil-structure interaction on the seismic response of existing low and mid-rise C buildings,” Applied Sciences (Switzerland), vol. 10, no. 23, pp. 1–21, Dec. 2020, doi: 10.3390/app10238357 | |
dcterms.references | . Tahghighi and A. Mohammadi, “Numerical Evaluation of Soil-Structure Interaction Effects on the Seismic erformance and Vulnerability of einforced Concrete Buildings,” International Journal of Geomechanics, vol. 20, no. 6, 2020, doi: 10.1061/(ASCE)GM.1943-5622.0001651. | |
dcterms.references | D. itilakis and C. etridis, “Fragility curves for existing reinforced concrete buildings, including soil–structure interaction and site amplification effects,” Eng Struct, vol. 269, Oct. 2022, doi: 10.1016/j.engstruct.2022.114733 | |
dcterms.references | M. V. Requena-Garcia-Cruz, R. Bento, P. Durand-Neyra, and A. Morales-Esteban, “Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise C buildings in isbon,” Structures, vol. 38, pp. 599–617, Apr. 2022, doi: 10.1016/j.istruc.2022.02.024. | |
dcterms.references | S. Kechidi, A. Colaço, . Alves Costa, J. M. Castro, and M. Marques, “Modelling of soil structure interaction in OpenSees: A practical approach for performance-based seismic design,” Structures, vol. 30, pp. 75–88, Apr. 2021, doi: 10.1016/j.istruc.2021.01.006 | |
dcterms.references | S. Carbonari, F. Dezi, and G. eoni, “Nonlinear seismic behaviour of wall-frame dual systems accounting for soil-structure interaction,” Earthq Eng Struct Dyn, vol. 41, no. 12, pp. 1651–1672, Oct. 2012, doi: 10.1002/eqe.1195. | |
dcterms.references | S. Carbonari, F. Dezi, and G. eoni, “ inear soil-structure interaction of coupled wall-frame structures on pile foundations,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 9, pp. 1296–1309, Sep. 2011, doi: 10.1016/j.soildyn.2011.05.008 | |
dcterms.references | F. Mckenna, M. . Scott, and G. . Fenves, “Nonlinear Finite-Element Analysis Software Architecture sing Object Composition,” Journal of Computing in Civil Engineering, vol. 24, pp. 95–107, 2010, doi: 10.1061/ASCECP.1943-5487.0000002 | |
dcterms.references | J. P. Wolf, Foundation Vibration Analysis Using Simple Physical Models. 1994. Accessed: Jun. 11, 2023. [Online]. Available: https://books.google.com.co/books?hl=es&lr=&id=fjF dMkSs18C&oi=fnd&pg=PT24&ots=g_4YmvOI89&sig=i5qZkEeo_V6A2ywgo8WQennf vmg&redir_esc=y#v=onepage&q&f=false | |
dcterms.references | Servicio Geológico Colombiano, Modelo Nacional de Amenaza Sísmica para Colombia. Servicio Geológico Colombiano, 2020. doi: 10.32685/9789585279469. | |
dcterms.references | J. . Chavez, “Overview of the Current Seismic Codes in Central and South America,” Bulletin of IISEE, vol. 46, pp. 153–160, 2012. | |
dcterms.references | A. Ghobarah, “Seismic assessment of existing C structures Seismic behaviour of end-plate connections View project,” Progress in Structural Engineering and Materials, vol. 2, pp. 60–71, 2000, doi: 10.1002/(SICI)1528-2716(200001/03)2:13.0.CO;2-O. | |
dcterms.references | S. Cutcliffe, “On shaky ground: A history of earthquake resistant building design codes and safety standards in the nited States in the twentieth century,” Bull Sci Technol Soc, vol. 16, no. 6, pp. 311–327, 1996. | |
dcterms.references | S. Cutcliffe, “Earthquake resistant building design codes and safety standards: The California experience,” GeoJournal, vol. 51, pp. 259–262, 2000. | |
dcterms.references | D. Contreras, “ opayán, the white city in Colombia, 5 years after the earthquake,” 2 1 , doi: 10.13140/RG.2.2.23633.99687. | |
dcterms.references | O. Cardona, G. Wilches-Chaux, X. García, E. Mansilla, F. Ramírez, and M. Marulanda, “Estudio Sobre Desastres Ocurridos En Colombia: Estimación de Pérdidas y Cuantificación de Costos,” 2 . | |
dcterms.references | AIS, “Normas Colombianas de Diseño y Construcción Sismo esistente,” 1 . | |
dcterms.references | AIS, “ eglamento Colombiano de Construcción Sismo esistente,” 2 10 | |
dcterms.references | . E. García, “Desarrollo de la normativa sismo resistente colombiana en los años desde su primera expedición 1,” Revista de Ingeniería, no. 41, pp. 71–77, Jul. 2014, doi: 10.16924/riua.v0i41.785 | |
dcterms.references | I. Iervolino, “ hat seismic risk do we design for when we design buildings?,” in Geotechnical, Geological and Earthquake Engineering, vol. 46, Springer Netherlands, 2018, pp. 583–602. doi: 10.1007/978-3-319-75741-4_25. | |
dcterms.references | S. . Jeong, A. M. Mwafy, and A. S. Elnashai, “ robabilistic seismic performance assessment of code-compliant multi-story C buildings,” Eng Struct, vol. 34, pp. 527–537, Jan. 2012, doi: 10.1016/j.engstruct.2011.10.019 | |
dcterms.references | N. . Sinković, M. Brozovič, and M. Dolšek, “ isk-based seismic design for collapse safety,” Earthq Eng Struct Dyn, vol. 45, no. 9, pp. 1451–1471, Jul. 2016, doi: 10.1002/eqe.2717. | |
dcterms.references | J. Carrillo, A. Rubiano, J. Carrillo, J. Blandón-Valencia, and A. ubiano, “A review of conceptual transparency in S and Colombian seismic design building codes.,” Ingeniería e Investigación, vol. 33, no. 2, pp. 24–29, 2014, [Online]. Available: https://www.researchgate.net/publication/255908669 | |
dcterms.references | CEN, “Eurocode , design of structures for earthquake resistance,” British Standards Institution, 2004. [Online]. Available: https://eurocodes.jrc.ec.europa.eu/EN Eurocodes/eurocode-8-design-structures-earthquake-resistance | |
dcterms.references | Ministerio delle Infrastruture e dei Transporti, Norme tecniche per le costruzioni. Italy, 2018 | |
dcterms.references | C. A. Goulet et al., “Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building - From seismic hazard to collapse safety and economic losses,” Earthq Eng Struct Dyn, vol. 36, no. 13, pp. 1973–1997, Oct. 2007, doi: 10.1002/eqe.694. | |
dcterms.references | B. . Ellingwood, O. C. Celik, and K. Kinali, “Fragility assessment of building structural systems in Mid-America,” Earthq Eng Struct Dyn, vol. 36, no. 13, pp. 1935–1952, Oct. 2007, doi: 10.1002/eqe.693. | |
dcterms.references | C. A. Arteta et al., “ esponse of mid-rise reinforced concrete frame buildings to the 2017 uebla earthquake,” Earthquake Spectra, vol. 35, no. 4. Earthquake Engineering Research Institute, pp. 1763–1793, 2019. doi: 10.1193/061218EQS144M. | |
dcterms.references | Y. E. Ibrahim and M. M. El-Shami, “Seismic fragility curves for mid-rise reinforced concrete frames in Kingdom of Saudi Arabia,” IES Journal Part A: Civil and Structural Engineering, vol. 4, no. 4, pp. 213–223, Nov. 2011, doi: 10.1080/19373260.2011.609325. | |
dcterms.references | C. B. Haselton, A. B. iel, G. G. Deierlein, B. S. Dean, and J. . Chou, “Seismic Collapse Safety of einforced Concrete Buildings. I: Assessment of Ductile Moment Frames,” Journal of Structural Engineering, vol. 137, no. 4, pp. 481–491, 2011, doi: 10.1061/(ASCE)ST.1943-541X.0000318. | |
dcterms.references | G. Camata et al., “ intc project: Nonlinear dynamic analyses of Italian code-conforming reinforced concrete buildings for risk of collapse assessment,” in 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, National Technical University of Athens, 2017, pp. 1474–1485. doi: 10.7712/120117.5507.17050. | |
dcterms.references | . Macedo and J. M. Castro, “Collapse performance assessment of steel moment frames designed to Eurocode ,” Eng Fail Anal, vol. 126, p. 105445, Aug. 2021, doi: 10.1016/j.engfailanal.2021.105445. | |
dcterms.references | NE , “Evaluation of the FEMA -695 Methodology for Quantification of Building Seismic erformance Factors,” 2 1 . | |
dcterms.references | A. Suzuki and I. Iervolino, “Seismic Fragility of Code-conforming Italian Buildings Based on SDoF Approximation,” Journal of Earthquake Engineering, vol. 25, pp. 2873–2907, 2021, doi: 10.1080/13632469.2019.1657989. | |
dcterms.references | CSI, “ETABS-Three-Dimensional Analysis of Building Systems, sers’ Manual,” Computers and Structures Inc., Berkeley, California, 1997 | |
dcterms.references | D. Vamvatsikos and C. A. Cornell, “Applied incremental dynamic analysis,” Earthquake Spectra, vol. 20, no. 2, pp. 523–553, 2004, doi: 10.1193/1.1737737. | |
dcterms.references | DANE, “Censo Nacional de oblación y Vivienda,” www.dane.gov.co. | |
dcterms.references | DANE, “ IB por departamento,” https://www.dane.gov.co/index.php/estadisticas-por tema/cuentas-nacionales/cuentas-nacionales-departamentales. | |
dcterms.references | DANE, “Censo Nacional de oblación y Vivienda,” www.dane.gov.co | |
dcterms.references | ] DANE, “ obreza y Desigualdad,” https://www.dane.gov.co/index.php/estadisticas-por tema/pobreza-y-condiciones-de-vida/pobreza-moneta | |
dcterms.references | DANE, “Vivienda VIS y NO VIS - istóricos,” https://www.dane.gov.co/index.php/estadisticas-por-tema/construccion/vivienda-vis-y-no vis/vivienda-vis-y-no-vis. | |
dcterms.references | Servicio Geológico Colombiano, “Amenaza Sísmica.” | |
dcterms.references | O. Arroyo, J. Barros, and . amos, “Comparison of the reinforced-concrete seismic provisions of the design codes of the United States, Colombia, and Ecuador for low-riseframes,” Earthquake Spectra, vol. 34, no. 2, pp. 441–458, May 2018, doi: 10.1193/102116EQS178EP. | |
dcterms.references | ASTM, “Standard specification for low-alloy steel deformed and plain bars for concrete reinforcement.,” A706/A706M-09b, 2009. | |
dcterms.references | A. Neuenhofer and F. C. Filippou, “Geometrically Nonlinear Flexibility-Based Frame Finite Element,” Journal of Structural Engineering, vol. 124, no. 6, pp. 704–711, 1998. | |
dcterms.references | J. B. Mander, M. J. N. riestley, and . ark, “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, 1988 | |
dcterms.references | J. Coleman and E. Spacone, “ ocalization Issues in Force-Based Frame Elements,” Journal of Structural Engineering, vol. 127, no. 11, pp. 1257–1265, Nov. 2001, doi: 10.1061/(asce)0733-9445(2001)127:11(1257). | |
dcterms.references | J. Carrillo, . ozano, and C. Arteta, “Mechanical properties of steel reinforcing bars for concrete structures in central Colombia,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101858. | |
dcterms.references | P. Taghvaei, “Evaluating the Functional ecovery erformance of Modern esidential Tall einforced Concrete Shear all Buildings in Metro Vancouver,” 2 1 . | |
dcterms.references | M. A. Bakkar, . Saha, and D. Das, “ ow Cycle Fatigue erformance and Failure Analysis of Reinforcing Bar,” Metals and Materials International, vol. 27, no. 12, pp. 4952–4966, Dec. 2021, doi: 10.1007/s12540-020-00839-x. | |
dcterms.references | M. Ajmal, “Seismic evaluation and retrofit assessment of multi storey structures using pushover analysis ( OA),” Dhahran, 2 12 | |
dcterms.references | F. Khoshnoudian, S. Mestri, and F. Abedinik, “ roposal of lateral load pattern for pushover analysis of C buildings,” Computational Methods in Civil Engineering, vol. 2, no. 2, pp. 169–183, 2011, [Online]. Available: http://research.guilan.ac.ir/cmce | |
dcterms.references | G. G. Deierlein, A. M. Reinhorn, and M. R. Willford, Nonlinear Structural Analysis For Seismic Design: A Guide for Practicing Engineers. NEHRP Seismic Design Technical Brief No. 1, 2010. | |
dcterms.references | J. . Baker, “Efficient analytical fragility function fitting using dynamic structural analysis,” Earthquake Spectra, vol. 31, no. 1, pp. 579–599, Feb. 2015, doi: 10.1193/021113EQS025M. | |
dcterms.references | D. Vamvatsikos and C. Allin Cornell, “Incremental dynamic analysis,” Earthq Eng Struct Dyn, vol. 31, no. 3, pp. 491–514, 2002, doi: 10.1002/eqe.141. | |
dcterms.references | A O, “ an American ealth Organization ( A O).” | |
dcterms.references | FEMA, “Earthquake- esistant Design Concepts,” ashington, D.C, 2 1 . Online . Available: www.bssconline.org | |
dcterms.references | S. Karafagka, S. Fotopoulou, and D. itilakis, “Fragility curves of non-ductile RC frame buildings on saturated soils including liquefaction effects and soil–structure interaction,” Bulletin of Earthquake Engineering, vol. 19, no. 15, pp. 6443–6468, Dec. 2021, doi: 10.1007/s10518-021-01081-5. | |
dcterms.references | NIST, “Soil-Structure Interaction for Building Structures,” Sep. 2 12. | |
dcterms.references | . C. Jennings and J. Bielak, “Dynamics of Building-Soil Interaction,” Bulletin of tile Seismological Society of America, vol. 63, no. 1, pp. 9–48, 1973 | |
dcterms.references | J. . olf, “Soil-structure-interaction analysis in time domain,” Nuclear Engineering and Design, vol. 111, no. 3, pp. 381–393, Feb. 1989, doi: 10.1016/0029-5493(89)90249-5 | |
dcterms.references | E. Tapia-Hernández, Y. De Jesús-Martínez, and . F. Sola, “Dynamic soil-structure interaction of ductile steel frames in soft soils,” Advanced Steel Construction, vol. 13, no. 4, pp. 361–377, 2017, doi: 10.18057/IJASC.2017.13.4.3. | |
dcterms.references | D. Forcellini, “Seismic fragility of tall buildings considering soil structure interaction (SSI) effects,” Structures, vol. 45, pp. 999–1011, Nov. 2022, doi: 10.1016/j.istruc.2022.09.070. | |
dcterms.references | orld ousing Encyclopedia, “ C Structural all Building.” Accessed: Jun. 1 , 2 2 . [Online]. Available: http://db.world-housing.net/building/109 | |
dcterms.references | J. Carrillo, E. Cubillos, and P. F. Parra, “Modeling the seismic response of thin concrete walls using the non-linear Beam-Truss Model,” Journal of Building Engineering, vol. 52, p. 104424, Jul. 2022, doi: 10.1016/J.JOBE.2022.104424 | |
dcterms.references | ] . G. Quiroz and Y. Maruyama, “Assessment of seismic performance of high-rise thin RC wall buildings in ima, eru using fragility functions,” Journal of Disaster Research, vol. 9, no. 6, pp. 1026–1031, 2014, doi: 10.20965/jdr.2014.p1026 | |
dcterms.references | D. Ugalde and D. Lopez-Garcia, “Analysis of the seismic capacity of Chilean residential C shear wall buildings,” Journal of Building Engineering, vol. 31, Sep. 2020, doi: 10.1016/j.jobe.2020.101369 | |
dcterms.references | J. Velásquez, S. ópez, C. odríguez, and J. Acero, “Seismic damage assessment for thin walled reinforced concrete buildings in urban areas in eru,” in 11th National Conference on Earthquake Engineering 2018, NCEE 2018: Integrating Science, Engineering, and Policy, 2018, pp. 4083–4093 | |
dcterms.references | ] M. G. C. Santos and M. . S. Corrêa, “Analysis of the effects of soil-structure interaction in reinforced concrete wall buildings on shallow foundation,” Revista IBRACON de Estruturas e Materiais, vol. 11, no. 5, pp. 1076–1109, Oct. 2018, doi: 10.1590/s1983- 41952018000500010. | |
dcterms.references | M. Á. Rodríguez Gutiérrez, C. Magna-Verdugo, and J. A. Abell, “Influence of Soil Structure-Interaction in Shear-wall C Buildings Fragility Curves,” in Eleventh U.S. National Conference on Earthquake Engineering, 2018. [Online]. Available: https://www.researchgate.net/publication/326881587 | |
dcterms.references | M. Juárez-Camarena, G. Auvinet-Guichard, and E. Méndez-Sánchez, “Geotechnical Zoning of Mexico Valley Subsoil,” Ingeniería, Investigación y Tecnología, vol. 17, no. 3, pp. 297–308, Jul. 2016, doi: 10.1016/j.riit.2016.07.001. | |
dcterms.references | J. Avilés and L. E. Pérez- ocha, “ se of global ductility for design of structure-foundation systems,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 1018–1026, Jul. 2011, doi: 10.1016/j.soildyn.2011.03.008. | |
dcterms.references | G. Díaz-Fañas, S. Nikolaou, O.-J. Ktenidou, E. Garini, G. Gazetas, and . Ma, “Mexico City 1 5 and 2 17 Earthquakes: Soil esponse and Code essons,” in Geotechnical Engineering in the XXI Century: Lessons learned and future challenges, 2019, pp. 1991– 2000. doi: 10.3233/STAL190259 | |
dcterms.references | orld ousing Encyclopedia, “Ductile C Frames.” Accessed: Jun. 1 , 2 2 . Online . Available: http://db.world-housing.net/building/201 | |
dcterms.references | K. Kolozvari, K. Orakcal, and J. . allace, “New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of C walls and columns,” Comput Struct, vol. 196, pp. 246–262, Feb. 2018, doi: 10.1016/J.COMPSTRUC.2017.10.010 | |
dcterms.references | K. Terzaghi and R. B. Peck, Mecánica de Suelos en la Ingeniería Práctica, 2nd ed. EL ATENEO, 1973. | |
dcterms.references | H. G. Poulos and E. H. Davis, Pile Foundation Analysis and Design_Poulos_Davis_1980. 1980 | |
dcterms.references | ] J. B. ansen, “A General Formula for Bearing Capacity,” Ingeniøren, International Edition, vol. 5, pp. 38–46, 1961. | |
dcterms.references | . G. McClarren, “Gauss Quadrature and Multi-dimensional Integrals,” Computational Nuclear Engineering and Radiological Science Using Python, pp. 287–299, 2018, doi: 10.1016/B978-0-12-812253-2.00018-2 | |
dcterms.references | B. D. Scott, . ark, and M. J. N. riestley, “Stress-Strain Behavior of Concrete Confined by Overlapping oops at ow and igh Strain ates,” Journal Proceedings, vol. 79, no. 1, pp. 13–27, Jan. 1982, doi: 10.14359/10875 | |
dcterms.references | . amos and M. A. ube, “Seismic response of reinforced concrete wall buildings with nonlinear coupling slabs,” Eng Struct, vol. 234, May 2021, doi: 10.1016/j.engstruct.2021.111888 | |
dcterms.references | “ ocalization issues in force-based frame elements,” Journal of Structural Engineering, vol. 127, no. 11, pp. 1257–1265, 2001. | |
dcterms.references | A. Toro, S. Ibarguen, A. . Ortiz, and J. Carrillo, “Caracterización de la Incertidumbre Asociada a las Expresiones Usadas Para Estimar el Módulo de Elasticidad del Concreto | |
dcterms.references | Producido en Colombia - Uncertainty Quantification for the Elastic Modulus of the Concrete roduced in Colombia,” in Jornadas XIX Geotécnicas, XXI Estructurales, Aug. 2021. | |
dcterms.references | A. Vulcano, V. Bertero, and V. Colotti, “Analytical Modeling of /C Structural alls,” in Proceedings of Ninth World Conference on Earthquale Engineering, Tokyo-Kyoto, Aug. 1988. | |
dcterms.references | J. Carrillo, C. Diaz, and C. A. Arteta, “Tensile mechanical properties of the electro-welded wire meshes available in Bogotá Colombia,” Constr Build Mater, vol. 195, pp. 352–362, Jan. 2019, doi: 10.1016/j.conbuildmat.2018.11.096 | |
dcterms.references | ] J. Moehle, “Seismic Design of einforced Concrete Buildings, 2 1 ,” 2 15 | |
dcterms.references | E. Winkler, Die Lehre von der Elastizität und Festigkeit. Prague, 1867. Accessed: Jun. 13, 2023. [Online]. Available: https://books.google.com.co/books?id=25E5AAAAcAAJ&redir_esc=y | |
dcterms.references | ] D. Z. Yankelevsky, M. Eisenberger, and M. A. Adin, “Analysis of Beams on Nonlinear inkler Foundation,” Comput Struct, vol. 31, no. 2, pp. 287–292, 1989 | |
dcterms.references | . . Boulanger, C. J. Curras, D. . ilson, and A. Abghari, “Appendix: Equations and Example esponses for the ySimple1 Material,” 2 . | |
dcterms.references | . . Boulanger, C. J. Curras, D. . ilson, and A. Abghari, “Appendix: Equations and Example esponses for the TzSimple1 Material,” 2 . | |
dcterms.references | R. W. Boulanger, C. J. Curras, D. W. Wilson, and A. Abghari, “Appendix: Equations and Example esponses for the QzSimple1 Material,” 2 . | |
dcterms.references | . Matlock, “Correlations for Design of aterally oaded iles in Soft Clay,” in Offshore Technology Conference, Texas, 1970. | |
dcterms.references | G. G. Meyerhof, “The ltimate Bearing Capacity of Foundations on Slopes,” in 4th ICSMFE, London, 1957, pp. 384–386. | |
dcterms.references | C. arden, “Numerical modeling of the nonlinear cyclic response of shallow foundations,” University of California, 2005. [Online]. Available: https://www.researchgate.net/publication/35229284 | |
dcterms.references | American etroleum Institute (A I), “A I A 2: ecommended ractice for lanning, Designing and Constructing Fixed Offshore Platforms - orking Stress Design,” Washington, D.C, 2010 | |
dcterms.references | M. Suarez, “Modelos de Comportamiento Dinámico para las Arcillas de Bogotá,” Universidad de Los Andes, Bogotá, 2004. | |
dcterms.references | . V. hitman, “Earthquake Engineering,” Encyclopedia of Physical Science and Technology, pp. 717–729, Jan. 2003, doi: 10.1016/B0-12-227410-5/00877-2. | |
dcterms.references | ] M. az and Y. . Kim, “Structural Dynamics,” 2 1 , doi: 1 .1 7/ 7 -3-319-94743-3. | |
dcterms.references | C. A. Arteta and N. A. Abrahamson, “Conditional Scenario Spectra (CSS) for azard Consistent Analysis of Engineering Systems,” https://doi.org/10.1193/102116EQS176M, vol. 35, no. 2, pp. 737–757, May 2019, doi: 10.1193/102116EQS176M. | |
dcterms.references | Federal Emergency Management Agency (FEMA), “ azus M 2.1 Technical Manual,” 2003. [Online]. Available: www.msc.fema.gov | |
dcterms.references | J. . Baker, “Efficient analytical fragility function fitting using dynamic structural analysis,” Earthquake Spectra, vol. 31, no. 1, pp. 579–599, Feb. 2015, doi: 10.1193/021113EQS025M. | |
dcterms.references | NE , “Soil-Structure Interaction for Building Structures,” 2 12. | |
dcterms.references | ] L. Wang and T. Ishihara, “New p-y model for seismic loading prediction of pile foundations in non-liquefiable and liquefiable soils considering modulus reduction and damping curves,” Soils and Foundations, vol. 62, no. 5, Oct. 2022, doi: 10.1016/J.SANDF.2022.101201 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |