Mostrar el registro sencillo del ítem
Bioactivity evaluation of Streptomyces Pigments from Arauca and Guaviare rivers with potential in the cosmetic Industry
dc.contributor.advisor | Díaz Barrera, Luis Eduardo | |
dc.contributor.author | Silva Arias, Laura Daniela | |
dc.date.accessioned | 2023-05-10T14:04:01Z | |
dc.date.available | 2023-05-10T14:04:01Z | |
dc.date.issued | 2023-02-21 | |
dc.identifier.uri | http://hdl.handle.net/10818/55257 | |
dc.description | 107 páginas | es_CO |
dc.description.abstract | Personal care is one of the essential activities for human beings today. Cosmetics are mixtures of multiple ingredients, the purpose of which is to provide a benefit on the skin. This industry has a turnover of more than 429.8 million annually and a growing trend of 4.6%. This behavior has led to the inclusion of a new segment known as natural cosmetics, whose purpose is to promote the use of natural and more environmentally friendly ingredients. One of the most controversial ingredients in cosmetics is synthetic dyes and pigments. These compounds have been exposed in the scientific community with great concern for contributing to the generation of free radicals, their high content of heavy metals, and being precursors of hormonal disorders and other degenerative diseases. Consequently, the search for more eco-friendly and healthier pigment sources that are easy to handle and feasible in industrial production has been encouraged. One promising source of natural pigments is from microorganisms. The most representative genus of this type of secondary metabolite is Streptomyces. These actinomycetes are of great interest to the many biotechnological products currently marketed worldwide. This research aimed to evaluate the bioactivities (antimicrobial, antioxidant, cytotoxic, antiinflammatory, tyrosinase inhibition, and anti-acne activity) of Streptomyces strains from Colombian rivers that showed coloration in culture and antifungal activity in other studies. Additionally, identify which variables can be optimized in the bioproduction of the pigment, and how its bioactivity behaves, to validate whether this pigment can be considered as a possible raw material for the cosmetic industry. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Bioactivity evaluation of Streptomyces Pigments from Arauca and Guaviare rivers with potential in the cosmetic Industry | es_CO |
dc.type | master thesis | es_CO |
dc.identifier.local | 291678 | |
dc.identifier.local | TE12271 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Cosméticos | |
dc.subject.armarc | Belleza personal | |
dc.subject.armarc | Materia médica vegetal | |
dc.subject.armarc | Administración industrial | |
dcterms.references | D. K. Saini, S. Pabbi, and P. Shukla, “Cyanobacterial pigments: Perspectives and biotechnological approaches,” Food and Chemical Toxicology, vol. 120, pp. 616– 624, Oct. 2018, doi: 10.1016/j.fct.2018.08.002. | |
dcterms.references | R. S. Parmar and C. Singh, “A comprehensive study of eco-friendly natural pigment and its applications,” Biochem Biophys Rep, 2018, doi: 10.1016/j.bbrep.2017.11.002. | |
dcterms.references | A. GOSWAMI and M. K. PURKAIT, “kaolin as adsorbent for color removal,” in Sorption processes and pollution: Conventional and non-conventional sorbents for pollutant removal from wastemasters, P.-M. B. Grégorio Crini, Ed. Franche-Comté: Presses Univ, 2011, pp. 215–216 | |
dcterms.references | Technavio, “Global Natural Colorants Market 2018-2022,” 2018. https://www.technavio.com/report/global-natural-colorants-market-analysis-share 2018 (accessed Oct. 18, 2019) | |
dcterms.references | J. P. Ayala, María Elena, Díaz-Castillo, H. Jhoana, M. Giraldo, and J. F. Fernández Rodríguez, “Análisis de la competitividad del sector de cosméticos e ingredientes naturales,” Bogotá D.C-Colombia, 2018. [Online]. Available: www.safeplus.com.co | |
dcterms.references | P. Manivasagan, J. Venkatesan, K. Sivakumar, and S. K. Kim, “Pharmaceutically active secondary metabolites of marine actinobacteria,” Microbiological Research, vol. 169, no. 4. pp. 262–278, Apr. 2014. doi: 10.1016/j.micres.2013.07.014 | |
dcterms.references | N. Z. Y. Wan Azlina Ahmad, Wan Yunus Wan Ahmad, Zainul Akmar Zakaria, “Natural Pigment,” in Application of Bacterial Pigments as Colorant, Springer, 2012, p. 7. | |
dcterms.references | H. O. Boo, S. J. Hwang, C. S. Bae, S. H. Park, B. G. Heo, and S. Gorinstein, “Extraction and characterization of some natural plant pigments,” Ind Crops Prod, vol. 40, no. 1, pp. 129–135, Nov. 2012, doi: 10.1016/j.indcrop.2012.02.042. | |
dcterms.references | N. Z. Y. Wan Azlina Ahmad, Wan Yunus Wan Ahmad, Zainul Akmar Zakaria, “Microbial Pigments,” in Application of Bacterial Pigments as Colorant, Springer, 2012, pp. 7–13. | |
dcterms.references | F. C. Lopes, D. M. Tichota, J. Q. Pereira, J. Segalin, A. de Oliveira Rios, and A. Brandelli, “Pigment production by filamentous fungi on agro-industrial byproducts: An eco-friendly alternative,” Appl Biochem Biotechnol, vol. 171, no. 3, pp. 616–625, Oct. 2013, doi: 10.1007/s12010-013-0392-y | |
dcterms.references | ONUDI- Safe+, “Análisis de la competitividad del sector cosméticos e ingredientes naturales,” Programa Safe+ | Onudi Colombia, 2015. [Online]. Available: https://issuu.com/safeplus/docs/analisis_competitividad | |
dcterms.references | M. Duque, “Abundancia y diversidad de las comunidades de Streptomyces en seis coberturas vegetales de la franja cafetera del Quindío,” Acta Biolo Colomb, vol. 5, no. 1, pp. 59–69, 2000. | |
dcterms.references | PORTAFOLIO, “Bioexpo cerró negocios verdes por US$486.300,” 2019. https://www.portafolio.co/negocios/que-son-los-verdes-y-cuantos-empleos genera-en-el-pais-535667 (accessed Sep. 09, 2020 | |
dcterms.references | Procolombia, “Ingredientes naturales colombianos con los ojos puestos en conquistar el mercado,” 2019. | |
dcterms.references | N. E.-A. El-Naggar and S. M. El-Ewasy, “Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H,” Sci Rep, vol. 7, 2017, doi: 10.1038/srep42129. | |
dcterms.references | C. Li, C. Ji, and B. Tang, “Purification, characterisation and biological activity of melanin from Streptomyces sp,” FEMS Microbiol Lett, vol. 365, no. 19, 2018 | |
dcterms.references | P. Sharma, T. A. Singh, B. Bharat, S. Bhasin, and H. A. Modi, “Approach towards different fermentative techniques for the production of bioactive actinobacterial melanin,” Beni Suef Univ J Basic Appl Sci, vol. 7, no. 4, pp. 695–700, Dec. 2018, doi: 10.1016/j.bjbas.2018.08.002. | |
dcterms.references | C. K. Venil, Z. A. Zakaria, and W. A. Ahmad, “Bacterial pigments and their applications,” Process Biochemistry, vol. 48, no. 7, pp. 1065–1079, Jul. 2013, doi: 10.1016/J.PROCBIO.2013.06.006. | |
dcterms.references | H. Langhals, “Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger.,” Angewandte Chemie International Edition, vol. 43, no. 40, pp. 5291–5292, Oct. 2004, doi: 10.1002/ANIE.200385122. | |
dcterms.references | S. Q. Lomax and T. Learner, “A Review of the Classes, Structures, and Methods of Analysis of Synthetic Organic Pigments,” http://dx.doi.org/10.1179/019713606806112540, vol. 45, no. 2, pp. 107–125, 2013, doi: 10.1179/019713606806112540 | |
dcterms.references | L. V. de Araujo, F. Abreu, U. Lins, L. M. de M. S. Anna, M. Nitschke, and D. M. G. Freire, “Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion,” Food Research International, vol. 44, no. 1, pp. 481–488, Jan. 2011, doi: 10.1016/J.FOODRES.2010.09.002 | |
dcterms.references | D. Bakkiyaraj and S. T. K. Pandian, “In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms,” Biofouling, vol. 26, no. 6, pp. 711–717, Aug. 2010, doi: 10.1080/08927014.2010.511200 | |
dcterms.references | V. Sharma, H. T. McKone, and P. G. Markow, “A global perspective on the history, use, and identification of synthetic food dyes,” J Chem Educ, vol. 88, no. 1, pp. 24– 28, Jan. 2011, doi: 10.1021/ED100545V | |
dcterms.references | Food Dyes A Rainbow of Risks | |
dcterms.references | D. R. Pedro, V. Vega, M. En, C. Bernardo, and L. Florentino, Toxicologia de alimentos. 2000. | |
dcterms.references | P. K. Mohan, G. Nakhla, and E. K. Yanful, “Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions,” Water Res, vol. 40, no. 3, pp. 533–540, Feb. 2006, doi: 10.1016/J.WATRES.2005.11.030 | |
dcterms.references | F. Md, “Biosurfactant: Production and Application,” J Pet Environ Biotechnol, vol. 03, no. 04, 2012, doi: 10.4172/2157-7463.1000124. | |
dcterms.references | J. B. Kristensen, R. L. Meyer, B. S. Laursen, S. Shipovskov, F. Besenbacher, and C. H. Poulsen, “Antifouling enzymes and the biochemistry of marine settlement,” Biotechnol Adv, vol. 26, no. 5, pp. 471–481, Sep. 2008, doi: 10.1016/J.BIOTECHADV.2008.05.005. | |
dcterms.references | I. Omae, “General aspects of tin-free antifouling paints,” Chem Rev, vol. 103, no. 9, pp. 3431–3448, Sep. 2003, doi: 10.1021/CR030669Z. | |
dcterms.references | H. S. Tuli, P. Chaudhary, V. Beniwal, and A. K. Sharma, “Microbial pigments as natural color sources: current trends and future perspectives,” J Food Sci Technol, vol. 52, no. 8, p. 4669, Aug. 2015, doi: 10.1007/S13197-014-1601-6 | |
dcterms.references | P. Nithyanand, R. Thenmozhi, J. Rathna, S. Karutha Pandian, and U. Römling, “Inhibition of Streptococcus pyogenes biofilm formation by coral-associated actinomycetes,” Curr Microbiol, vol. 60, no. 6, pp. 454–460, 2010, doi: 10.1007/S00284-009-9564-Y | |
dcterms.references | K. Page, M. Wilson, and I. P. Parkin, “Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections,” J Mater Chem, vol. 19, no. 23, pp. 3819–3831, Jun. 2009, doi: 10.1039/B818698G | |
dcterms.references | M. M. Müller and R. Hausmann, “Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production,” Applied Microbiology and Biotechnology 2011 91:2, vol. 91, no. 2, pp. 251–264, Jun. 2011, doi: 10.1007/S00253-011-3368-2. | |
dcterms.references | A. F. Braña et al., “Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea,” Microb Ecol, vol. 69, no. 3, pp. 512–524, Apr. 2015, doi: 10.1007/S00248-014-0508-0. | |
dcterms.references | ] M. Harir, H. Bendif, M. Bellahcene, and Z. F. and R. Pogni, “Streptomyces Secondary Metabolites,” Basic Biology and Applications of Actinobacteria, Dec. 2018, doi: 10.5772/INTECHOPEN.79890. | |
dcterms.references | S. Siddharth and R. R. Vittal, “Evaluation of Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Activities of Partially Purified Volatile Metabolites of Marine Streptomyces sp.S2A,” Microorganisms, vol. 6, no. 3, Jul. 2018, doi: 10.3390/MICROORGANISMS6030072. | |
dcterms.references | A. S. Azman, C. I. Mawang, and S. Abubakar, “Bacterial pigments: The bioactivities and as an alternative for therapeutic applications,” Nat Prod Commun, vol. 13, no. 12, pp. 1747–1754, Dec. 2018, doi: 10.1177/1934578X1801301240. | |
dcterms.references | M. P. Narsing Rao, M. Xiao, and W. J. Li, “Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications,” Front Microbiol, vol. 8, no. JUN, p. 1113, Jun. 2017, doi: 10.3389/FMICB.2017.01113. | |
dcterms.references | N. N. Gerber and M. P. Lechevalier, “Prodiginine (prodigiosin like) pigments from Streptomyces and other aerobic actinomycetes,” Can J Microbiol, vol. 22, no. 5, pp. 658–667, 1976, doi: 10.1139/m76-097. | |
dcterms.references | P. Sivaperumal, K. Kamala, R. Rajaram, and S. S. Mishra, “Melanin from marine Streptomyces sp. (MVCS13) with potential effect against ornamental fish pathogens of Carassius auratus (Linnaeus, 1758),” Biocatal Agric Biotechnol, vol. 3, no. 4, pp. 134–141, Oct. 2014, doi: 10.1016/J.BCAB.2014.09.007. | |
dcterms.references | V. Vasanthabharathi, R. Lakshminarayanan, and S. Jayalakshmi, “Melanin production from marine Streptomyces,” Afr J Biotechnol, vol. 10, no. 54, pp. 11224– 11234, 2011, doi: 10.5897/AJB11.296. | |
dcterms.references | V. Karuppiah, C. Aarthi, K. Sivakumar, and L. Kannan, “Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4,” Asian Pac J Trop Biomed, vol. 3, no. 8, pp. 650–656, Aug. 2013, doi: 10.1016/S2221- 1691(13)60131-8. | |
dcterms.references | S. Dharmaraj, B. Ashokkumar, and K. Dhevendaran, “Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa,” Food Research International, vol. 42, no. 4, pp. 487–492, May 2009, doi: 10.1016/J.FOODRES.2009.02.006 | |
dcterms.references | R. R. King, C. H. Lawrence, and L. A. Calhoun, “Isolation and Identification of Pigments Generated in Vitro by Streptomyces acidiscabies,” J Agric Food Chem, vol. 44, no. 9, pp. 2849–2851, 1996, doi: 10.1021/jf950766w | |
dcterms.references | ] S. Azimi, M. Baserisalehi, and N. Bahador, “Evaluation of antimicrobial pigment produced by Streptomyces coeruleorubidus,” Nature Environment and Pollution Technology, vol. 13, no. 3, pp. 641–644, 2014, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925355676&partnerID=40&md5=c5710bdc4dbab9e5097d053c44a63a9c | |
dcterms.references | A. P. G. Soundari, V. M. Mani, V. S. C. Bose, J. Jabastin, and V. B. Priyadarisini, “A preliminary assessment of yellow pigment from streptomyces parvulus C5-5Y,” J Pure Appl Microbiol, vol. 11, no. 1, pp. 197–203, Mar. 2017, doi: 10.22207/JPAM.11.1.25 | |
dcterms.references | A. P. G. Soundari, V. M. Mani, V. S. C. Bose, J. Jabastin, and V. B. Priyadarisini, “A preliminary assessment of yellow pigment from streptomyces parvulus C5-5Y,” J Pure Appl Microbiol, vol. 11, no. 1, pp. 197–203, Mar. 2017, doi: 10.22207/JPAM.11.1.25. | |
dcterms.references | L. Selvameenal, M. Radhakrishnan, and R. Balagurunathan, “Antibiotic Pigment from Desert Soil Actinomycetes; Biological Activity, Purification and Chemical Screening,” Indian J Pharm Sci, vol. 71, no. 5, p. 499, Feb. 2009, doi: 10.4103/0250-474X.58174 | |
dcterms.references | R. Manikkam, G. Venugopal, B. Ramasamy, and V. Kumar, “Effect of critical medium components and culture conditions on antitubercular pigment production from novel Streptomyces sp D25 isolated from Thar desert, Rajasthan,” J Appl Pharm Sci, vol. 5, no. 6, pp. 15–19, 2015, doi: 10.7324/JAPS.2015.50603. | |
dcterms.references | M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, Mar. 2021, doi: 10.1136/BMJ.N71. | |
dcterms.references | G. J. S. X. Y. S. L. Y. C. M. Zhu Honghui, “Streptomyces vietnamensis,” CN20061034149 20060307, 2007 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=1944630 &KC=&FT=E&locale=en_EP | |
dcterms.references | L. I. Meng-xi, H. Hui-bin, L. Jie-yun, C. A. O. Jing-xiao, and Z. Zhen-wang, “Antibacterial Performance of a Streptomyces spectabilis Strain Producing Metacycloprodigiosin,” Curr Microbiol, vol. 78, no. 7, pp. 2569–2576, Jul. 2021, doi: 10.1007/S00284-021-02513-W | |
dcterms.references | M. Vaishnavi et al., “Antibacterial and anti-HIV activity of extracellular pigment from Streptomyces sp. S45 isolated from Sabarimala forest soil, India,” Indian Journal of Experimental Biology (IJEB), vol. 58, no. 12, pp. 861–868, 2020, doi: 10.56042/IJEB.V58I12.44575. | |
dcterms.references | M. Vaishnavi et al., “Antibacterial and anti-HIV activity of extracellular pigment from Streptomyces sp. S45 isolated from Sabarimala forest soil, India,” Indian Journal of Experimental Biology (IJEB), vol. 58, no. 12, pp. 861–868, 2020, doi: 10.56042/IJEB.V58I12.44575. | |
dcterms.references | J. Abraham and R. Chauhan, “Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity,” 3 Biotech, vol. 8, no. 1, Jan. 2018, doi: 10.1007/S13205-017-1044-7. | |
dcterms.references | V. Mohanasrinivasan et al., “Fermentative production of extracellular pigment from Streptomyces coelicolor MSIS1,” Res J Biotechnol, vol. 8, no. 4, pp. 31–41, 2013, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84885046900&partnerID=40&md5=bfa0759acc30457b515e28c5afd38b96 | |
dcterms.references | R. Vijayabharathi et al., “Assessment of resistomycin, as an anticancer compound isolated and characterized from Streptomyces aurantiacus AAA5,” J Microbiol, vol. 49, no. 6, pp. 920–926, Dec. 2011, doi: 10.1007/S12275-011-1260-5. | |
dcterms.references | L. Wang, Y. Li, and Y. Li, “Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL-24,” Int J Biol Macromol, vol. 123, pp. 521–530, 2019, doi: 10.1016/j.ijbiomac.2018.11.061. | |
dcterms.references | N. Stankovic et al., “Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties,” Appl Microbiol Biotechnol, vol. 96, no. 5, pp. 1217–1231, Dec. 2012, doi: 10.1007/S00253-012-4237-3. | |
dcterms.references | N. N. Gerber and M. P. Lechevalier, “Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes,” Can J Microbiol, vol. 22, no. 5, pp. 658–667, 1976, doi: 10.1139/M76-097 | |
dcterms.references | Y. Ohnishi et al., “Structures of grixazone A and B, A-factor-dependent yellow pigments produced under phosphate depletion by Streptomyces griseus,” J Antibiot (Tokyo), vol. 57, no. 3, pp. 218–223, 2004, doi: 10.7164/ANTIBIOTICS.57.218 | |
dcterms.references | J. P. Kaneriya, “Isolation and Screening of Actinomycetes from Umm Jirsan Cave, Saudi Arabia for their Antibacterial Activity,” Biosci Biotechnol Res Commun, vol. 14, no. 1, pp. 351–356, Mar. 2021, doi: 10.21786/BBRC/14.1/50. | |
dcterms.references | R. Manikkam, S. Ponnuswamy, J. Joseph, and V. Kumar, “Antitubercular activity of the pigment from forest soil Streptomyces sp SFA5,” Bangladesh J Pharmacol, vol. 11, no. 1, pp. 138–140, 2016, doi: 10.3329/BJP.V11I1.24238 | |
dcterms.references | C. Ramesh, N. V. Vinithkumar, R. Kirubagaran, C. K. Venil, and L. Dufossé, “Applications of Prodigiosin Extracted from Marine Red Pigmented Bacteria Zooshikella sp. and Actinomycete Streptomyces sp.,” Microorganisms, vol. 8, no. 4, Apr. 2020, doi: 10.3390/MICROORGANISMS8040556. | |
dcterms.references | R. Prasad, V. Sasikala, K. S. Vetrivel, and K. Dharmalingam, “A novel extracellular protein of Streptomyces peucetius binds to daunorubicin but does not inhibit the bioactivity of the antibiotic,” Biochem Biophys Res Commun, vol. 311, no. 2, pp. 460–464, Nov. 2003, doi: 10.1016/J.BBRC.2003.09.229 | |
dcterms.references | Y. Zhu, X. Shang, L. Yang, S. Zheng, K. Liu, and X. Li, “Purification, identification and properties of a new blue pigment produced from Streptomyces sp. A1013Y,” Food Chem, vol. 308, p. 125600, Mar. 2020, doi: 10.1016/J.FOODCHEM.2019.125600 | |
dcterms.references | S. Y. Ahn, S. Jang, P. D. V. N. Sudheer, and K. Y. Choi, “Microbial Production of Melanin Pigments from Caffeic Acid and L-tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli,” Int J Mol Sci, vol. 22, no. 5, pp. 1–15, Mar. 2021, doi: 10.3390/IJMS22052413. | |
dcterms.references | C. Li, C. Ji, and B. Tang, “Purification, characterisation and biological activity of melanin from Streptomyces sp,” FEMS Microbiol Lett, vol. 365, no. 19, pp. 1–8, Oct. 2018, doi: 10.1093/FEMSLE/FNY077 | |
dcterms.references | S. Bayram, C. Dengiz, Y. C. Gerçek, I. Cetin, and M. R. Topcul, “Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49,” Arch Microbiol, vol. 202, no. 9, pp. 2401–2409, Nov. 2020, doi: 10.1007/S00203-020-01956-2 | |
dcterms.references | W. Sajjad, S. Ahmad, I. Aziz, S. S. Azam, F. Hasan, and A. A. Shah, “Antiproliferative, antioxidant and binding mechanism analysis of prodigiosin from newly isolated radio-resistant Streptomyces sp. strain WMA-LM31,” Mol Biol Rep, vol. 45, no. 6, pp. 1787–1798, Dec. 2018, doi: 10.1007/S11033-018-4324-3. | |
dcterms.references | S. Aykul and E. Martinez-Hackert, “Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis,” Anal Biochem, vol. 508, p. 97, Sep. 2016, doi: 10.1016/J.AB.2016.06.025 | |
dcterms.references | K. Prashanthi, S. Suryan, and K. N. Varalakshmi, “In vitro anticancer property of yellow pigment from Streptomyces griseoaurantiacus JUACT 01,” Brazilian Archives of Biology and Technology, vol. 58, no. 6, pp. 869–876, 2015, doi: 10.1590/S1516-89132015060271 | |
dcterms.references | C. Saengkhae, R. Srivibool, R. Watanadilok, and K. Enomoto, “Partially Purified Pigment Extract from Streptomyces A 16-1 Induces Apoptosis of Human Carcinoma of Nasopharynx Cell (KB cells) via the Mitochondrial and Caspase-3Pathway,” J Sci & Tech, vol. 14, no. 1, pp. 51–63, 2017, Accessed: Jul. 08, 2022. [Online]. Available: http://wjst.wu.ac.th | |
dcterms.references | “Los superpoderes genéticos del cáncer, al descubierto: la historia de las células HeLa.” https://www.elconfidencial.com/alma-corazon-vida/2015-05- 26/superpoderes-geneticos-del-cancer-henrietta-lacks-celulas-hela_855217/ (accessed Jul. 09, 2022). | |
dcterms.references | O. B. Kazakova, G. v. Giniyatullina, A. G. Mustafin, D. A. Babkov, E. v. Sokolova, and A. A. Spasov, “Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids,” Molecules, vol. 25, no. 20, Oct. 2020, doi: 10.3390/MOLECULES25204833. | |
dcterms.references | “Measuring cytotoxicity: a new perspective on LC50 - PubMed.” https://pubmed.ncbi.nlm.nih.gov/17352213/ (accessed Jul. 08, 2022). | |
dcterms.references | H. Zhang, J. Zhan, K. Su, and Y. Zhang, “A kind of potential food additive produced by Streptomyces coelicolor: Characteristics of blue pigment and identification of a novel compound, λ-actinorhodin,” Food Chem, vol. 95, no. 2, pp. 186–192, Mar. 2006, doi: 10.1016/J.FOODCHEM.2004.12.028. | |
dcterms.references | M. S. Abdelfattah, K. Toume, M. A. Arai, H. Masu, and M. Ishibashi, “Katorazone, a new yellow pigment with a 2-azaquinone-phenylhydrazone structure produced by Streptomyces sp. IFM 11299,” Tetrahedron Lett, vol. 53, no. 26, pp. 3346–3348, Jun. 2012, doi: 10.1016/J.TETLET.2012.04.073 | |
dcterms.references | L. v. Bystrykh, M. A. Fernández-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen, “Production of actinorhodin-related ‘blue pigments’ by Streptomyces coelicolor A3(2),” J Bacteriol, vol. 178, no. 8, pp. 2238–2244, 1996, doi: 10.1128/JB.178.8.2238-2244.1996 | |
dcterms.references | L. Lu, H. L. Cui, Y. N. Chen, and S. Yuan, “Isolation and identification of Streptomyces sp. and assay of its exocellular water-soluble blue pigments,” Folia Microbiol (Praha), vol. 47, no. 5, pp. 493–498, 2002, doi: 10.1007/BF02818787 | |
dcterms.references | H. E. Scribner, T. Tang, and S. G. Bradley, “Production of a sporulation pigment by Streptomyces venezuelae,” Appl Microbiol, vol. 25, no. 6, pp. 873–879, Jun. 1973, doi: 10.1128/AM.25.6.873-879.1973 | |
dcterms.references | H. H. Wasserman, G. C. Rodgers, and D. D. Keith, “Undecyclprodigiosin,” Tetrahedron, vol. 32, no. 15, pp. 1851–1854, 1976, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0000603262&doi=10.1016%2F0040-4020%2876%2985185- X&partnerID=40&md5=946332fab1a33be57e3329b87285423c | |
dcterms.references | S. Bayram, “Production, purification, and characterization of Streptomyces sp. strain MPPS2 extracellular pyomelanin pigment,” Archives of Microbiology 2021 203:7, vol. 203, no. 7, pp. 4419–4426, Jun. 2021, doi: 10.1007/S00203-021-02437- W. | |
dcterms.references | A. Kramar et al., “Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing,” World J Microbiol Biotechnol, vol. 30, no. 8, pp. 2231–2240, 2014, doi: 10.1007/S11274-014-1644-X | |
dcterms.references | V. Gopikrishnan, M. Radhakrishnan, T. Shanmugasundaram, M. P. Ramakodi, and R. Balagurunathan, “Isolation, characterization and identification of antibiofouling metabolite from mangrove derived Streptomyces sampsonii PM33,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/S41598-019-49478-2 | |
dcterms.references | G. Hobbs, C. M. Frazer, D. C. J. Gardner, F. Flett, and S. G. Oliver, “Pigmented antibiotic production by Streptomyces coelicolor A3(2): Kinetics and the influence of nutrients,” J Gen Microbiol, vol. 136, no. 11, pp. 2291–2296, 1990, doi: 10.1099/00221287-136-11-2291. | |
dcterms.references | A. A. Sakr, M. F. Ali, M. F. Ghaly, and M. E.-S. F. Abdel-Haliem, “Discoloration of ancient Egyptian mural paintings by streptomyces strains and methods of its removal,” International Journal of Conservation Science, vol. 3, no. 4, pp. 249–258, 2012, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84871362728&partnerID=40&md5=8500fbba4072e5e984746157fe0df6ba | |
dcterms.references | L. Lu, H. L. Cui, Y. N. Chen, and S. Yuan, “Isolation and identification of Streptomyces sp. and assay of its exocellular water-soluble blue pigments,” Folia Microbiol (Praha), vol. 47, no. 5, pp. 493–498, 2002, doi: 10.1007/BF02818787. | |
dcterms.references | Z. Kazi et al., “Production, Characterization, and Antimicrobial Activity of Pigment from Streptomyces Species,” J Nanomater, vol. 2022, pp. 1–8, May 2022, doi: 10.1155/2022/3962301. | |
dcterms.references | ] R. Polapally et al., “Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities,” PLoS One, vol. 17, no. 4, p. e0266676, Apr. 2022, doi: 10.1371/JOURNAL.PONE.0266676. | |
dcterms.references | C. Nai, “Southern promises: a snapshot of the microbiology research landscape in South America based on bibliometric data,” FEMS Microbiol Lett, vol. 364, no. 16, Sep. 2017, doi: 10.1093/FEMSLE/FNX162. | |
dcterms.references | E. B. Arikan, O. Canli, Y. Caro, L. Dufossé, and N. Dizge, “Production of Bio-Based Pigments from Food Processing Industry By-Products (Apple, Pomegranate, Black Carrot, Red Beet Pulps) Using Aspergillus carbonarius,” Journal of Fungi, vol. 6, no. 4, pp. 1–18, Dec. 2020, doi: 10.3390/JOF6040240. | |
dcterms.references | M. Fouillaud, S. Casal, Y. Shao, S. K. Deshmukh, T. Sen, and C. J. Barrow, “Microbial Pigments in the Food Industry-Challenges and the Way Forward.,” Front Nutr, vol. 6, no. 7, pp. 7–7, Mar. 2019, doi: 10.3389/FNUT.2019.00007. | |
dcterms.references | M. A. Bawazir, M. Shantaram, J. Kaveri, C. Aluvara, J. Kaveri, and C. Aluvara, “Ecology and Distribution of Actinomycetes in Nature Nature – a Review,” Int J Curr Res, vol. 10, no. 07, pp. 71664–71668, 2018 | |
dcterms.references | “Asia | Continent, Countries, Regions, Map, & Facts | Britannica.” https://www.britannica.com/place/Asia (accessed Jul. 03, 2022). | |
dcterms.references | A. Hasani, A. Kariminik, and K. Issazadeh, “Streptomycetes: Characteristics and Their Antimicrobial Activities,” International journal of Advanced Biological and Biomedical Research, vol. 2, no. 1, pp. 63–75, 2014, Accessed: Jul. 03, 2022. [Online]. Available: http://www.ijabbr.com | |
dcterms.references | ] K. F. Chater and G. Chandra, “The evolution of development in Streptomyces analysed by genome comparisons,” FEMS Microbiol Rev, vol. 30, no. 5, pp. 651– 672, Sep. 2006, doi: 10.1111/J.1574-6976.2006.00033.X | |
dcterms.references | X. H. Gao, L. Zhang, H. Wei, and H. D. Chen, “Efficacy and safety of innovative cosmeceuticals,” Clin Dermatol, vol. 26, no. 4, pp. 367–374, 2008, doi: 10.1016/j.clindermatol.2008.01.013. | |
dcterms.references | G. J. Nohynek, E. Antignac, T. Re, and H. Toutain, “Safety assessment of personal care products/cosmetics and their ingredients.,” Toxicology and applied pharmacology, vol. 243, no. 2. pp. 239–259, 2010. doi: 10.1016/j.taap.2009.12.001 | |
dcterms.references | L. L. Corrales-García and G. L. Ciro G, “Peptides with antimicrobial activity produced by isolated native microorganisms [Péptidos con actividad antimicrobiana producidos por microorganismos nativos],” Vitae, vol. 17, no. 2, pp. 181–190, 2010, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 77955122261&partnerID=40&md5=99beefa828537ee6a0a4924fc13241e7 | |
dcterms.references | B. Poljšak and P. Raspor, “The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study,” J Appl Toxicol, vol. 28, no. 2, pp. 183–188, Mar. 2008, doi: 10.1002/JAT.1264. | |
dcterms.references | ] J. W. F. Law et al., “Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities,” Sci Rep, vol. 9, no. 1, pp. 1–15, 2019, doi: 10.1038/s41598-019-51622-x. | |
dcterms.references | J. C. L. Lapenda, V. P. Alves, M. L. Adam, M. D. Rodrigues, and S. C. Nascimento, “Cytotoxic Effect of Prodigiosin, Natural Red Pigment, Isolated from Serratia marcescens UFPEDA 398,” Indian J Microbiol, vol. 60, no. 2, p. 182, Jun. 2020, doi: 10.1007/S12088-020-00859-6 | |
dcterms.references | J. C. L. Lapenda, V. P. Alves, M. L. Adam, M. D. Rodrigues, and S. C. Nascimento, “Cytotoxic Effect of Prodigiosin, Natural Red Pigment, Isolated from Serratia marcescens UFPEDA 398,” Indian J Microbiol, vol. 60, no. 2, p. 182, Jun. 2020, doi: 10.1007/S12088-020-00859-6 | |
dcterms.references | K. C. D. S. Gasque, L. P. Al-Ahj, R. C. Oliveira, and A. C. Magalhães, “Cell density and solvent are critical parameters affecting formazan evaluation in MTT assay,” Brazilian Archives of Biology and Technology, vol. 57, no. 3, pp. 381–385, 2014, doi: 10.1590/S1516-89132014005000007. | |
dcterms.references | N. J. Palleroni et al., “Production of a Novel Red Pigment, Rubrolone, by Streptomyces Echinoruber sp. Nov. I. Taxonomy, Fermentation and Partial Purification,” J Antibiot (Tokyo), vol. 31, no. 12, pp. 1218–1225, 1978, doi: 10.7164/antibiotics.31.1218. | |
dcterms.references | C Vézina, C Bolduc, A Kudelski, and S N Sehgal, “Antimycin A fermentation. I. Production and selection of strains,” J Antibiot (Tokyo), vol. 29, no. 3, pp. 248–264, 1976, doi: 10.7164/antibiotics.29.248. | |
dcterms.references | S. M. Stocks and C. R. Thomas, “Viability, strength, and fragmentation of Saccharopolyspora erythraea in submerged fermentation,” Biotechnology and Bioengineering , vol. 75, no. 6, pp. 702–709, Dec. 2001, doi: 10.1002/bit.10017. | |
dcterms.references | identification and optimized fermentation condition of an actinomycete strain against pathogenic fungus Fulvia fulva].,” Wei Sheng Wu Xue Bao, vol. 47, no. 4, pp. 622–627, 2007, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 59149101236&partnerID=40&md5=16ed5fcbc0ceb039c40468254ea772d6 | |
dcterms.references | B. Baskaran and A. Muthukumarasamy, “Isolation, characterisation and enzymatic activity of Streptomyces sp. and its pH control during fermentation process,” IET Syst Biol, vol. 11, no. 4, 2017, doi: 10.1049/iet-syb.2016.0048. | |
dcterms.references | C. Mussagy, V. Santos-Ebinuma, J. Pereira, and J. Winterburn, “Production and extraction of carotenoids produced by microorganisms,” Appl Microbiol Biotechnol, vol. 103, no. 3, 2019, doi: 10.1007/s00253-018-9557-5. | |
dcterms.references | B. M. Rajan and K. Kannabiran, “Extraction and Identification of Antibacterial Secondary Metabolites from Marine Streptomyces sp. VITBRK2,” Int J Mol Cell Med, vol. 3, no. 3, pp. 130–137, 2014. | |
dcterms.references | A. Yousif, J. Zhang, F. Mulcahy, and O. v Singh, “Bio-economics of melanin biosynthesis using electromagnetic field resistant Streptomyces sp.-EF1 isolated from cave soil,” Ann Microbiol, vol. 65, no. 3, pp. 1573–1582, 2015, doi: 10.1007/s13213-014-0996-7. | |
dcterms.references | H. M. Atta, A. S. El-Sayed, M. A. El-Desoukey, M. Hassan, and M. El-Gazar, “Biochemical studies on the Natamycin antibiotic produced by Streptomyces lydicus: Fermentation, extraction and biological activities,” Journal of Saudi Chemical Society, vol. 19, no. 4, pp. 360–371, 2015, doi: https://doi.org/10.1016/j.jscs.2012.04.001 | |
dcterms.references | ] X. Chen, W. Diao, Y. Ma, and Z. Mao, “Extraction and purification of epsilon-poly-l lysine from fermentation broth using an ethanol/ammonium sulfate aqueous two phase system combined with ultrafiltration,” RSC Adv, vol. 10, no. 49, pp. 29587– 29593, 2020, doi: https://doi.org/10.1039/D0RA04245E. | |
dcterms.references | M. Hem{\’a}ndez, M. J. Hern{\’a}ndez-Coronado, M. D. Montiel, J. Rodr{\’i}guez, and M. E. Arias, “Analysis of alkali-lignin in a paper mill effluent decolourised with two Streptomyces strains by gas chromatography-mass spectrometry after cupric oxide degradation,” J Chromatogr A, vol. 919, no. 2, pp. 389–394, 2001. | |
dcterms.references | X. Sun, X. Yang, and E. Wang, “Chromatographic and electrophoretic procedures for analyzing plant pigments of pharmacologically interests,” Analytica Chimica Acta, vol. 547, no. 2. pp. 153–157, Aug. 22, 2005. doi: 10.1016/j.aca.2005.05.051. | |
dcterms.references | K Stajner, M Blumauerová, D A Callieri, and Z Vanĕk, “The study of variability and strain selection in Streptomyces atroolivaceus. II. Chromatographic analysis of mithramycin-producing and non-producing strains,” Folia Microbiol (Praha), vol. 19, no. 6, pp. 498–506, 1974, doi: 10.1007/BF02872916. | |
dcterms.references | ] M. M. Shinwari, S. A. Alharbi, I. Ara, M. Wainwright, and M. A. Khiyami, “Gas Chromatography and Mass Spectrum Analysis of the Selective Diversity of Actinobacteria Isolated from Extreme Environments in Saudi Arabia,” J Pure Appl Microbiol, vol. 7, pp. 107–116, 2013, doi: 10.13140/RG.2.2.28557.13285. | |
dcterms.references | ] H. Abd-Elnaby, G. Abo-Elala, U. Abdel-Raouf, A. Abd-Elwahab, and M. Hamed, “Antibacterial and anticancer activity of marine Streptomyces parvus: optimization and application,” http://mc.manuscriptcentral.com/tbeq, vol. 30, no. 1, pp. 180–191, 2015, doi: 10.1080/13102818.2015.1086280. | |
dcterms.references | ] C.-L. Lu, J. Wang, L.-G. Wang, L.-P. Liu, and C.-S. Wang, “Identification of an actinomyces producing natural blue pigment and optimization of fermentation conditions,” Chinese Journal of Pharmaceutical Biotechnology, vol. 21, no. 6, pp. 550–553, 2014, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84966539564&partnerID=40&md5=ef5abb9a65bbeba3fc1452546091e0e7 | |
dcterms.references | Y. Zhou, Y. B. Sun, H. W. He, J. T. Feng, X. Zhang, and L. R. Han, “Optimization of medium compositions to improve a novel glycoprotein production by Streptomyces kanasenisi ZX01,” AMB Express, vol. 7, no. 1, p. 6, Dec. 2017, doi: 10.1186/S13568-016-0316-7 | |
dcterms.references | B. A. Rudd and D. A. Hopwood, “A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster,” J Gen Microbiol, vol. 119, no. 2, pp. 333–340, 1980. | |
dcterms.references | ] B. Řežuchová, I. Barák, and J. Kormanec, “Disruption of a sigma factor gene, sigF, affects an intermediate stage of spore pigment production in Streptomyces aureofaciens,” FEMS Microbiol Lett, vol. 153, no. 2, pp. 371–377, 1997, doi: 10.1016/S0378-1097(97)00276-0. | |
dcterms.references | ] H.-J. Lee and K.-S. Whang, “Biodiversity and phylogenetic analysis of streptomyces collected from bamboo forest soil [Korean Source],” Korean Journal of Microbiology, vol. 46, no. 3, pp. 262–269, 2010, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 78549269130&partnerID=40&md5=adf32fc0b758d48528a1991c7b31fbe6 | |
dcterms.references | J. D. Guzman, A. Gupta, F. Bucar, S. Gibbons, and S. Bhakta, “Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds,” Front Biosci (Landmark Ed), vol. 17, pp. 1861–1881, 2012, doi: 10.2741/4024. | |
dcterms.references | E. Jonsbu, M. McIntyre, and J. Nielsen, “The influence of carbon sources and morphology on nystatin production by Streptomyces noursei,” J Biotechnol, vol. 95, no. 2, pp. 133–144, 2002, doi: 10.1016/S0168-1656(02)00003-2. | |
dcterms.references | K. T. Frith, “Globalizing Beauty : A Cultural History of the Global Beauty Industry,” in International Communication Association, 2014, no. May, pp. 1–33. | |
dcterms.references | S. Bom, J. Jorge, H. M. Ribeiro, and J. Marto, “A step forward on sustainability in the cosmetics industry: A review,” J Clean Prod, vol. 225, pp. 270–290, 2019, doi: 10.1016/j.jclepro.2019.03.255. | |
dcterms.references | C. Faria-Silva et al., “Feeding the skin: A new trend in food and cosmetics convergence,” Trends Food Sci Technol, vol. 95, no. November 2019, pp. 21–32, 2020, doi: 10.1016/j.tifs.2019.11.015 | |
dcterms.references | N. Rajput, “Cosmetics Market by Category (Skin & Sun Care Products, Hair Care Products, Deodorants, Makeup & Color Cosmetics, Fragrances) and by Distribution Channel (General departmental store, Supermarkets, Drug stores, Brand outlets) - Global Opportunity Analysis,” London, 2016. [Online]. Available: https://www.alliedmarketresearch.com/cosmetics-market | |
dcterms.references | S. Chaudhari, “World Organic Personal Care and Cosmetics Products Market Opportunities and Forecasts,” Portland, 2016. | |
dcterms.references | D. Szutowski and J. Szułczyńska, “Product Innovation in cosmetic industry – Case study of major cosmetic companies,” GISAP, vol. 12, pp. 19–21, 2017, doi: 10.18007/gisap | |
dcterms.references | SpecialChem, “Multinationals are Moving to Natural & Organic Cosmetics Market,” 2018 | |
dcterms.references | B. Bocca, A. Pino, A. Alimonti, and G. Forte, “Toxic metals contained in cosmetics: A status report,” Regulatory Toxicology and Pharmacology, vol. 68, no. 3, pp. 447– 467, 2014, doi: 10.1016/j.yrtph.2014.02.003. | |
dcterms.references | A. Almeida, B. Sarmento, and F. Rodrigues, “Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients,” Int J Pharm, vol. 519, no. 1–2, pp. 178–185, 2017, doi: 10.1016/j.ijpharm.2017.01.024. | |
dcterms.references | M. F. Mesko, D. L. R. Novo, V. C. Costa, A. S. Henn, and E. M. M. Flores, “Toxic and potentially toxic elements determination in cosmetics used for make-up: A critical review,” Anal Chim Acta, vol. 1098, pp. 1–26, 2020, doi: 10.1016/j.aca.2019.11.046 | |
dcterms.references | F. Vázquez-Ortega, I. Lagunes, and Á. Trigos, “Cosmetic dyes as potential photosensitizers of singlet oxygen generation,” Dyes and Pigments, vol. 176, no. January, 2020, doi: 10.1016/j.dyepig.2020.108248. | |
dcterms.references | . A. Neri-Numa, M. G. Pessoa, B. N. Paulino, and G. M. Pastore, “Genipin: A natural blue pigment for food and health purposes,” Trends Food Sci Technol, vol. 67, pp. 271–279, 2017, doi: 10.1016/j.tifs.2017.06.018. | |
dcterms.references | J. Lv et al., “Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology,” J Biosci Bioeng, vol. 124, no. 4, pp. 452–458, 2017, doi: 10.1016/j.jbiosc.2017.05.010 | |
dcterms.references | E. Hatzakis, E. P. Mazzola, R. M. Shegog, G. R. Ziegler, and J. D. Lambert, “Perseorangin: A natural pigment from avocado (Persea americana) seed,” Food Chem, vol. 293, no. April, pp. 15–22, 2019, doi: 10.1016/j.foodchem.2019.04.064 | |
dcterms.references | G. S. Kiran, N. A. Al-dhabi, M. V. Arasu, and J. Selvin, “Process for production of yellow pigment from bacteria,” 9493792, 2016 Accessed: Oct. 01, 2022. [Online]. Available: https://patents.google.com/patent/US9493792B1/en | |
dcterms.references | M. R. C. Guy della-Cioppa, Stephen J. Garger, Jr.Genadie G.Sverlow, Thomas H. Turpen, Laurence K. Grill, “Melanin production by streptomyces,” 5814495, 1998 Accessed: Oct. 01, 2022. [Online]. Available: https://patents.google.com/patent/US5814495A/en | |
dcterms.references | A. A. Bhatti, S. Haq, and R. A. Bhat, “Actinomycetes benefaction role in soil and plant health,” Microbial Pathogenesis, vol. 111. Academic Press, pp. 458–467, Oct. 01, 2017. doi: 10.1016/j.micpath.2017.09.036. | |
dcterms.references | ] A. Ranjani, D. Dhanasekaran, and P. M. Gopinath, “An Introduction to Actinobacteria,” in Actinobacteria - Basics and Biotechnological Applications, Dharumadurai Dhanasekaran and Yi Jiang, Ed. InTech, 2016, pp. 2–4. doi: 10.5772/62329. | |
dcterms.references | ] E. I. G. ARRANZ, “Characterization of the lsp and tatC genes Involved in the maturation and folding of Secreted proteins in Streptomyces lividans.,” Autonomous University of Madrid, 2011. [Online]. Available: https://pdfs.semanticscholar.org/eb91/359015e3459e1d6e43486fff6ed1cd30960b. pdf | |
dcterms.references | C. A. Aruldass, L. Dufossé, and W. A. Ahmad, “Current perspective of yellowish orange pigments from microorganisms- a review,” J Clean Prod, vol. 180, pp. 168– 182, 2018, doi: 10.1016/j.jclepro.2018.01.093. | |
dcterms.references | K. Vaishali, C. Ashwini, D. Kshitija, and N. Digambar, “Cosmeceuticals an Emerging Concept: a Comprehensive Review,” International Journal of Research in Pharmacy and Chemistry, vol. 3, no. 2, pp. 308–316, 2013, [Online]. Available: www.ijrpc.com | |
dcterms.references | N. Wanjari and J. Waghmare, “A Review on Latest Trend of Cosmetics Cosmeceuticals,” Int J Pharma Res Rev, vol. 4, no. 5, pp. 45–51, 201 | |
dcterms.references | J. Morone, A. Alfeus, V. Vasconcelos, and R. Martins, “Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach,” Algal Research, vol. 41. Elsevier B.V., Aug. 01, 2019. doi: 10.1016/j.algal.2019.101541. | |
dcterms.references | Bis Research Emerging Technology Market Intellingence, “Global Bio-Based Cosmetics and Personal Care Ingredients Market Focus on Function, Application, Comparative Analysis and Country Level Analysis- Analysis Forecast, 2019-2029.,” Fremont , 2020. | |
dcterms.references | ] S. Azimi, M. Basei Salehi, and N. Bahador, “Isolation and Identification of Streptomyces ramulosus from Soil and Determination of Antimicrobial Property of its Pigment,” Modern Medical Laboratory Journal, vol. 1, no. 1, pp. 36–41, 2017, doi: 10.30699/mmlj17-01-07 | |
dcterms.references | K. Krishnan, A. Mani, and S. Jasmine, “Cytotoxic Activity of Bioactive Compound 1, 2- Benzene Dicarboxylic Acid, Mono 2- Ethylhexyl Ester Extracted from a Marine Derived Streptomyces sp. VITSJK8.,” Int J Mol Cell Med, vol. 3, no. 4, pp. 246–54, 2014, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25635251%0Ahttp://www.pubmedcentral.nih .gov/articlerender.fcgi?artid=PMC4293612 | |
dcterms.references | W. Steiling et al., “Principles for the safety evaluation of cosmetic powders,” Toxicol Lett, vol. 297, pp. 8–18, Nov. 2018, doi: 10.1016/j.toxlet.2018.08.011. | |
dcterms.references | N. Pastrana Camacho, “Evaluación de la actividad antibacterial y antifúngica de actinobacterias cultivables aisladas de las riberas del río Guaviare,” Universidad De La Sabana, 2015. | |
dcterms.references | C. Arango, A. Acosta-Gonzalez, C. M. Parra-Giraldo, Z. A. Sánchez-Quitian, R. Kerr, and L. E. Díaz, “Characterization of Actinobacterial Communities from Arauca River Sediments (Colombia) Reveals Antimicrobial Potential Presented in Low Abundant Isolates,” Open Microbiol J, vol. 12, no. 1, pp. 181–194, 2018, doi: 10.2174/1874285801812010181. | |
dcterms.references | M. Assia, A. Hasnaa, M. Sara, M. Jamal, and M. Mohammed, “Physico-chemical Characterization of a Pink Red-like Pigments Produced by Five New Bacterial Soil Strains Identified as Streptomyces coelicoflavus,” Am J Microbiol Res, vol. 6, no. 3, pp. 67–72, 2018, doi: 10.12691/ajmr-6-3-1. | |
dcterms.references | H. Ramadan et al., “Antibacterial activity of Pomegranate, Orange and Lemon peel extracts against food-borne pathogens and spoilage bacteria In vitro and on poultry skin,” Int J Poult Sci, vol. 14, no. 4, pp. 229–239, 2015, doi: 10.3923/ijps.2015.229.239. | |
dcterms.references | M. ben Haddada et al., “Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient,” Colloids Surf B Biointerfaces, vol. 189, no. February, p. 110855, 2020, doi: 10.1016/j.colsurfb.2020.110855 | |
dcterms.references | E. Wongwad et al., “Assessment of the bioactive components, antioxidant, antiglycation and anti-inflammatory properties of Aquilaria crassna Pierre ex Lecomte leaves,” Ind Crops Prod, vol. 138, no. April, p. 111448, 2019, doi: 10.1016/j.indcrop.2019.06.011. | |
dcterms.references | ] L. Ramirez-Rodriguez, B. Stepanian-Martinez, M. Morales-Gonzalez, and L. Diaz, “Optimization of the cytotoxic activity of three streptomyces strains isolated from guaviare river sediments (Colombia, South America),” Biomed Res Int, vol. 2018, 2018, doi: 10.1155/2018/2839356. | |
dcterms.references | P. R. Shetty, S. Kumar Buddana, V. Bharadwaj Tatipamula, Y. Varanasi, V. Naga, and J. Ahmad, “Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity,” Brazilian Journal of Microbiology, vol. 45, pp. 303– 312, 2014, doi: 10.1590/S1517-83822014005000022. | |
dcterms.references | M. Formisano, “Extraction of a pigment with antibiotic action from Streptomyces sp. [Estrazione di un pigmento ad azione antibiotica da Streptomyces sp.],” Boll Soc Ital Biol Sper, vol. 43, no. 5, pp. 260–262, 1967, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0014204048&partnerID=40&md5=fa53cd2140e3a040274ce8fcc355eaa2 | |
dcterms.references | S. O. Khelissa, M. Abdallah, C. Jama, A. Gharsallaoui, and N. E. Chihib, “Comparative study of growth temperature impact on the susceptibility of biofilm detached and planktonic Staphylococcus aureus cells to benzalkonium chloride,” Ann Microbiol, vol. 69, no. 3, pp. 291–298, Mar. 2019, doi: 10.1007/S13213-018- 1419-Y/FIGURES/5 | |
dcterms.references | P. Sripreechasak and A. Athipornchai, “Potential antimicrobial properties of streptomyces isolated from Sammuk Mountain soil, Chonburi Province, Thailand,” J Adv Pharm Technol Res, vol. 10, no. 4, p. 195, Oct. 2019, doi: 10.4103/JAPTR.JAPTR_55_19. | |
dcterms.references | M. Girão et al., “Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds,” Front Microbiol, vol. 10, no. APR, p. 683, 2019, doi: 10.3389/FMICB.2019.00683/BIBTEX | |
dcterms.references | Z. Evangelista-Martínez, D. E. Ríos-Muñiz, J. Gómez-Cano, A. C. Montoya Hidalgo, and R. E. Ochoa-Solórzano, “Actividad antimicrobiana de Streptomyces sp. Y15 contra bacterias patógenas y evaluación de medios de cultivo para la producción de antibióticos,” TIP Revista Especializada en Ciencias Químico Biológicas, vol. 25, Feb. 2022, doi: 10.22201/FESZ.23958723E.2022.415. | |
dcterms.references | F. E. Pehlivan, “Vitamin C: An Antioxidant Agent,” in Vitamin C, IntechOpen, 2017, pp. 24–35. doi: 10.5772/INTECHOPEN.69660. | |
dcterms.references | D. R. Lee et al., “Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778,” Asian Pac J Trop Med, vol. 7, no. 12, pp. 962–967, Dec. 2014, doi: 10.1016/S1995-7645(14)60170-X. | |
dcterms.references | L. T. H. Tan et al., “Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties,” Front Pharmacol, vol. 8, no. MAY, May 2017, doi: 10.3389/FPHAR.2017.00276/FULL. | |
dcterms.references | ] S. Jemimah Naine, C. Subathra Devi, V. Mohanasrinivasan, and B. Vaishnavi, “Antimicrobial, Antioxidant and Cytotoxic Activity of MarineStreptomyces parvulus VITJS11 Crude Extract,” Brazilian Archives of Biology and Technology, vol. 58, no. 2, pp. 198–207, Oct. 2014, doi: 10.1590/S1516-8913201400173. | |
dcterms.references | and R. M. Alkufeidy, “In vitro biological properties of Streptomyces cangkringensis isolated from the floral rhizosphere regions,” Saudi J Biol Sci, vol. 27, no. 12, pp. 3249–3257, Dec. 2020, doi: 10.1016/J.SJBS.2020.09.035. | |
dcterms.references | G. M. Abdel-Fattah and A. H. Mohamedin, “Interactions between a vesicular arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales,” Biol Fertil Soils, vol. 32, no. 5, pp. 401–409, 2000, doi: 10.1007/s003740000269. | |
dcterms.references | S. K. Rajaram, P. Ahmad, S. Sujani Sathya Keerthana, P. Jeya Cressida, I. Ganesh Moorthy, and R. S. S. Suresh, “Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens,” J King Saud Univ Sci, vol. 32, no. 3, pp. 2009–2015, Apr. 2020, doi: 10.1016/J.JKSUS.2020.01.039 | |
dcterms.references | D. Parrot, N. Legrave, D. Delmail, M. Grube, M. Suzuki, and S. Tomasi, “Review Lichen-associated bacteria as a hot spot of chemodiversity: focus on uncialamycin, a promising compound for future medicinal applications,” Planta Med, vol. 82, pp. 1143–1152, 2016, doi: 10.1055/s-0042-105571 | |
dcterms.references | S. Kumaran et al., “Bioactive metabolites produced from Streptomyces enissocaesilis SSASC10 against fish pathogens,” Biocatal Agric Biotechnol, vol. 29, p. 101802, Oct. 2020, doi: 10.1016/J.BCAB.2020.101802. | |
dcterms.references | R. B. R. Ferreira et al., “Osmotic stress induces biofilm production by Staphylococcus epidermidis isolates from neonates,” Diagn Microbiol Infect Dis, vol. 94, no. 4, pp. 337–341, 2019, doi: 10.1016/j.diagmicrobio.2019.02.009. | |
dcterms.references | T. R. Jabila Mary, R. R. Kannan, A. M. Iniyan, D. Ramachandran, and S. G. Prakash Vincent, “Cell wall distraction and biofilm inhibition of marine Streptomyces derived angucycline in methicillin resistant Staphylococcus aureus,” Microb Pathog, vol. 150, Jan. 2021, doi: 10.1016/J.MICPATH.2020.104712 | |
dcterms.references | E. A. da F. Amorim et al., “Antimicrobial Potential of Streptomyces ansochromogenes (PB3) Isolated From a Plant Native to the Amazon Against Pseudomonas aeruginosa,” Front Microbiol, vol. 11, p. 2421, Oct. 2020, doi: 10.3389/FMICB.2020.574693/BIBTEX. | |
dcterms.references | B. Padhan, K. Poddar, D. Sarkar, and A. Sarkar, “Production, purification, and process optimization of intracellular pigment from novel psychrotolerant Paenibacillus sp. BPW19,” Biotechnology Reports, vol. 29, p. e00592, Mar. 2021, doi: 10.1016/J.BTRE.2021.E00592. | |
dcterms.references | R. Mansour, “Natural dyes and pigments: Extraction and applications,” in Handbook of Renewable Materials for Coloration and Finishing, wiley, 2018, pp. 75–102. doi: 10.1002/9781119407850.ch5. | |
dcterms.references | K. M. Park, K. M. Kwon, and S. H. Lee, “Evaluation of the Antioxidant Activities and Tyrosinase Inhibitory Property from Mycelium Culture Extracts,” Evidence-based Complementary and Alternative Medicine, vol. 2015, 2015, doi: 10.1155/2015/616298. | |
dcterms.references | L. Wu et al., “Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia officinalis Extracts after Aspergillus Niger Fermentation,” Biomed Res Int, vol. 2018, 2018, doi: 10.1155/2018/5201786 | |
dcterms.references | S. W. Lee et al., “Enhanced bioactivity of Zanthoxylum schinifolium fermented extract: Anti-inflammatory, anti-bacterial, and anti-melanogenic activity,” J Biosci Bioeng, vol. xxx, no. xxx, 2020, doi: 10.1016/j.jbiosc.2019.12.003. | |
dcterms.references | R. Zhang, J. Chen, X. Mao, P. Qi, and X. Zhang, “Anti-inflammatory and anti-aging evaluation of pigment–protein complex extracted from Chlorella pyrenoidosa,” Mar Drugs, vol. 17, no. 10, 2019, doi: 10.3390/md17100586. | |
dcterms.references | A. M. Muddathir and T. Mitsunaga, “Evaluation of anti-acne activity of selected Sudanese medicinal plants,” Journal of Wood Science, vol. 59, no. 1, pp. 73–79, 2013, doi: 10.1007/s10086-012-1303-5. | |
dcterms.references | W. Pothitirat, M. T. Chomnawang, R. Supabphol, and W. Gritsanapan, “Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods,” Pharm Biol, vol. 48, no. 2, pp. 182–186, 2010, doi: 10.3109/13880200903062671. | |
dcterms.references | L. A. Al_husnan and M. D. F. Alkahtani, “Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities,” Annals of Agricultural Sciences, vol. 61, no. 2, pp. 251–255, 2016, doi: https://doi.org/10.1016/j.aoas.2016.06.002 | |
dcterms.references | H. M. Atta, “Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties,” Journal of Saudi Chemical Society, vol. 19, no. 1, pp. 12–22, 2015, doi: 10.1016/j.jscs.2011.12.011. | |
dcterms.references | C. Franco, “Optimización de la producción de fitasa por Aspergillus en fermentación en estado sólido,” INSTITUTO POLITECNICO NACIONAL, 2007. | |
dcterms.references | C. T. Chang, W. L. Chang, J. C. Hsu, Y. Shih, and S. T. Chou, “Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil,” Bot Stud, vol. 54, no. 1, p. 1, 2013, doi: 10.1186/1999-3110-54-10. | |
dcterms.references | J. K. P. Muñoz, “ANÁLISIS METABOLÓMICO DE LA ESPECIE Baccharis latifolia (ASTERACEAE) EN LA SABANA DE BOGOTÁ,” UNIVERSIDAD MILITAR NUEVA GRANADA, 2015. | |
dcterms.references | F. Namjoyan, M. Farasat, M. Alishahi, A. Jahangiri, and H. Mousavi, “The Anti melanogenesis Activities of Some Selected Red Macroalgae from Northern Coasts of the Persian Gulf.,” Iran J Pharm Res, vol. 18, no. 1, pp. 383–390, Jan. 2019, Accessed: Jul. 09, 2022. [Online]. Available: https://europepmc.org/articles/PMC6487394 | |
dcterms.references | ] A. Saleem, M. Saleem, and M. F. Akhtar, “Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family,” South African Journal of Botany, vol. 128, pp. 246–256, 2020, doi: 10.1016/j.sajb.2019.11.023 | |
dcterms.references | A. Asha shalini, M. Syed Ali, V. Anuradha, N. Yogananth, and P. Bhuvana, “GCMS analysis and invitro antibacterial and anti-inflammatory study on methanolic extract of Thalassiosira weissflogii,” Biocatal Agric Biotechnol, vol. 19, no. May, p. 101148, 2019, doi: 10.1016/j.bcab.2019.101148 | |
dcterms.references | B. Bose, H. Choudhury, P. Tandon, and S. Kumaria, “Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance,” J Photochem Photobiol B, vol. 173, no. April, pp. 686– 695, 2017, doi: 10.1016/j.jphotobiol.2017.07.010. | |
dcterms.references | ] P. Liu, H. Zhu, G. Zheng, W. Jiang, and Y. Lu, “Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production,” Sci China Life Sci, vol. 60, no. 9, pp. 948–957, 2017. | |
dcterms.references | J. V. Moreira, S. C. M. Silva, and M. A. Cremasco, “Evaluation of carbon:nitrogen ratio in semi-defined culture medium to tacrolimus biosynthesis by Streptomyces tsukubaensis and the effect on bacterial growth,” Biotechnology Reports, vol. 26, p. e00440, Jun. 2020, doi: 10.1016/J.BTRE.2020.E00440. | |
dcterms.references | R. Codd, T. Richardson-Sanchez, T. J. Telfer, and M. P. Gotsbacher, “Advances in the Chemical Biology of Desferrioxamine B,” ACS Chem Biol, vol. 13, no. 1, pp. 11–25, 2018. | |
dcterms.references | D. Bellotti and M. Remelli, “Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator,” Molecules 2021, Vol. 26, Page 3255, vol. 26, no. 11, p. 3255, May 2021, doi: 10.3390/MOLECULES26113255. | |
dcterms.references | K. Tanigaki et al., “BE-18591 as a new H+/Cl− symport ionophore that inhibits immunoproliferation and gastritis,” FEBS Lett, vol. 524, no. 1–3, pp. 37–42, Jul. 2002, doi: 10.1016/S0014-5793(02)02996-4. | |
dcterms.references | M. A. Roselan et al., “In vitro cytotoxicity assay, mushroom tyrosinase inhibitory activity and release analysis of kojic monooleate nanodelivery system and in silico molecular docking study against 2Y9X target enzyme,” J Drug Deliv Sci Technol, vol. 66, p. 102764, Dec. 2021, doi: 10.1016/J.JDDST.2021.102764 | |
dcterms.references | L. L. Mazaleuskaya et al., “PharmGKB summary: ibuprofen pathways,” Pharmacogenet Genomics, vol. 25, no. 2, p. 96, Feb. 2015, doi: 10.1097/FPC.0000000000000113. | |
dcterms.references | J. M. Rojas, M. Avia, V. Martín, and N. Sevilla, “IL-10: A multifunctional cytokine in viral infections,” J Immunol Res, vol. 2017, 2017, doi: 10.1155/2017/6104054. | |
dcterms.references | H.-H. Zhu et al., “Streptomyces vietnamensis sp. nov., a streptomycete with violet blue diffusible pigment isolated from soil in Vietnam,” Int J Syst Evol Microbiol, vol. 57, no. 8, pp. 1770–1774, 2007, doi: 10.1099/ijs.0.64774-0 | |
dcterms.references | J. Abraham and R. Chauhan, “Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity,” 3 Biotech, vol. 8, no. 1, p. 22, Jan. 2018, doi: 10.1007/S13205-017-1044-7 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |