Show simple item record

dc.contributor.advisorQuintanilla Carvajal, María Ximena
dc.contributor.authorRojas Muñoz, Yesica Vanesa
dc.date.accessioned2023-03-10T15:41:22Z
dc.date.available2023-03-10T15:41:22Z
dc.date.issued2023-02-06
dc.identifier.urihttp://hdl.handle.net/10818/54349
dc.description83 páginases_CO
dc.description.abstractEl desarrollo de alimentos funcionales es una alternativa viable para la prevención de ciertas enfermedades, sin embargo, la industria alimentaria tiene grandes desafíos en la producción de alimentos funcionales basados en probióticos debido a que presentan alta sensibilidad a diferentes condiciones de procesamiento y del tracto gastrointestinal. Una de las soluciones que ha encontrado esta industria es emplear métodos de encapsulación que protegen las células probióticas y las vehiculizan al punto de acción. Sin embargo, algunas técnicas de encapsulación emplean altas temperaturas, solventes nocivos y representan altos costos de operación. Por su parte, la extrusión vibratoria es un método simple y económico con operaciones suaves que preserva de manera eficiente la concentración bacteriana. El objetivo de esta investigación fue evaluar el efecto del proceso de encapsulación por extrusión vibratoria sobre la viabilidad de Lactobacillus fermentum K73, una bacteria ácido-láctica con potencial probiótico hipocolesterolémico. Se diseñó la formulación de los materiales de pared de la perla a través de un diseño óptimo de mezcla, en el que se evaluó la proporción de diferentes materiales de pared compatibles con la bacteria. Se encontró como mezcla óptima la relación de alginato y suero de leche igual a 0,61/0,39 v/v con una viabilidad de 9,20 log10 UFC/mL. La selección de las condiciones operativas del proceso de encapsulación por extrusión vibratoria que permitieran la mayor viabilidad celular, y eficiencia de encapsulación de las perlas se realizó por medio de un diseño de superficie de respuesta.es_CO
dc.description.abstractThe development of functional foods is a viable alternative for the prevention of certain diseases; however, the food industry has great challenges in the production of functional foods based on probiotics, due to their high sensitivity to different processing and gastrointestinal tract conditions. One of the solutions that the food industry has found is to develop encapsulation methods that protect the probiotic cells and transport them to the point of action. However, some encapsulation techniques use high temperatures, and harmful solvents and represent high operating costs. Vibratory extrusion, on the other hand, is a simple and economical method with gentle operating conditions that efficiently preserve the probiotic bacterial concentration. The objective of this research was to evaluate the effect of the vibratory extrusion encapsulation process on the viability of Lactobacillus fermentum K73, a lactic acid bacteria with hypocholesterolemic probiotic potential. The formulation of the bead wall materials was designed through an optimal mixture design, in which the ratio of three strategic wall materials was evaluated. It was found as the optimal mixture ratio of alginate and whey was equal to 0.61/0.39 v/v, the viability of this was 9.20 log10 CFU/mL. The selection of the operating conditions of the vibratory extrusion encapsulation process that allowed the highest cell viability, encapsulation efficiency, and sphericity of the beads was performed using a response surface design. Maximum cell viability and encapsulation efficiency were obtained with a vibratory frequency of 70 Hz, voltage of 2500 V, and feed flow rate of 20 mL/min. In addition, improved tolerance to simulated gastrointestinal tract conditions was observed following the INFOGEST model of encapsulated cells compared to free cells with a final concentration higher than 1 x 106 CFU/mL. Finally, the particles were characterized through different techniques such as SEM, ATR-FTIR, CSLM, RAMAN spectroscopy, image analysis, and evaluation of mechanical properties. In conclusion, this study demonstrated that the vibratory extrusion encapsulation process guarantees the protection of the probiotic in challenging conditions for its release at the site of action, which demonstrates the importance of encapsulation as a strategy for the development of functional foods.en
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEncapsulation of Lactobacillus fermentum K73 by ionotropic gelation : Evaluation of probiotic stability during gastrointestinal conditionses_CO
dc.typemaster thesises_CO
dc.identifier.local291567
dc.identifier.localTE12207
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcPlanificación estratégica
dc.subject.decsProbióticos
dc.subject.decsAlimentos funcionales
dc.subject.decsIndustria de alimentos
dcterms.referencesAguiar, L. M., Geraldi, M. V., Betim Cazarin, C. B., & Maróstica Junior, M. R. (2018). Functional Food Consumption and Its Physiological Effects. In Bioactive Compounds: Health Benefits and Potential Applications. Elsevier Inc. https://doi.org/10.1016/B978- 0-12-814774-0.00011-6
dcterms.referencesAguirre-calvo, T. R., Aguirre-calvo, D., Perullini, M., & Santagapita, P. R. (2021). Food Hydrocolloids for Health A detailed microstructural and multiple responses analysis through blocking design to produce Ca ( II ) -alginate beads loaded with bioactive compounds extracted from by-products. Food Hydrocolloids for Health, 1(August), 100030. https://doi.org/10.1016/j.fhfh.2021.100030
dcterms.referencesAguirre-calvo, T. R., Molino, S., & Perullini, M. (2020). Effect of in vitro digestionfermentation of Ca ( II ) -alginate beads containing sugar and biopolymers over global antioxidant response and short chain fatty acids production. Food Chemistry, 333(August 2019), 127483. https://doi.org/10.1016/j.foodchem.2020.127483
dcterms.referencesAlam, M. S., & Aslam, R. (2020). Extrusion for the Production of Functional Foods and Ingredients. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.23041-2
dcterms.referencesAragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A. J., & Moreno, F. L. (2019). Encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-42016-0
dcterms.referencesAragón-Rojas, S., Yolanda Ruiz-Pardo, R., Javier Hernández-Álvarez, A., & Ximena Quintanilla-Carvajal, M. (2020). Sublimation conditions as critical factors during freezedried probiotic powder production. Drying Technology, 38(3), 333–349. https://doi.org/10.1080/07373937.2019.1570248
dcterms.referencesAragón Rojas, S., Quintanilla Carvajal, M. X., & Hernández Sánchez, H. (2018). Multifunctional Role of the Whey Culture Medium in the Spray Drying Microencapsulation of Lactic Acid Bacteria. 5417, 0–3. https://doi.org/10.17113/ftb.56.03.18.5285
dcterms.referencesBanwo, K., Olufunke, A., Adesulu-dahunsi, A. T., Kumar, D., Thakur, M., Tripathy, S., Singh, S., Patel, A. R., Kumar, A., Noe, C., & Lara, G. (2021). Food Bioscience Functional importance of bioactive compounds of foods with Potential Health Benefits : A review on recent trends. Food Bioscience, 43(August), 101320. https://doi.org/10.1016/j.fbio.2021.101320
dcterms.referencesBeldarrain Iznaga, T., Villalobos Carvajal, R., Leiva Vega, J., & Sevillano Armesto, E. (2020). Food and Bioproducts Processing Influence of multilayer mi ; croencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food and Bioproducts Processing, 124, 57–71.
dcterms.referencesBenucci, I., Cerreti, M., Maresca, D., Mauriello, G., & Esti, M. (2019). Yeast cells in double layer calcium alginate–chitosan microcapsules for sparkling wine production. Food Chemistry, 300(July), 125174. https://doi.org/10.1016/j.foodchem.2019.125174
dcterms.referencesBevilacqua, A., Campaniello, D., Speranza, B., Racioppo, A., Altieri, C., Sinigaglia, M., & Corbo, M. R. (2020). Microencapsulation of Saccharomyces cerevisiae into Alginate Beads : A Focus on Functional Properties of Released Cells.
dcterms.referencesBharat Helkar, P., Sahoo, A., & Patil, N. (2016). Review: Food Industry By-Products used as a Functional Food Ingredients. International Journal of Waste Resources, 6(3). https://doi.org/10.4172/2252-5211.1000248
dcterms.referencesBrahma, S., Sadiq, M. B., & Ahmad, I. (2019). Probiotics in Functional Foods. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596- 5.22368-8
dcterms.referencesBrodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieulacanal, C., Boutrou, R., & Carrière, F. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14, 991–1014. https://doi.org/10.1038/s41596-018-0119-1
dcterms.referencesBUCHI, S. (2019). Technical data sheet Encapsulator B-390 / B-395 Pro. https://static1.buchi.com/sites/default/files/technical-data-pdf/B-390_B395Pro_Data_Sheet_en_B.pdf?ea327cb8dd04a3cd2773542d5c6c939fe66fb06a
dcterms.referencesBultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
dcterms.referencesChen, H., Li, X., Liu, B., & Meng, X. (2017). Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods, 29, 248–255. https://doi.org/10.1016/j.jff.2016.12.015
dcterms.referencesChew, S., & Nyam, K. (2016). Microencapsulation of kenaf seed oil by co-extrusion technology. Journal of Food Engineering, 175, 43–50. https://doi.org/10.1016/j.jfoodeng.2015.12.002
dcterms.referencesComunian, T. A., & Favaro-Trindade, C. S. (2016). Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, 61, 442–457. https://doi.org/10.1016/j.foodhyd.2016.06.003
dcterms.referencesCorfield, R., Martínez, K. D., Allievi, M. C., Santagapita, P., Mazzobre, F., Schebor, C., & Oscar, E. P. (2020). Whey proteins-folic acid complexes : Formation , isolation and bioavailability in a Lactobacillus casei model. Food Structure, 26(October). https://doi.org/10.1016/j.foostr.2020.100162
dcterms.referencesCueto-Vigil, M. C., Acuña-Monsalve, Y., & Valenzuela-Riaño, J. (2010). IN VITRO EVALUATION OF PROBIOTIC POTENTIAL OF LACTIC BACTERIA ACID ISOLATED FROM COASTAL SERUM. Actualidades Biológicas, 32(93), 129–138. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 35842010000200001&lng=en&nrm=iso&tlng=es
dcterms.referencesCueto, C., & Aragón, S. (2012a). Evaluación del potencial probiótico de bacterias ácido lácticas para reducir el colesterol in vitro Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol. Scientia Agropecuaria, 1, 45–50. http://www.revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/62/77
dcterms.referencesCueto, C., & Aragón, S. (2012b). Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol. Scientia Agropecuaria, 1(1), 45–50. https://doi.org/hpptts: //doi.org/10.17268/sci.agropecu.2012.01.06
dcterms.referencesde Moura, S., Berling, C., Germer, S., Alvim, I., & Hubinger, M. (2017). Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chemistry, 47. https://doi.org/10.1016/j.foodchem.2017.08.095
dcterms.referencesde Souza Simões, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23–45. https://doi.org/10.1016/j.cis.2017.02.010
dcterms.referencesDemir, M., Kucukcetin, A., & Felix, O. (2021). Food Hydrocolloids Optimization of Salmonella bacteriophage microencapsulation in alginate-caseinate formulation using vibrational nozzle technique. 113(October 2020). https://doi.org/10.1016/j.foodhyd.2020.106456
dcterms.referencesDimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food Science and Technology, 71, 169–174. https://doi.org/10.1016/j.lwt.2016.03.007
dcterms.referencesDoherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43. https://doi.org/10.1016/j.idairyj.2011.06.009
dcterms.referencesDoherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2011). Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids, 25(6), 1604–1617. https://doi.org/10.1016/j.foodhyd.2010.12.012
dcterms.referencesDonthidi, A. R., Tester, R. F., & Aidoo, K. E. (2010). Effect of lecithin and starch on alginateencapsulated probiotic bacteria. Journal of Microencapsulation, 27(1), 67–77. https://doi.org/10.3109/02652040902982183
dcterms.referencesEckert, C., Agnol, W. D., Dallé, D., Serpa, V. G., Maciel, M. J., Lehn, D. N., & Volken de Souza, C. F. (2018). Development of alginate-pectin microparticles with dairy whey using vibration technology: Effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions. Food Research International, 113(June), 65–73. https://doi.org/10.1016/j.foodres.2018.07.001
dcterms.referencesFangmeier, M., Lehn, D. N., Maciel, M. J., & Volken de Souza, C. F. (2019). Encapsulation of Bioactive Ingredients by Extrusion with Vibrating Technology: Advantages and Challenges. Food and Bioprocess Technology, 12(9), 1472–1486. https://doi.org/10.1007/s11947-019-02326-7
dcterms.referencesFlach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., & Larsen, O. F. A. (2018). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624
dcterms.referencesGañan-Calvo, A. M., & Riesco-Chueca, P. (2006). Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing. Journal of Fluid Mechanics, 553, 75–84. https://doi.org/10.1017/S0022112006009013
dcterms.referencesGaona-Sánchez, V. A., Calderón-Domínguez, G., Morales-sánchez, E., Terrés-Rojas, E., Moreno-Ruiz, L. A., Salgado Cruz, M. de la P., Escamilla-García, M., & Barrios-Francisco, R. (2020). Physicochemical and superficial characterization of a bilayer film of zein and pectin obtained by electrospraying. Applied Polymer Science, e50045, 1–15. https://doi.org/10.1002/app.50045
dcterms.referencesGłab, T. K., & Boratyński, J. (2017). Potential of Casein as a Carrier for Biologically Active. Topics in Current Chemistry, Z, 375–71. https://doi.org/10.1007/s41061-017-0158-z
dcterms.referencesGonzález-Quijano, G. K., Dorantes-Alvarez, L., Hernández-Sánchez, H., Jaramillo-Flores, M. E., de Jesús Perea-Flores, M., Vera-Ponce de León, A., & Hernández-Rodríguez, C. (2014). Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. Journal of Food Science, 79(8). https://doi.org/10.1111/1750-3841.12498
dcterms.referencesGraff, S., Hussain, S., Chaumeil, J., & Charrueau, C. (2008). Increased Intestinal Delivery of Viable Saccharomyces boulardii by Encapsulation in Microspheres. Pharmaceutical Research, 25(6), 1290–1296. https://doi.org/10.1007/s11095-007-9528-5
dcterms.referencesGrand View Reaserch. (2021). Probiotics Market Size, Share & Trends Analysis Report By Product (Food & Beverages, Dietary Supplements.
dcterms.referencesHaffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics : insights into academic and industrial approaches. 3(September 2015), 114–136. https://doi.org/10.3934/matersci.2016.1.114
dcterms.referencesHébrard, G., Hoffart, V., Beyssac, E., Cardot, J. M., Alric, M., & Subirade, M. (2010). Coated 73 whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, 27(4), 292–302. https://doi.org/10.3109/02652040903134529
dcterms.referencesHeidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of Probiotic Cells for Food Applications Microencapsulation of Probiotic Cells. June 2013, 37–41. https://doi.org/10.1080/10408398.2010.499801
dcterms.referencesHernández-Ledesma, B., Ramos, M., & Gómez-ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey ଝ. Small Ruminant Research Jou, 101, 196–204. https://doi.org/10.1016/j.smallrumres.2011.09.040
dcterms.referencesHernández-Varela, J. D., Villaseñor-Altamirano, S. L., Chanona-Pérez, J. J., González Victoriano, L., Perea Flores, M. de J., Cervantes Sodi, F., Calderón Benavides, H. A., & Morgado Aucar, P. (2022). Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal, and dye removal properties of chitosan/alginate aerogels. Journal of Polymer Research, 29(4). https://doi.org/10.1007/s10965-022- 02926-6
dcterms.referencesJiménez-Martín, E., Gharsallaoui, A., & Rojas, T. A. (2015). Suitability of Using Monolayered and Multilayered Emulsions for Microencapsulation of ω -3 Fatty Acids by Spray Drying : Effect of Storage at Different Temperatures. Food Bioprocess Technol, 8, 100– 111. https://doi.org/10.1007/s11947-014-1382-y
dcterms.referencesKailasapathy, K. (2002). Microencapsulation of Probiotic Bacteria : Technology and Potential Applications. Current Issues Intest. Microbiology, 3, 39–48.
dcterms.referencesKim, J., Muhammad, N., Hak, B., & Yoo, J. J. (2017). Probiotic delivery systems : a brief overview Probiotic delivery systems : a brief overview. Journal of Pharmaceutical Investigation, May 2016. https://doi.org/10.1007/s40005-016-0259-7
dcterms.referencesKonstantinidi, M., & Koutelidakis, A. E. (2019). Functional Foods and Bioactive Compounds : A Review of Its Possible Role on Weight Management and Obesity ’ s Metabolic Consequences
dcterms.referencesKrasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13(1), 3–13. https://doi.org/10.1016/S0958-6946(02)00155-3
dcterms.referencesKrasaekoopt, W., & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology, 57(2), 761–766. https://doi.org/10.1016/j.lwt.2014.01.037
dcterms.referencesKroneková, Z., Pelach, M., Mazancová, P., Uhelská, L., Treľová, D., Rázga, F., Némethová, V., Szalai, S., Chorvát, D., McGarrigle, J. J., Omami, M., Isa, D., Ghani, S., Majková, E., Oberholzer, J., Raus, V., Šiffalovič, P., & Lacík, I. (2018). Structural changes in alginate- 74 based microspheres exposed to in vivo environment as revealed by confocal Raman microscopy. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018- 20022-y
dcterms.referencesKumar, S., & Krishnan, V. (2017). Phytochemistry and functional food: The needs of healthy life. Journal of Phytochemistry & Biochemistry, 1(103), 1–3. https://www.researchgate.net/publication/321805692
dcterms.referencesLabuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026
dcterms.referencesLee, Y., Ji, Y. R., Lee, S., Choi, M. J., & Cho, Y. (2019). Microencapsulation of probiotic lactobacillus acidophilus kbl409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. Journal of Microbiology and Biotechnology, 29(5), 721–730. https://doi.org/10.4014/jmb.1903.03018
dcterms.referencesLopes, S., Bueno, L., Júnior, F. D. A., & Finkler, C. (2017). Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. 89, 1601– 1613.
dcterms.referencesMaresca, D., Prisco, A. De, Storia, A. La, Cirillo, T., Esposito, F., & Mauriello, G. (2016). LWT - Food Science and Technology Microencapsulation of nisin in alginate beads by vibrating technology : Preliminary investigation. LWT - Food Science and Technology, 66, 436–443. https://doi.org/10.1016/j.lwt.2015.10.062
dcterms.referencesMartín, M. J., Lara-Villoslada, F., Adolfina Ruiz, M., & Encarnación Morales, M. (2015). Microencapsulation of bacteria : A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 27, 15– 25. https://doi.org/10.1016/j.ifset.2014.09.010
dcterms.referencesMinekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Macierzanka, A., Mackie, A., … Golding, M. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, 5, 1113–1124. https://doi.org/10.1039/c3fo60702j
dcterms.referencesMinisterio de Protección Social. (2011). Resolución 288 DE 2008. 2008(46), 2–57. https://normativa.colpensiones.gov.co/colpens/docs/resolucion_minproteccion_028 8_2008.htm
dcterms.referencesMisra, S., Pandey, P., & Mishra, H. N. (2021). Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends in Food Science and Technology, 109(October 2020), 340–351. https://doi.org/10.1016/j.tifs.2021.01.039
dcterms.referencesMuhammad, Z., Ramzan, R., Huo, G. C., Tian, H., & Bian, X. (2017). Integration of 75 polysaccharide-thermoprotectant formulations for microencapsulation of Lactobacillus plantarum, appraisal of survivability and physico-biochemical properties during storage of spray dried powders. Food Hydrocolloids, 66, 286–295. https://doi.org/10.1016/j.foodhyd.2016.11.040
dcterms.referencesOberoi, K., Tolun, A., Altintas, Z., & Sharma, S. (2021). Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated. Foods MDPI, 10(9), 1999.
dcterms.referencesOlivares, A., Silva, P., & Altamirano, C. (2017). Ac ce pt e d us t. Journal of Microencapsulation, 0(0), 000. https://doi.org/10.1080/02652048.2017.1390005
dcterms.referencesParker, E. A., Roy, T., D’Adamo, C. R., & Wieland, L. S. (2018). Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. In Nutrition (Vol. 45, pp. 125-134.e11). https://doi.org/10.1016/j.nut.2017.06.024
dcterms.referencesPedroso-Santana, S., & Fleitas-Salazar, N. (2020). Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443–447. https://doi.org/10.1002/pi.5970
dcterms.referencesPeralta, G. H., Bergamini, C. V., Audero, G., Páez, R., Wolf, I. V., Perotti, M. C., & Hynes, E. R. (2017). Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria. International Journal of Food Microbiology, 255(April), 17–24. https://doi.org/10.1016/j.ijfoodmicro.2017.05.014
dcterms.referencesPosbeyikian, A., Tubert, E., Bacigalupe, A., Escobar, M. M., Santagapita, P. R., Amodeo, G., & Pellurini, M. (2021). Evaluation of calcium alginate bead formation kinetics : An integrated analysis through light microscopy , rheology and microstructural SAXS. Carbohydrate Polymers Journal, 269(May), 1–10. https://doi.org/10.1016/j.carbpol.2021.118293
dcterms.referencesPrasanna, P. H. P., & Charalampopoulos, D. (2018). Food Bioscience Encapsulation of Bi fi dobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions , refrigeration , cow milk and goat milk. Food Bioscience, 21(November 2017), 72–79. https://doi.org/10.1016/j.fbio.2017.12.002
dcterms.referencesPrisco, A. De, Maresca, D., Ongeng, D., & Mauriello, G. (2015). LWT - Food Science and Technology Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Science and Technology, 1–11. https://doi.org/10.1016/j.lwt.2014.12.011
dcterms.referencesPrisco, A. De, Valenberg, H. J. F. Van, & Fogliano, V. (2017). Microencapsulated Starter Culture During Yoghurt Manufacturing , Effect on Technological Features. https://doi.org/10.1007/s11947-017-1946-8
dcterms.referencesQi, X., Simsek, S., Chen, B., & Rao, J. (2020). International Journal of Biological Macromolecules Alginate-based double-network hydrogel improves the viability of 76 encapsulated probiotics during simulated sequential gastrointestinal digestion : Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, 1675–1685. https://doi.org/10.1016/j.ijbiomac.2020.10.028
dcterms.referencesRajmohan, D., & Bellmer, D. (2019). Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation. 2019.
dcterms.referencesRamos, P. E., Abrunhosa, L., Pinheiro, A., Cerqueira, M. A., Motta, C., Castanheira, I., Chandra-hioe, M. V, Arcot, J., Teixeira, J. A., & Vicente, A. A. (2016). Probiotic-loaded microcapsule system for human in situ folate production : Encapsulation and system validation. FRIN, 90, 25–32. https://doi.org/10.1016/j.foodres.2016.10.036
dcterms.referencesRazavi, S., Janfaza, S., Tasnim, N., Gibsonbc, D. L., & Hoorfar, M. (2021). Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Advances, 3, 2699. https://doi.org/10.1039/d0na00952k
dcterms.referencesReque, P. M., & Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science and Technology, 114(May), 1–10. https://doi.org/10.1016/j.tifs.2021.05.022
dcterms.referencesRicaurte, L., Santagapita, P. R., Díaz, L. E., & Quintanilla-Carvajal, M. X. (2020). Edible gelatinbased nanofibres loaded with oil encapsulating high-oleic palm oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595(March), 124673. https://doi.org/10.1016/j.colsurfa.2020.124673
dcterms.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020a). Encapsulated probiotic cells : Relevant techniques , natural sources as encapsulating materials and food applications – A narrative review Food Research International Encapsulated probiotic cells : Relevant techniques , natural sources as encapsulating ma. Food Research International, 137(October), 109682. https://doi.org/10.1016/j.foodres.2020.109682
dcterms.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020b). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137(April), 109682. https://doi.org/10.1016/j.foodres.2020.109682
dcterms.referencesRodríguez-Sánchez, S., Fernández-Pacheco, P., Seseña, S., Pintado, C., & Palop, M. L. (2021). Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. Lwt, 143(February). https://doi.org/10.1016/j.lwt.2021.111142
dcterms.referencesSantagapita, P. R., Mazzobre, M. F., & Buera, P. (2012). Invertase stability in alginate beads Effect of trehalose and chitosan inclusion and of drying methods. FRIN, 47(2), 321–330. https://doi.org/10.1016/j.foodres.2011.07.042
dcterms.referencesSathasivam, T., Muniyandy, S., Chuah, L. H., & Janarthanan, P. (2018). Encapsulation of red palm oil in carboxymethyl sago cellulose beads by emulsification and vibration technology: Physicochemical characterization and in vitro digestion. Journal of Food 77 Engineering, 231, 10–21. https://doi.org/10.1016/j.jfoodeng.2018.03.008
dcterms.referencesSemba, D., & Trusek-hołownia, A. (2017). Generation of homo- and heterogeneous microcapsules and their application. Technical Transactions, 8, 197–208. https://doi.org/10.4467/2353737xct.17.060.6371
dcterms.referencesShi, L., Li, Z., Li, D., Xu, M., Chen, H., Zhang, Z., & Tang, Z. (2013). Encapsulation of probiotic Lactobacillus bulgaricus in alginate – milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1), 99–104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
dcterms.referencesSilva, M. P., Tulini, F. L., Martins, E., Penning, M., Fávaro-Trindade, C. S., & Poncelet, D. (2018). Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT - Food Science and Technology, 89(October 2017), 392–399. https://doi.org/10.1016/j.lwt.2017.11.008
dcterms.referencesSmidsrød, O., Larsen, B., Painter, T., & Haug, A. (1969). The Role of Intramolecular Autocatalysis in the Acid Hydrolisis of Polysaccharides Containing 1,4-Linked Hexuronic Acid. Acta Chemica Scandinavica, 23, 1573–1580.
dcterms.referencesTa, L. P., Bujna, E., Antal, O., Ladányi, M., Juhász, R., Szécsi, A., Kun, S., Sudheer, S., Gupta, V. K., & Nguyen, Q. D. (2021). ro l P Jo ur. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2021.04.170
dcterms.referencesTerpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems : Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients MDPI, 11(7 1591).
dcterms.referencesWhelehan, M., & Marison, I. W. (2011). Microencapsulation using vibrating technology. Journal OfMicroencapsulation, 28(8), 669–688. https://doi.org/10.3109/02652048.2011.586068
dcterms.referencesWolkers, W. F., Oliver, A. E., & Crowe, J. H. (2004). A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydrate Research, 10, 1–9. https://doi.org/10.1016/j.carres.2004.01.016
dcterms.referencesWorld Health Organization, & Food and Agriculture Organization of the United Nations (FAO). (2002). Guidelines for the Evaluation of Probiotics in Food. 1–11.
dcterms.referencesYe, Q., Georges, N., & Selomulya, C. (2018). Trends in Food Science & Technology Microencapsulation of active ingredients in functional foods : From research stage to commercial food products. Trends in Food Science & Technology, 78(June), 167–179. https://doi.org/10.1016/j.tifs.2018.05.025
dcterms.referencesYoha, K. S., Nida, S., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. In Probiotics and Antimicrobial Proteins (Issue 0123456789). Springer US. 78 https://doi.org/10.1007/s12602-021-09791-7
dcterms.referencesZazzali, I., Rocio, T., Calvo, A., Manuel, V., Ruíz-henestrosa, P., Santagapita, P. R., & Perullini, M. (2019). E ff ects of pH , extrusion tip size and storage protocol on the structural properties of Ca ( II ) -alginate beads. Carbohydrate Polymers, 206(November 2018), 749–756. https://doi.org/10.1016/j.carbpol.2018.11.051
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional