dc.contributor.advisor | Quintanilla Carvajal, María Ximena | |
dc.contributor.author | Rojas Muñoz, Yesica Vanesa | |
dc.date.accessioned | 2023-03-10T15:41:22Z | |
dc.date.available | 2023-03-10T15:41:22Z | |
dc.date.issued | 2023-02-06 | |
dc.identifier.uri | http://hdl.handle.net/10818/54349 | |
dc.description | 83 páginas | es_CO |
dc.description.abstract | El desarrollo de alimentos funcionales es una alternativa viable para la prevención de ciertas enfermedades, sin embargo, la industria alimentaria tiene grandes desafíos en la producción de alimentos funcionales basados en probióticos debido a que presentan alta sensibilidad a diferentes condiciones de procesamiento y del tracto gastrointestinal. Una de las soluciones que ha encontrado esta industria es emplear métodos de encapsulación que protegen las células probióticas y las vehiculizan al punto de acción. Sin embargo, algunas técnicas de encapsulación emplean altas temperaturas, solventes nocivos y representan altos costos de operación. Por su parte, la extrusión vibratoria es un método simple y económico con operaciones suaves que preserva de manera eficiente la concentración bacteriana. El objetivo de esta investigación fue evaluar el efecto del proceso de encapsulación por extrusión vibratoria sobre la viabilidad de Lactobacillus fermentum K73, una bacteria ácido-láctica con potencial probiótico hipocolesterolémico. Se diseñó la formulación de los materiales de pared de la perla a través de un diseño óptimo de mezcla, en el que se evaluó la proporción de diferentes materiales de pared compatibles con la bacteria. Se encontró como mezcla óptima la relación de alginato y suero de leche igual a 0,61/0,39 v/v con una viabilidad de 9,20 log10 UFC/mL. La selección de las condiciones operativas del proceso de encapsulación por extrusión vibratoria que permitieran la mayor viabilidad celular, y eficiencia de encapsulación de las perlas se realizó por medio de un diseño de superficie de respuesta. | es_CO |
dc.description.abstract | The development of functional foods is a viable alternative for the prevention of certain
diseases; however, the food industry has great challenges in the production of functional
foods based on probiotics, due to their high sensitivity to different processing and
gastrointestinal tract conditions. One of the solutions that the food industry has found is
to develop encapsulation methods that protect the probiotic cells and transport them to
the point of action. However, some encapsulation techniques use high temperatures, and
harmful solvents and represent high operating costs. Vibratory extrusion, on the other
hand, is a simple and economical method with gentle operating conditions that efficiently
preserve the probiotic bacterial concentration. The objective of this research was to
evaluate the effect of the vibratory extrusion encapsulation process on the viability of
Lactobacillus fermentum K73, a lactic acid bacteria with hypocholesterolemic probiotic
potential. The formulation of the bead wall materials was designed through an optimal
mixture design, in which the ratio of three strategic wall materials was evaluated. It was
found as the optimal mixture ratio of alginate and whey was equal to 0.61/0.39 v/v, the
viability of this was 9.20 log10 CFU/mL. The selection of the operating conditions of the
vibratory extrusion encapsulation process that allowed the highest cell viability,
encapsulation efficiency, and sphericity of the beads was performed using a response
surface design. Maximum cell viability and encapsulation efficiency were obtained with a
vibratory frequency of 70 Hz, voltage of 2500 V, and feed flow rate of 20 mL/min. In
addition, improved tolerance to simulated gastrointestinal tract conditions was observed
following the INFOGEST model of encapsulated cells compared to free cells with a final
concentration higher than 1 x 106 CFU/mL. Finally, the particles were characterized through
different techniques such as SEM, ATR-FTIR, CSLM, RAMAN spectroscopy, image analysis,
and evaluation of mechanical properties. In conclusion, this study demonstrated that the
vibratory extrusion encapsulation process guarantees the protection of the probiotic in
challenging conditions for its release at the site of action, which demonstrates the
importance of encapsulation as a strategy for the development of functional foods. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Encapsulation of Lactobacillus fermentum K73 by ionotropic gelation : Evaluation of probiotic stability during gastrointestinal conditions | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Planificación estratégica | |
dc.subject.decs | Probióticos | |
dc.subject.decs | Alimentos funcionales | |
dc.subject.decs | Industria de alimentos | |
dcterms.references | Aguiar, L. M., Geraldi, M. V., Betim Cazarin, C. B., & Maróstica Junior, M. R. (2018).
Functional Food Consumption and Its Physiological Effects. In Bioactive Compounds:
Health Benefits and Potential Applications. Elsevier Inc. https://doi.org/10.1016/B978-
0-12-814774-0.00011-6 | |
dcterms.references | Aguirre-calvo, T. R., Aguirre-calvo, D., Perullini, M., & Santagapita, P. R. (2021). Food
Hydrocolloids for Health A detailed microstructural and multiple responses analysis
through blocking design to produce Ca ( II ) -alginate beads loaded with bioactive
compounds extracted from by-products. Food Hydrocolloids for Health, 1(August),
100030. https://doi.org/10.1016/j.fhfh.2021.100030 | |
dcterms.references | Aguirre-calvo, T. R., Molino, S., & Perullini, M. (2020). Effect of in vitro digestionfermentation of Ca ( II ) -alginate beads containing sugar and biopolymers over global
antioxidant response and short chain fatty acids production. Food Chemistry,
333(August 2019), 127483. https://doi.org/10.1016/j.foodchem.2020.127483 | |
dcterms.references | Alam, M. S., & Aslam, R. (2020). Extrusion for the Production of Functional Foods and
Ingredients. In Reference Module in Food Science. Elsevier.
https://doi.org/10.1016/b978-0-08-100596-5.23041-2 | |
dcterms.references | Aragón-Rojas, S., Quintanilla-Carvajal, M. X., Hernández-Sánchez, H., Hernández-Álvarez, A.
J., & Moreno, F. L. (2019). Encapsulation of Lactobacillus fermentum K73 by
Refractance Window drying. Scientific Reports, 9(1), 1–15.
https://doi.org/10.1038/s41598-019-42016-0 | |
dcterms.references | Aragón-Rojas, S., Yolanda Ruiz-Pardo, R., Javier Hernández-Álvarez, A., & Ximena
Quintanilla-Carvajal, M. (2020). Sublimation conditions as critical factors during freezedried probiotic powder production. Drying Technology, 38(3), 333–349.
https://doi.org/10.1080/07373937.2019.1570248 | |
dcterms.references | Aragón Rojas, S., Quintanilla Carvajal, M. X., & Hernández Sánchez, H. (2018).
Multifunctional Role of the Whey Culture Medium in the Spray Drying
Microencapsulation of Lactic Acid Bacteria. 5417, 0–3.
https://doi.org/10.17113/ftb.56.03.18.5285 | |
dcterms.references | Banwo, K., Olufunke, A., Adesulu-dahunsi, A. T., Kumar, D., Thakur, M., Tripathy, S., Singh,
S., Patel, A. R., Kumar, A., Noe, C., & Lara, G. (2021). Food Bioscience Functional
importance of bioactive compounds of foods with Potential Health Benefits : A review
on recent trends. Food Bioscience, 43(August), 101320.
https://doi.org/10.1016/j.fbio.2021.101320 | |
dcterms.references | Beldarrain Iznaga, T., Villalobos Carvajal, R., Leiva Vega, J., & Sevillano Armesto, E. (2020).
Food and Bioproducts Processing Influence of multilayer mi ; croencapsulation on the
viability of Lactobacillus casei using a combined double emulsion and ionic gelation
approach. Food and Bioproducts Processing, 124, 57–71. | |
dcterms.references | Benucci, I., Cerreti, M., Maresca, D., Mauriello, G., & Esti, M. (2019). Yeast cells in double
layer calcium alginate–chitosan microcapsules for sparkling wine production. Food
Chemistry, 300(July), 125174. https://doi.org/10.1016/j.foodchem.2019.125174 | |
dcterms.references | Bevilacqua, A., Campaniello, D., Speranza, B., Racioppo, A., Altieri, C., Sinigaglia, M., &
Corbo, M. R. (2020). Microencapsulation of Saccharomyces cerevisiae into Alginate
Beads : A Focus on Functional Properties of Released Cells. | |
dcterms.references | Bharat Helkar, P., Sahoo, A., & Patil, N. (2016). Review: Food Industry By-Products used as
a Functional Food Ingredients. International Journal of Waste Resources, 6(3).
https://doi.org/10.4172/2252-5211.1000248 | |
dcterms.references | Brahma, S., Sadiq, M. B., & Ahmad, I. (2019). Probiotics in Functional Foods. In Reference
Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-
5.22368-8 | |
dcterms.references | Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieulacanal, C., Boutrou, R., & Carrière, F. (2019). INFOGEST static in vitro simulation of
gastrointestinal food digestion. Nature Protocols, 14, 991–1014.
https://doi.org/10.1038/s41596-018-0119-1 | |
dcterms.references | BUCHI, S. (2019). Technical data sheet Encapsulator B-390 / B-395 Pro.
https://static1.buchi.com/sites/default/files/technical-data-pdf/B-390_B395Pro_Data_Sheet_en_B.pdf?ea327cb8dd04a3cd2773542d5c6c939fe66fb06a | |
dcterms.references | Bultosa, G. (2015). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics.
In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 2–4). Elsevier Ltd.
https://doi.org/10.1016/B978-0-12-394437-5.00245-X | |
dcterms.references | Chen, H., Li, X., Liu, B., & Meng, X. (2017). Microencapsulation of Lactobacillus bulgaricus
and survival assays under simulated gastrointestinal conditions. Journal of Functional
Foods, 29, 248–255. https://doi.org/10.1016/j.jff.2016.12.015 | |
dcterms.references | Chew, S., & Nyam, K. (2016). Microencapsulation of kenaf seed oil by co-extrusion
technology. Journal of Food Engineering, 175, 43–50.
https://doi.org/10.1016/j.jfoodeng.2015.12.002 | |
dcterms.references | Comunian, T. A., & Favaro-Trindade, C. S. (2016). Microencapsulation using biopolymers as
an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A
review. Food Hydrocolloids, 61, 442–457.
https://doi.org/10.1016/j.foodhyd.2016.06.003 | |
dcterms.references | Corfield, R., Martínez, K. D., Allievi, M. C., Santagapita, P., Mazzobre, F., Schebor, C., & Oscar,
E. P. (2020). Whey proteins-folic acid complexes : Formation , isolation and
bioavailability in a Lactobacillus casei model. Food Structure, 26(October).
https://doi.org/10.1016/j.foostr.2020.100162 | |
dcterms.references | Cueto-Vigil, M. C., Acuña-Monsalve, Y., & Valenzuela-Riaño, J. (2010). IN VITRO
EVALUATION OF PROBIOTIC POTENTIAL OF LACTIC BACTERIA ACID ISOLATED FROM
COASTAL SERUM. Actualidades Biológicas, 32(93), 129–138.
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-
35842010000200001&lng=en&nrm=iso&tlng=es | |
dcterms.references | Cueto, C., & Aragón, S. (2012a). Evaluación del potencial probiótico de bacterias ácido
lácticas para reducir el colesterol in vitro Evaluation of probiotic potential of lactic acid
bacteria to reduce in vitro cholesterol. Scientia Agropecuaria, 1, 45–50.
http://www.revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/62/77 | |
dcterms.references | Cueto, C., & Aragón, S. (2012b). Evaluation of probiotic potential of lactic acid bacteria to
reduce in vitro cholesterol. Scientia Agropecuaria, 1(1), 45–50. https://doi.org/hpptts:
//doi.org/10.17268/sci.agropecu.2012.01.06 | |
dcterms.references | de Moura, S., Berling, C., Germer, S., Alvim, I., & Hubinger, M. (2017). Encapsulating
anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability
during storage of microparticles. Food Chemistry, 47.
https://doi.org/10.1016/j.foodchem.2017.08.095 | |
dcterms.references | de Souza Simões, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos,
Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro
behavior. Advances in Colloid and Interface Science, 243, 23–45.
https://doi.org/10.1016/j.cis.2017.02.010 | |
dcterms.references | Demir, M., Kucukcetin, A., & Felix, O. (2021). Food Hydrocolloids Optimization of Salmonella
bacteriophage microencapsulation in alginate-caseinate formulation using vibrational
nozzle technique. 113(October 2020). https://doi.org/10.1016/j.foodhyd.2020.106456 | |
dcterms.references | Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., &
Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei
ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food
Science and Technology, 71, 169–174. https://doi.org/10.1016/j.lwt.2016.03.007 | |
dcterms.references | Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012).
Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during
simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43.
https://doi.org/10.1016/j.idairyj.2011.06.009 | |
dcterms.references | Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2011).
Development and characterisation of whey protein micro-beads as potential matrices
for probiotic protection. Food Hydrocolloids, 25(6), 1604–1617.
https://doi.org/10.1016/j.foodhyd.2010.12.012 | |
dcterms.references | Donthidi, A. R., Tester, R. F., & Aidoo, K. E. (2010). Effect of lecithin and starch on alginateencapsulated probiotic bacteria. Journal of Microencapsulation, 27(1), 67–77.
https://doi.org/10.3109/02652040902982183 | |
dcterms.references | Eckert, C., Agnol, W. D., Dallé, D., Serpa, V. G., Maciel, M. J., Lehn, D. N., & Volken de Souza,
C. F. (2018). Development of alginate-pectin microparticles with dairy whey using
vibration technology: Effects of matrix composition on the protection of Lactobacillus
spp. from adverse conditions. Food Research International, 113(June), 65–73.
https://doi.org/10.1016/j.foodres.2018.07.001 | |
dcterms.references | Fangmeier, M., Lehn, D. N., Maciel, M. J., & Volken de Souza, C. F. (2019). Encapsulation of
Bioactive Ingredients by Extrusion with Vibrating Technology: Advantages and
Challenges. Food and Bioprocess Technology, 12(9), 1472–1486.
https://doi.org/10.1007/s11947-019-02326-7 | |
dcterms.references | Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., & Larsen, O. F. A. (2018).
The underexposed role of food matrices in probiotic products: Reviewing the
relationship between carrier matrices and product parameters. Critical Reviews in
Food Science and Nutrition, 58(15), 2570–2584.
https://doi.org/10.1080/10408398.2017.1334624 | |
dcterms.references | Gañan-Calvo, A. M., & Riesco-Chueca, P. (2006). Jetting–dripping transition of a liquid jet in
a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing.
Journal of Fluid Mechanics, 553, 75–84. https://doi.org/10.1017/S0022112006009013 | |
dcterms.references | Gaona-Sánchez, V. A., Calderón-Domínguez, G., Morales-sánchez, E., Terrés-Rojas, E.,
Moreno-Ruiz, L. A., Salgado Cruz, M. de la P., Escamilla-García, M., & Barrios-Francisco,
R. (2020). Physicochemical and superficial characterization of a bilayer film of zein and
pectin obtained by electrospraying. Applied Polymer Science, e50045, 1–15.
https://doi.org/10.1002/app.50045 | |
dcterms.references | Głab, T. K., & Boratyński, J. (2017). Potential of Casein as a Carrier for Biologically Active.
Topics in Current Chemistry, Z, 375–71. https://doi.org/10.1007/s41061-017-0158-z | |
dcterms.references | González-Quijano, G. K., Dorantes-Alvarez, L., Hernández-Sánchez, H., Jaramillo-Flores, M.
E., de Jesús Perea-Flores, M., Vera-Ponce de León, A., & Hernández-Rodríguez, C.
(2014). Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño
pepper (Capsicum annuum L.) fermentation. Journal of Food Science, 79(8).
https://doi.org/10.1111/1750-3841.12498 | |
dcterms.references | Graff, S., Hussain, S., Chaumeil, J., & Charrueau, C. (2008). Increased Intestinal Delivery of
Viable Saccharomyces boulardii by Encapsulation in Microspheres. Pharmaceutical
Research, 25(6), 1290–1296. https://doi.org/10.1007/s11095-007-9528-5 | |
dcterms.references | Grand View Reaserch. (2021). Probiotics Market Size, Share & Trends Analysis Report By
Product (Food & Beverages, Dietary Supplements. | |
dcterms.references | Haffner, F. B., Diab, R., & Pasc, A. (2016). Encapsulation of probiotics : insights into academic
and industrial approaches. 3(September 2015), 114–136.
https://doi.org/10.3934/matersci.2016.1.114 | |
dcterms.references | Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J. M., Alric, M., & Subirade, M. (2010). Coated
73
whey protein/alginate microparticles as oral controlled delivery systems for probiotic
yeast. Journal of Microencapsulation, 27(4), 292–302.
https://doi.org/10.3109/02652040903134529 | |
dcterms.references | Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of Probiotic Cells for Food
Applications Microencapsulation of Probiotic Cells. June 2013, 37–41.
https://doi.org/10.1080/10408398.2010.499801 | |
dcterms.references | Hernández-Ledesma, B., Ramos, M., & Gómez-ruiz, J. Á. (2011). Bioactive components of
ovine and caprine cheese whey ଝ. Small Ruminant Research Jou, 101, 196–204.
https://doi.org/10.1016/j.smallrumres.2011.09.040 | |
dcterms.references | Hernández-Varela, J. D., Villaseñor-Altamirano, S. L., Chanona-Pérez, J. J., González
Victoriano, L., Perea Flores, M. de J., Cervantes Sodi, F., Calderón Benavides, H. A., &
Morgado Aucar, P. (2022). Effect of cellulose nanoparticles from garlic waste on the
structural, mechanical, thermal, and dye removal properties of chitosan/alginate
aerogels. Journal of Polymer Research, 29(4). https://doi.org/10.1007/s10965-022-
02926-6 | |
dcterms.references | Jiménez-Martín, E., Gharsallaoui, A., & Rojas, T. A. (2015). Suitability of Using Monolayered
and Multilayered Emulsions for Microencapsulation of ω -3 Fatty Acids by Spray
Drying : Effect of Storage at Different Temperatures. Food Bioprocess Technol, 8, 100–
111. https://doi.org/10.1007/s11947-014-1382-y | |
dcterms.references | Kailasapathy, K. (2002). Microencapsulation of Probiotic Bacteria : Technology and
Potential Applications. Current Issues Intest. Microbiology, 3, 39–48. | |
dcterms.references | Kim, J., Muhammad, N., Hak, B., & Yoo, J. J. (2017). Probiotic delivery systems : a brief
overview Probiotic delivery systems : a brief overview. Journal of Pharmaceutical
Investigation, May 2016. https://doi.org/10.1007/s40005-016-0259-7 | |
dcterms.references | Konstantinidi, M., & Koutelidakis, A. E. (2019). Functional Foods and Bioactive Compounds :
A Review of Its Possible Role on Weight Management and Obesity ’ s Metabolic
Consequences | |
dcterms.references | Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques
of probiotics for yoghurt. International Dairy Journal, 13(1), 3–13.
https://doi.org/10.1016/S0958-6946(02)00155-3 | |
dcterms.references | Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of addition of inulin and
galactooligosaccharide on the survival of microencapsulated probiotics in alginate
beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT
- Food Science and Technology, 57(2), 761–766.
https://doi.org/10.1016/j.lwt.2014.01.037 | |
dcterms.references | Kroneková, Z., Pelach, M., Mazancová, P., Uhelská, L., Treľová, D., Rázga, F., Némethová, V.,
Szalai, S., Chorvát, D., McGarrigle, J. J., Omami, M., Isa, D., Ghani, S., Majková, E.,
Oberholzer, J., Raus, V., Šiffalovič, P., & Lacík, I. (2018). Structural changes in alginate-
74
based microspheres exposed to in vivo environment as revealed by confocal Raman
microscopy. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-
20022-y | |
dcterms.references | Kumar, S., & Krishnan, V. (2017). Phytochemistry and functional food: The needs of healthy
life. Journal of Phytochemistry & Biochemistry, 1(103), 1–3.
https://www.researchgate.net/publication/321805692 | |
dcterms.references | Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the
stability of encapsulated phytochemicals: A review. Food Research International,
107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026 | |
dcterms.references | Lee, Y., Ji, Y. R., Lee, S., Choi, M. J., & Cho, Y. (2019). Microencapsulation of probiotic
lactobacillus acidophilus kbl409 by extrusion technology to enhance survival under
simulated intestinal and freeze-drying conditions. Journal of Microbiology and
Biotechnology, 29(5), 721–730. https://doi.org/10.4014/jmb.1903.03018 | |
dcterms.references | Lopes, S., Bueno, L., Júnior, F. D. A., & Finkler, C. (2017). Preparation and characterization
of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. 89, 1601–
1613. | |
dcterms.references | Maresca, D., Prisco, A. De, Storia, A. La, Cirillo, T., Esposito, F., & Mauriello, G. (2016). LWT
- Food Science and Technology Microencapsulation of nisin in alginate beads by
vibrating technology : Preliminary investigation. LWT - Food Science and Technology,
66, 436–443. https://doi.org/10.1016/j.lwt.2015.10.062 | |
dcterms.references | Martín, M. J., Lara-Villoslada, F., Adolfina Ruiz, M., & Encarnación Morales, M. (2015).
Microencapsulation of bacteria : A review of different technologies and their impact
on the probiotic effects. Innovative Food Science and Emerging Technologies, 27, 15–
25. https://doi.org/10.1016/j.ifset.2014.09.010 | |
dcterms.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F.,
Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Recio, I., Santos, C. N.,
Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Macierzanka, A., Mackie, A., … Golding,
M. (2014). A standardised static in vitro digestion method suitable for food – an
international consensus. Food & Function, 5, 1113–1124.
https://doi.org/10.1039/c3fo60702j | |
dcterms.references | Ministerio de Protección Social. (2011). Resolución 288 DE 2008. 2008(46), 2–57.
https://normativa.colpensiones.gov.co/colpens/docs/resolucion_minproteccion_028
8_2008.htm | |
dcterms.references | Misra, S., Pandey, P., & Mishra, H. N. (2021). Novel approaches for co-encapsulation of
probiotic bacteria with bioactive compounds, their health benefits and functional food
product development: A review. Trends in Food Science and Technology, 109(October
2020), 340–351. https://doi.org/10.1016/j.tifs.2021.01.039 | |
dcterms.references | Muhammad, Z., Ramzan, R., Huo, G. C., Tian, H., & Bian, X. (2017). Integration of
75
polysaccharide-thermoprotectant formulations for microencapsulation of
Lactobacillus plantarum, appraisal of survivability and physico-biochemical properties
during storage of spray dried powders. Food Hydrocolloids, 66, 286–295.
https://doi.org/10.1016/j.foodhyd.2016.11.040 | |
dcterms.references | Oberoi, K., Tolun, A., Altintas, Z., & Sharma, S. (2021). Effect of Alginate-Microencapsulated
Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated. Foods MDPI,
10(9), 1999. | |
dcterms.references | Olivares, A., Silva, P., & Altamirano, C. (2017). Ac ce pt e d us t. Journal of
Microencapsulation, 0(0), 000. https://doi.org/10.1080/02652048.2017.1390005 | |
dcterms.references | Parker, E. A., Roy, T., D’Adamo, C. R., & Wieland, L. S. (2018). Probiotics and gastrointestinal
conditions: An overview of evidence from the Cochrane Collaboration. In Nutrition
(Vol. 45, pp. 125-134.e11). https://doi.org/10.1016/j.nut.2017.06.024 | |
dcterms.references | Pedroso-Santana, S., & Fleitas-Salazar, N. (2020). Ionotropic gelation method in the
synthesis of nanoparticles/microparticles for biomedical purposes. Polymer
International, 69(5), 443–447. https://doi.org/10.1002/pi.5970 | |
dcterms.references | Peralta, G. H., Bergamini, C. V., Audero, G., Páez, R., Wolf, I. V., Perotti, M. C., & Hynes, E. R.
(2017). Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.
International Journal of Food Microbiology, 255(April), 17–24.
https://doi.org/10.1016/j.ijfoodmicro.2017.05.014 | |
dcterms.references | Posbeyikian, A., Tubert, E., Bacigalupe, A., Escobar, M. M., Santagapita, P. R., Amodeo, G.,
& Pellurini, M. (2021). Evaluation of calcium alginate bead formation kinetics : An
integrated analysis through light microscopy , rheology and microstructural SAXS.
Carbohydrate Polymers Journal, 269(May), 1–10.
https://doi.org/10.1016/j.carbpol.2021.118293 | |
dcterms.references | Prasanna, P. H. P., & Charalampopoulos, D. (2018). Food Bioscience Encapsulation of Bi fi
dobacterium longum in alginate-dairy matrices and survival in simulated
gastrointestinal conditions , refrigeration , cow milk and goat milk. Food Bioscience,
21(November 2017), 72–79. https://doi.org/10.1016/j.fbio.2017.12.002 | |
dcterms.references | Prisco, A. De, Maresca, D., Ongeng, D., & Mauriello, G. (2015). LWT - Food Science and
Technology Microencapsulation by vibrating technology of the probiotic strain
Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal
environment. LWT - Food Science and Technology, 1–11.
https://doi.org/10.1016/j.lwt.2014.12.011 | |
dcterms.references | Prisco, A. De, Valenberg, H. J. F. Van, & Fogliano, V. (2017). Microencapsulated Starter
Culture During Yoghurt Manufacturing , Effect on Technological Features.
https://doi.org/10.1007/s11947-017-1946-8 | |
dcterms.references | Qi, X., Simsek, S., Chen, B., & Rao, J. (2020). International Journal of Biological
Macromolecules Alginate-based double-network hydrogel improves the viability of
76
encapsulated probiotics during simulated sequential gastrointestinal digestion : Effect
of biopolymer type and concentrations. International Journal of Biological
Macromolecules, 165, 1675–1685. https://doi.org/10.1016/j.ijbiomac.2020.10.028 | |
dcterms.references | Rajmohan, D., & Bellmer, D. (2019). Characterization of Spirulina-Alginate Beads Formed
Using Ionic Gelation. 2019. | |
dcterms.references | Ramos, P. E., Abrunhosa, L., Pinheiro, A., Cerqueira, M. A., Motta, C., Castanheira, I.,
Chandra-hioe, M. V, Arcot, J., Teixeira, J. A., & Vicente, A. A. (2016). Probiotic-loaded
microcapsule system for human in situ folate production : Encapsulation and system
validation. FRIN, 90, 25–32. https://doi.org/10.1016/j.foodres.2016.10.036 | |
dcterms.references | Razavi, S., Janfaza, S., Tasnim, N., Gibsonbc, D. L., & Hoorfar, M. (2021). Nanomaterial-based
encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria.
Nanoscale Advances, 3, 2699. https://doi.org/10.1039/d0na00952k | |
dcterms.references | Reque, P. M., & Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals:
Applications in functional food industry. Trends in Food Science and Technology,
114(May), 1–10. https://doi.org/10.1016/j.tifs.2021.05.022 | |
dcterms.references | Ricaurte, L., Santagapita, P. R., Díaz, L. E., & Quintanilla-Carvajal, M. X. (2020). Edible gelatinbased nanofibres loaded with oil encapsulating high-oleic palm oil emulsions. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 595(March), 124673.
https://doi.org/10.1016/j.colsurfa.2020.124673 | |
dcterms.references | Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020a). Encapsulated probiotic
cells : Relevant techniques , natural sources as encapsulating materials and food
applications – A narrative review Food Research International Encapsulated probiotic
cells : Relevant techniques , natural sources as encapsulating ma. Food Research
International, 137(October), 109682. https://doi.org/10.1016/j.foodres.2020.109682 | |
dcterms.references | Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020b). Encapsulated probiotic cells:
Relevant techniques, natural sources as encapsulating materials and food applications
– A narrative review. Food Research International, 137(April), 109682.
https://doi.org/10.1016/j.foodres.2020.109682 | |
dcterms.references | Rodríguez-Sánchez, S., Fernández-Pacheco, P., Seseña, S., Pintado, C., & Palop, M. L. (2021).
Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as
biocontrol agents in food industry. Lwt, 143(February).
https://doi.org/10.1016/j.lwt.2021.111142 | |
dcterms.references | Santagapita, P. R., Mazzobre, M. F., & Buera, P. (2012). Invertase stability in alginate beads
Effect of trehalose and chitosan inclusion and of drying methods. FRIN, 47(2), 321–330.
https://doi.org/10.1016/j.foodres.2011.07.042 | |
dcterms.references | Sathasivam, T., Muniyandy, S., Chuah, L. H., & Janarthanan, P. (2018). Encapsulation of red
palm oil in carboxymethyl sago cellulose beads by emulsification and vibration
technology: Physicochemical characterization and in vitro digestion. Journal of Food
77
Engineering, 231, 10–21. https://doi.org/10.1016/j.jfoodeng.2018.03.008 | |
dcterms.references | Semba, D., & Trusek-hołownia, A. (2017). Generation of homo- and heterogeneous
microcapsules and their application. Technical Transactions, 8, 197–208.
https://doi.org/10.4467/2353737xct.17.060.6371 | |
dcterms.references | Shi, L., Li, Z., Li, D., Xu, M., Chen, H., Zhang, Z., & Tang, Z. (2013). Encapsulation of probiotic
Lactobacillus bulgaricus in alginate – milk microspheres and evaluation of the survival
in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1), 99–104.
https://doi.org/10.1016/j.jfoodeng.2013.02.012 | |
dcterms.references | Silva, M. P., Tulini, F. L., Martins, E., Penning, M., Fávaro-Trindade, C. S., & Poncelet, D.
(2018). Comparison of extrusion and co-extrusion encapsulation techniques to protect
Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT - Food Science
and Technology, 89(October 2017), 392–399.
https://doi.org/10.1016/j.lwt.2017.11.008 | |
dcterms.references | Smidsrød, O., Larsen, B., Painter, T., & Haug, A. (1969). The Role of Intramolecular
Autocatalysis in the Acid Hydrolisis of Polysaccharides Containing 1,4-Linked Hexuronic
Acid. Acta Chemica Scandinavica, 23, 1573–1580. | |
dcterms.references | Ta, L. P., Bujna, E., Antal, O., Ladányi, M., Juhász, R., Szécsi, A., Kun, S., Sudheer, S., Gupta,
V. K., & Nguyen, Q. D. (2021). ro l P Jo ur. International Journal of Biological
Macromolecules. https://doi.org/10.1016/j.ijbiomac.2021.04.170 | |
dcterms.references | Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N.
(2019). Probiotics in Food Systems : Significance and Emerging Strategies Towards
Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients MDPI, 11(7
1591). | |
dcterms.references | Whelehan, M., & Marison, I. W. (2011). Microencapsulation using vibrating technology.
Journal OfMicroencapsulation, 28(8), 669–688.
https://doi.org/10.3109/02652048.2011.586068 | |
dcterms.references | Wolkers, W. F., Oliver, A. E., & Crowe, J. H. (2004). A Fourier-transform infrared
spectroscopy study of sugar glasses. Carbohydrate Research, 10, 1–9.
https://doi.org/10.1016/j.carres.2004.01.016 | |
dcterms.references | World Health Organization, & Food and Agriculture Organization of the United Nations
(FAO). (2002). Guidelines for the Evaluation of Probiotics in Food. 1–11. | |
dcterms.references | Ye, Q., Georges, N., & Selomulya, C. (2018). Trends in Food Science & Technology
Microencapsulation of active ingredients in functional foods : From research stage to
commercial food products. Trends in Food Science & Technology, 78(June), 167–179.
https://doi.org/10.1016/j.tifs.2018.05.025 | |
dcterms.references | Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Targeted
Delivery of Probiotics: Perspectives on Research and Commercialization. In Probiotics
and Antimicrobial Proteins (Issue 0123456789). Springer US.
78
https://doi.org/10.1007/s12602-021-09791-7 | |
dcterms.references | Zazzali, I., Rocio, T., Calvo, A., Manuel, V., Ruíz-henestrosa, P., Santagapita, P. R., & Perullini,
M. (2019). E ff ects of pH , extrusion tip size and storage protocol on the structural
properties of Ca ( II ) -alginate beads. Carbohydrate Polymers, 206(November 2018),
749–756. https://doi.org/10.1016/j.carbpol.2018.11.051 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |