Mostrar el registro sencillo del ítem
Evaluation of zwitterionic starch filler in thermoset polyurethanes on the antithrombogenicity activity as candidates for cardiovascular applications
dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.advisor | Diaz Barrera, Luis Eduardo | |
dc.contributor.advisor | Arevalo Alquichire, Said Jose | |
dc.contributor.author | Cespedes Rojas, Jhoan Felipe | |
dc.date.accessioned | 2023-03-10T14:43:24Z | |
dc.date.available | 2023-03-10T14:43:24Z | |
dc.date.issued | 2023-02-10 | |
dc.identifier.uri | http://hdl.handle.net/10818/54342 | |
dc.description | 90 páginas | es_CO |
dc.description.abstract | Cardiovascular diseases have increased worldwide due to post complications generated by SARS-Cov-2 illness, and bad food habits settled after quarantine suffered from this situation. In this context, demand for vascular grafts has increased because these devices are used to solve obstructions of blood vessels. However, the autologous graft availability is low and synthetic materials used for these cardiovascular devices have shown low thromboresistance over frame time. Polyurethanes implemented in this field have shown good mechanical properties and biocompatibility. Nevertheless, thrombogenicity activity is high yet in comparison with autologous graft. Some efforts as surface, chemical backbone modifications and inclusion of fillers in polyurethanes have shown an improvement in anti-thrombogenicity activity in the short term, but this increase in this activity did not remain over the years. In the last years, zwitterionic moieties have been a tendency due to their anti-fouling properties, which prevent no-specific adsorption protein and the activation of cascade coagulation. These moieties have been included at the surface and inside the chemical backbone of polyurethanes. However, the inclusion of these compounds at the surface did not stay over time due to the shear force caused by blood flow. Additionally, the chemical modification of polyurethanes affects their mechanical properties to a significant degree. Therefore, this research studied the influence of addition potato and zwitterionic starch (at 1, 2 and 3%w/w) as fillers in polyurethane matrices obtained from polycaprolactone diol (PCL), polyethylene glycol (PEG), pentaerythritol (PE), and isophorone diisocyanate (IPDI) on their physicochemical, mechanical thermal, and biological properties. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Evaluation of zwitterionic starch filler in thermoset polyurethanes on the antithrombogenicity activity as candidates for cardiovascular applications | es_CO |
dc.type | master thesis | es_CO |
dc.identifier.local | 291525 | |
dc.identifier.local | TE12200 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Sistema cardiovascular -- Enfermedades | |
dc.subject.decs | SARS-CoV-2 | |
dc.subject.decs | Poliuretanos | |
dcterms.references | Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. | |
dcterms.references | WHO. Mortality and global health estimates. 2020. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates | |
dcterms.references | Muhammad DG, Abubakar IA. COVID-19 lockdown may increase cardiovascular disease risk factors. Egypt Hear J. 2021;73(1). 10.1186/s43044-020-00127-4. | |
dcterms.references | Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol [Internet]. 2020;17(5):259–260. | |
dcterms.references | Tulchinsky TH, Varavikova EA. Chapter 5 - Non-Communicable Diseases and Conditions. In: Tulchinsky TH, Varavikova EABT-TNPH (Third E, editors. San Diego: Academic Press; 2014. p. 237–309. | |
dcterms.references | Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol. 2020;8. https://doi.org/10.3389/fbioe.2020.00123 | |
dcterms.references | López J, González E, Miguelena J, Martín M, Cuerpo G, Rodríguez-Roda J. Toma de decisiones en cirugía coronaria. Indicaciones y resultados del tratamiento quirúrgico del paciente con cardiopatía isquémica. Cirugía Cardiovasc. 2017;24(2):91–96. | |
dcterms.references | Aalto-Korte K, Engfeldt M, Estlander T, Jolanki R. Polyurethane resins. In: Kanerva’s Occupational Dermatology. Finnish Institute of Occupational Health, Helsinki, Finland: Springer International Publishing; 2019. p. 799–807. 10.1007/978-3-319-68617-2_53 | |
dcterms.references | Guhathakurta S, Galla S. Progress in cardiovascular biomaterials. Asian Cardiovasc Thorac Ann. 2019;27(9).744–750. | |
dcterms.references | Navas-Gómez K, Valero MF. Why polyurethanes have been used in the manufacture and design of cardiovascular devices: A systematic review. Materials (Basel). 2020;13(15). 10.3390/ma13153250 | |
dcterms.references | Arévalo FR, Osorio SA, Valcárcel NA, Ibarra JC, Valero MF. Characterization and in vitro biocompatibility of binary mixtures of chitosan and polyurethanes synthesized from chemically modified castor oil, as materials for medical use. Polym from Renew Resour. 2018;9(1):23–38. | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl. 2016;31(5):708–720 | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Appl Surf Sci . 2020;528:146539. | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review. Biomater Sci. 2017;5(1):22–37. | |
dcterms.references | Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation. Biomed Mater. 2017;12(6). 10.1088/1748-605X/aa8353 | |
dcterms.references | Major R, Plutecka H, Gruszczynska A, Lackner JM, Major B. Effects of the surface modification of polyurethane substrates on genotoxicity and blood activation processes. Mater Sci Eng C. 2017;79:756–762. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Diaz LE, Valero MF. Surface response methodology-based mixture design to study the influence of polyol blend composition on polyurethanes’ properties. Molecules. 2018;23(8). 1942. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today. 2020;38:84–98. | |
dcterms.references | Wen N, Lü S, Gao C, Xu X, Bai X, Wu C, et al. Glucose-responsive zwitterionic dialdehyde starch-based micelles with potential anti-phagocytic behavior for insulin delivery. Chem Eng J. 2018;335:52–62. | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117:384–391. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of protein resistant zwitterionic starches: The effect of substitution degrees. Starch/Staerke. 2015;67(11–12):920–929. | |
dcterms.references | Montaña Chaparro WF, Díaz Roa KA, Otálvaro Cifuentes EH. Situación actual de los bancos de tejidos en Colombia: tejido cardiovascular. Rev Colomb Cardiol . 2020;27(5):461–468. | |
dcterms.references | Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, et al. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci. 2016;480:91–101. | |
dcterms.references | Ma X, Sheu M, Eramo L, Wainwright J, Li J. Anti-thrombogenic medical devices and methods. 2015. | |
dcterms.references | Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir. 2012;28(19):7436–7441. | |
dcterms.references | Xiao X, Chen H, Chen S. New zwitterionic polyurethanes containing pendant carboxyl-pyridinium with shape memory, shape reconfiguration, and self-healing properties. Polymer (Guildf). 2019;180:121727. | |
dcterms.references | Ye SH, Hong Y, Sakaguchi H, Shankarraman V, Luketich SK, DAmore A, et al. Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. ACS Appl Mater Interfaces. 2014;6(24):22796–22806. | |
dcterms.references | Belanger A, Decarmine A, Jiang S, Cook K, Amoako KA. Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. Langmuir. 2019;35(5):1984–1988 | |
dcterms.references | Averous L, Halley PJ. Chapter 1: Starch Polymers: From the Field to Industrial Products. Starch Polym From Genet Eng to Green Appl. 2014;3–10. | |
dcterms.references | Solanki A, Das M, Thakore S. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr Polym . 2018;181:1003–1016. | |
dcterms.references | Heydrick S, Roberts E, Kim J, Emani S, Wong JY. Pediatric cardiovascular grafts: historical perspective and future directions. Curr Opin Biotechnol. 2016;40:119–124. | |
dcterms.references | Faturechi R, Hashemi A, Abolfathi N, Solouk A, Seifalian A. Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane. Vascular. 2019;27(6):636–647. | |
dcterms.references | Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, et al. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents. Int J Nanomedicine. 2015;10:2785–2803. | |
dcterms.references | Valero MF, Díaz LE. Polyurethane networks from pentaerythritol-modified castor oil and lysine polyisocyanates: synthesis, mechanical, and thermal properties and in vitro degradation. Quim Nova. 2014;37(9):1441–1445. | |
dcterms.references | Selvakumar M, Jaganathan SK, Nando GB, Chattopadhyay S. Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: Mechanical properties, osteoconductivity and biocompatibility. J Biomed Nanotechnol. 2015;11(2):291–305. | |
dcterms.references | Kendaganna Swamy BK, Siddaramaiah. Structure-property relationship of starchfilled chain-extended polyurethanes. J Appl Polym Sci. 2003;90(11):2945–2954. | |
dcterms.references | 37. Zaredar Z, Askari F, Shokrolahi P. Polyurethane synthesis for vascular application. Prog Biomater. 2018;7(4):269–278. | |
dcterms.references | Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. J Mater Chem B. 2018;6(44):7288–7297. | |
dcterms.references | Zhu Z, Gao Q, Long Z, Huo Q, Ge Y, Vianney N, et al. Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity. Bioact Mater. 2021;6(8):2546–2556. | |
dcterms.references | Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science (80- ). 2007;318(5849):426 LP – 430. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of protein resistant zwitterionic starches : The effect of substitution degrees. 2015;1–10. | |
dcterms.references | Yao M, Sun H, Guo Z, Sun X, Yu Q, Wu X, et al. A starch-based zwitterionic hydrogel coating for blood-contacting devices with durability and bio-functionality. Chem Eng J. 2021;421:129702. | |
dcterms.references | Toh HW, Toong DWY, Ng JCK, Ow V, Lu S, Tan LP, et al. Polymer blends and polymer composites for cardiovascular implants. Eur Polym J. 2021, 146. | |
dcterms.references | Haponiuk JT, Formela K. PU Polymers, Their Composites, and Nanocomposites: State of the Art and New Challenges [Internet]. Polyurethane Polymers: Composites and Nanocomposites. Elsevier Inc.; 2017. 1–20 p. | |
dcterms.references | Zieber L, Or S, Ruvinov E, Cohen S. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo. Biofabrication [Internet]. 2014;6(2), 24102 | |
dcterms.references | Díaz-Herráez P, Garbayo E, Simón-Yarza T, Formiga FR, Prosper F, Blanco-Prieto MJ. Adipose-derived stem cells combined with Neuregulin-1 delivery systems for heart tissue engineering. Eur J Pharm Biopharm [Internet]. 2013;85(1), 143–150. | |
dcterms.references | Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G. Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. Mater Sci Eng C [Internet]. 2021;128(June), 112301. | |
dcterms.references | Mora-Cortes LF, Rivas-Muñoz AN, Neira-Velázquez MG, Contreras-Esquivel JC, Roger P, Mora-Cura YN, et al. Biocompatible enhancement of poly(ethylene terephthalate) (PET) waste films by cold plasma aminolysis. J Chem Technol Biotechnol [Internet]. 2022. | |
dcterms.references | Kianpour G, Bagheri R, Pourjavadi A, Ghanbari H. In situ synthesized TiO2- polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation. Mater Sci Eng C [Internet]. 2020;114(May), 111043. | |
dcterms.references | Lee TH, Yen CT, Hsu SH. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomater Sci Eng. 2020;6(1), 597– 609. | |
dcterms.references | Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, et al. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol. 2020;11(5), 495–521. | |
dcterms.references | Gostev AA, Karpenko AA, Laktionov PP. Polyurethanes in cardiovascular prosthetics. Polym Bull [Internet]. 2018;75(9), 4311–4325. | |
dcterms.references | Navas-Gómez K, Valero MF. Why polyurethanes have been used in the manufacture and design of cardiovascular devices: A systematic review. Materials (Basel). 2020;13(15), 1–17. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Diaz LE, Valero MF. Surface response methodology-based mixture design to study the influence of polyol blend composition on polyurethanes’ properties. Molecules. 2018;23(8). | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review. Biomater Sci. 2017;5(1), 22–37. | |
dcterms.references | Król P, Uram Ł, Król B, Pielichowska K, Sochacka-Piętal M, Walczak M. Synthesis and property of polyurethane elastomer for biomedical applications based on nonaromatic isocyanates, polyesters, and ethylene glycol. Colloid Polym Sci. 2020;298(8), 1077–1093. | |
dcterms.references | Li G, Li D, Niu Y, He T, Chen KC, Xu K. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials. J Biomed Mater Res - Part A. 2014;102(3), 685–697. | |
dcterms.references | Vadillo J, Larraza I, Calvo-Correas T, Gabilondo N, Derail C, Eceiza A. Role of in situ added cellulose nanocrystals as rheological modulator of novel waterborne polyurethane urea for 3D-printing technology. Cellulose [Internet]. 2021;28(8), 4729–4744. | |
dcterms.references | Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C [Internet]. 2020;110(January), 110698. | |
dcterms.references | Villani M, Consonni R, Canetti M, Bertoglio F, Iervese S, Bruni G, et al. Polyurethane-based composites: Effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers (Basel). 2020;12(2). | |
dcterms.references | Arévalo FR, Osorio SA, Valcárcel NA, Ibarra JC, Valero MF. Characterization and in vitro biocompatibility of binary mixtures of chitosan and polyurethanes synthesized from chemically modified castor oil, as materials for medical use. Polym from Renew Resour. 2018;9(1), 23–38. | |
dcterms.references | Hormaiztegui MEV, Marin D, Gañán P, Stefani PM, Mucci V, Aranguren MI. Nanocelluloses reinforced bio-waterborne polyurethane. Polymers (Basel). 2021;13(17). | |
dcterms.references | Gaaz TS, Sulong AB, Ansari MNM, Kadhum AAH, Al-Amiery AA, Nassir MH. Effect of starch loading on the thermo-mechanical and morphological properties of polyurethane composites. Materials (Basel). 2017;10(7). | |
dcterms.references | Torres FG, Commeaux S, Troncoso OP. Starch-based biomaterials for wounddressing applications. Starch/Staerke. 2013;65(7–8), 543–551. | |
dcterms.references | Carvalho AJF. Starch: Major sources, properties and applications as thermoplastic materials. Monomers, Polym Compos from Renew Resour. 2008, 321–342. | |
dcterms.references | Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. Tissue Eng - Part B Rev. 2021;27(6), 604–626. | |
dcterms.references | Zia F, Zia KM, Zuber M, Kamal S, Aslam N. Starch based polyurethanes: A critical review updating recent literature. Carbohydr Polym [Internet]. 2015;134, 784–798. | |
dcterms.references | Zheng L, Sun Z, Li C, Wei Z, Jain P, Wu K. Progress in biodegradable zwitterionic materials. Polym Degrad Stab [Internet]. 2017;139, 1–19. | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117, 384–391. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of protein resistant zwitterionic starches: The effect of substitution degrees. Starch/Staerke. 2015;67(11–12), 920–929. | |
dcterms.references | Liu Y, Yang L, Ma C, Zhang Y. Thermal behavior of sweet potato starch by nonisothermal thermogravimetric analysis. Materials (Basel). 2019;12(5). | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl. 2016;31(5), 708–720. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Navas-Gómez K, Diaz LE, GómezTejedor JA, Serrano MA, et al. Influence of polyol/crosslinker blend composition on phase separation and thermo-mechanical properties of polyurethane thin films. Polymers (Basel). 2020;12(3). | |
dcterms.references | Morales-Gonzalez M, Arévalo-Alquichire S, Diaz LE, Sans JÁ, Vilarinõ-Feltrer G, Gómez-Tejedor JA, et al. Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes. J Mater Res [Internet]. 2020;35(23–24):3276–3285. | |
dcterms.references | Valero MF, Díaz LE. Polyurethane networks from pentaerythritol-modified castor oil and lysine polyisocyanates: synthesis, mechanical, and thermal properties and in vitro degradation. Quim Nova [Internet]. 2014; 37(9):1441–1445. | |
dcterms.references | Uscátegui YL, Arévalo-Alquichire SJ, Gómez-Tejedor JA, Vallés-Lluch A, Díaz LE, Valero MF. Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J Mater Res. 2017;32(19), 3699–3711. | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Appl Surf Sci. 2020;528, 146539. | |
dcterms.references | Zhao H, Li KC, Wu W, Li Q, Jiang Y, Cheng BX, et al. Microstructure and viscoelastic behavior of waterborne polyurethane/cellulose nanofiber nanocomposite. J Ind Eng Chem [Internet]. 2022;110:150–157. | |
dcterms.references | Chi H, Xu K, Wu X, Chen Q, Xue D, Song C, et al. Effect of acetylation on the properties of corn starch. Food Chem. 2008;106(3), 923–928. | |
dcterms.references | Pigłowska M, Kurc B, Rymaniak Ł, Lijewski P, Fuć P. Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O content on the surface by TG/DTG-DTA. Polymers (Basel). 2020;12(2). | |
dcterms.references | Cardoso J, Rubio L, Albores-Velasco M. Thermal degradation of poly(sulfobetaines). J Appl Polym Sci. 1999;73(8), 1409–1414. | |
dcterms.references | Li M, Chen J, Li L, Ye C, Lin X, Qiu T. Novel multi–SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy Environ [Internet]. 2021;6(2), 271–282. | |
dcterms.references | Dereszewska A, Olayo R, Cardoso J. Synthesis and Thermal Degradation of Poly(nbutylisocyanate) Modified by 1,3-Propanesultone. J Appl Polym Sci. 2003;90(13), 3594– 3601. | |
dcterms.references | Liu J, Zhong L, Zewen Y, Liu Y, Meng X, Zhang W, et al. High-efficiency emulsification anionic surfactant for enhancing heavy oil recovery. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2022;642, 128654. | |
dcterms.references | Yan Y, Peng B, Niu B, Ji X, He Y, Shi M. Understanding the Structure, Thermal, Pasting, and Rheological Properties of Potato and Pea Starches Affected by Annealing Using Plasma-Activated Water. Front Nutr. 2022;9, 1–13. | |
dcterms.references | Fonseca-Santanilla EB, Betancourt-López LL. Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. Food Sci Technol Int. 2022;28(2), 144–156. | |
dcterms.references | Govindaraju I, Sunder M, Chakraborty I, Mumbrekar KD, Sankar Mal S, Mazumder N. Investigation of physico-chemical properties of native and gamma irradiated starches. Mater Today Proc [Internet]. 2022;55, 12–16. | |
dcterms.references | Ferraz CA, Fontes RLS, Fontes-Sant’Ana GC, Calado V, López EO, Rocha-Leão MHM. Extraction, Modification, and Chemical, Thermal and Morphological Characterization of Starch From the Agro-Industrial Residue of Mango (Mangifera indica L) var. Ubá. Starch/Staerke. 2019;71(1–2). | |
dcterms.references | Wongsamut C, Suwanpreedee R, Manuspiya H. Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. Int J Adhes Adhes [Internet]. 2020;102, 102677. | |
dcterms.references | Kasprzyk P, Benes H, Donato RK, Datta J. The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s. J Clean Prod [Internet]. 2020;274, 122678. | |
dcterms.references | Zhao X, Qi Y, Li K, Zhang Z. Hydrogen bonds and FTIR peaks of polyether polyurethane-urea. Key Eng Mater. 2019;815 KEM, 151–156. | |
dcterms.references | Shameli K, Ahmad M Bin, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci. 2012;13(6), 6639–6650. | |
dcterms.references | Malay O, Oguz O, Kosak C, Yilgor E, Yilgor I, Menceloglu YZ. Polyurethaneureasilica nanocomposites: Preparation and investigation of the structure-property behavior. Polymer (Guildf) [Internet]. 2013;54(20), 5310–5320. | |
dcterms.references | Lee HS, Hsu SL. An analysis of phase separation kinetics of model polyurethanes. Macromolecules [Internet]. 1989 Mar 1;22(3), 1100–1105. | |
dcterms.references | Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, González A, et al. Synthesis of segmented polyurethanes containing different oligo segments: Experimental and computational approach. Prog Org Coatings. 2021;150. | |
dcterms.references | Li L, Liu X, Niu Y, Ye J, Huang S, Liu C, et al. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG). J Biomed Mater Res - Part B Appl Biomater. 2017;105(5):1200–1209. | |
dcterms.references | Walter PA, Gnanasekaran D, Reddy BSR. Synthesis of different soft segmented polyurethane membranes: Structural characterization and antimicrobial activity studies. J Polym Mater. 2014;31(3), 305–316. | |
dcterms.references | Kumar S, Tewatia P, Samota S, Rattan G, Kaushik A. Ameliorating properties of castor oil based polyurethane hybrid nanocomposites via synergistic addition of graphene and cellulose nanofibers. J Ind Eng Chem [Internet]. 2022;109, 492–509. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today [Internet]. 2020;38, 84–98. | |
dcterms.references | Yang Z, Wu G. Effects of soft segment characteristics on the properties of biodegradable amphiphilic waterborne polyurethane prepared by a green process. J Mater Sci [Internet]. 2020;55(7), 3139–3156. | |
dcterms.references | Polo Fonseca L, Bergamo Trinca R, Isabel Felisberti M. Thermo-responsive polyurethane hydrogels based on poly(ethylene glycol) and poly(caprolactone): Physicochemical and mechanical properties. J Appl Polym Sci. 2016;133(25), 1–10. | |
dcterms.references | Kendaganna Swamy BK, Siddaramaiah. Structure-property relationship of starchfilled chain-extended polyurethanes. J Appl Polym Sci [Internet]. 2003;90(11, :2945–2954. | |
dcterms.references | Omidi-Ghallemohamadi M, Jafari P, Behniafar H. Polyurethane elastomer–silica hybrid films based on oxytetramethylene soft segments: thermal and thermo-mechanical investigations. J Polym Res [Internet]. 2021; 28(3), 3. | |
dcterms.references | Weng F, Zhang P, Koranteng E, Zhang Y, Wu Q, Zeng G. Effects of shell powder size and content on the properties of polycaprolactone composites. J Appl Polym Sci. 2021;138(43), 1–11. | |
dcterms.references | Vrsaljko D, Blagojević SL, Leskovac M, Kovačević V. Effect of calcium carbonate particle size and surface pretreatment on polyurethane composite Part I: Interface and mechanical properties. Mater Res Innov. 2008;12(1), 40–46. | |
dcterms.references | Bharadwaj-Somaskandan S, Krishnamurthi B, Sergeeva T, Shutov F. Macro- and Microfillers as Reinforcing Agents for Polyurethane Elastomers. J Elastomers Plast. 2003;35(4), 325–334. | |
dcterms.references | Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater [Internet]. 2014;10(1), 11–25. | |
dcterms.references | Asensio M, Costa V, Nohales A, Bianchi O, Gómez CM. Tunable structure and properties of segmented thermoplastic polyurethanes as a function offlexible segment. Polymers (Basel). 2019;11(12), 1–22. | |
dcterms.references | Cui Y, Wang H, Pan H, Yan T, Zong C. The effect of mixed soft segment on the microstructure of thermoplastic polyurethane. J Appl Polym Sci. 2021;138(45), 1–10. | |
dcterms.references | Bashir MA. Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids. 2021;2(1), 108–120. | |
dcterms.references | Amirkiai A, Panahi-Sarmad M, Sadeghi GMM, Arjmand M, Abrisham M, Dehghan P, et al. Microstructural design for enhanced mechanical and shape memory performance of polyurethane nanocomposites: Role of hybrid nanofillers of montmorillonite and halloysite nanotube. Appl Clay Sci [Internet]. 2020;198, 105816. | |
dcterms.references | Jayanarayanan K, Rasana N, Mishra RK. Dynamic Mechanical Thermal Analysis of Polymer Nanocomposites [Internet]. Vol. 3, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. Elsevier Inc.; 2017. 123–157 p. | |
dcterms.references | Loh XJ, Colin Sng KB, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials. 2008;29(22), 3185–3194 | |
dcterms.references | alili Marand M, Rezaei M, Babaie A, Lotfi R. Synthesis, characterization, crystallinity, mechanical properties, and shape memory behavior of polyurethane/hydroxyapatite nanocomposites. J Intell Mater Syst Struct. 2020;31(14), 1662–1675 | |
dcterms.references | Mastroiacovo G, Guarino A, Pirola S, Gennari M, Capriuoli F, Micheli B, et al. Cardiovascular tissue banking activity during SARS-CoV-2 pandemic: evolution of national protocols and Lombardy experience. Cell Tissue Bank [Internet]. 2021;22(4), :675–683. Available from: https://doi.org/10.1007/s10561-021-09959-z | |
dcterms.references | Montaña Chaparro WF, Díaz Roa KA, Otálvaro Cifuentes EH. Situación actual de los bancos de tejidos en Colombia: tejido cardiovascular. Rev Colomb Cardiol [Internet]. 2019. ; Available from: http://www.sciencedirect.com/science/article/pii/S0120563319300397 | |
dcterms.references | Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, et al. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol. 2020;11(5), :495–521. | |
dcterms.references | Montrief T, Koyfman A, Long B. Coronary artery bypass graft surgery complications: A review for emergency clinicians. Am J Emerg Med [Internet]. 2018;36(12), :2289–2297. Available from: https://doi.org/10.1016/j.ajem.2018.09.014 | |
dcterms.references | Sung YK, Lee DR, Chung DJ. Advances in the development of hemostatic biomaterials for medical application. Biomater Res. 2021;25(1), :1–10. | |
dcterms.references | Horbett TA. Selected aspects of the state of the art in biomaterials for cardiovascular applications. Colloids Surfaces B Biointerfaces. 2020;191, 110986. | |
dcterms.references | Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol. 2020;8. doi: 10.3389/fbioe.2020.00123. | |
dcterms.references | Horbett TA. Adsorbed Proteins on Biomaterials. Biomater Sci An Introd to Mater Third Ed. 2013;394–408. | |
dcterms.references | Hanson SR, Tucker EI. Blood Coagulation and Blood - Materials Interactions. Biomater Sci An Introd to Mater Third Ed. 2013;(1997), :551–557. | |
dcterms.references | Anderson JM. Inflammation, Wound Healing, and the Foreign-Body Response. Biomater Sci An Introd to Mater Third Ed. 2013;(2005), :503–512. | |
dcterms.references | Lavery KS, Rhodes C, Mcgraw A, Eppihimer MJ. Anti-thrombotic technologies for medical devices. Adv Drug Deliv Rev [Internet]. 2017;112, :2–11. Available from: http://dx.doi.org/10.1016/j.addr.2016.07.008 | |
dcterms.references | Gostev AA, Karpenko AA, Laktionov PP. Polyurethanes in cardiovascular prosthetics. Polym Bull [Internet]. 2018;75(9), :4311–4325. Available from: https://doi.org/10.1007/s00289-017-2266-x | |
dcterms.references | Roth Y, Lewitus DY. The grafting of multifunctional antithrombogenic chemical networks on polyurethane intravascular catheters. Polymers (Basel). 2020;12(5), 1131. | |
dcterms.references | Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. J Mater Chem B. 2018;6(44), :7288–7297. | |
dcterms.references | Ye SH, Hong Y, Sakaguchi H, Shankarraman V, Luketich SK, DAmore A, et al. Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. ACS Appl Mater Interfaces. 2014;6(24), :22796–22806. | |
dcterms.references | Tazawa S, Maeda T, Nakayama M, Hotta A. Synthesis of Thermoplastic Poly(2- methoxyethyl acrylate)-Based Polyurethane by RAFT and Condensation Polymerization. Macromol Rapid Commun. 2020;41(19), :1–5. | |
dcterms.references | Chen X, Gu H, Lyu Z, Liu X, Wang L, Chen H, et al. Sulfonate Groups and Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic Properties. ACS Appl Mater Interfaces. 2018;10(1), :1440–1449. | |
dcterms.references | Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, et al. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci [Internet]. 2016;480, :91–101. Available from: http://www.sciencedirect.com/science/article/pii/S0021979716304568 | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl. 2016;31(5), :708–720. | |
dcterms.references | . De Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM. A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res - Part A. 2012;100 A(9), :2348–2357. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today [Internet]. 2020;38, :84–98. Available from: http://www.sciencedirect.com/science/article/pii/S1369702120301012 | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117, :384– 391. | |
dcterms.references | Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater [Internet]. 2014;10(11), :4618–4628. Available from: http://dx.doi.org/10.1016/j.actbio.2014.07.031 | |
dcterms.references | Stahl AM, Yang YP. Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications. Adv Healthc Mater. 2018;7(16), :1–10. | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Appl Surf Sci [Internet]. 2020;528, :146539. | |
dcterms.references | Morales-Gonzalez M, Arévalo-Alquichire S, Diaz LE, Sans JÁ, Vilarinõ-Feltrer G, Gómez-Tejedor JA, et al. Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes. J Mater Res. 2020;35(23–24), :3276–3285. | |
dcterms.references | Dey J, Xu H, Nguyen KT, Yang J. Crosslinked urethane doped polyester biphasic scaffolds: Potential for in vivo vascular tissue engineering. J Biomed Mater Res - Part A. 2010;95 A(2), :361–370. | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review. Biomater Sci. 2017;5(1), :22–37. | |
dcterms.references | Kumar S, Tewatia P, Samota S, Rattan G, Kaushik A. Ameliorating properties of castor oil based polyurethane hybrid nanocomposites via synergistic addition of graphene and cellulose nanofibers. J Ind Eng Chem [Internet]. 2022;109, :492–509. Available from: https://doi.org/10.1016/j.jiec.2022.02.035 | |
dcterms.references | Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater [Internet]. 2019;94, :11–24. Available from: https://doi.org/10.1016/j.actbio.2019.06.022 | |
dcterms.references | Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater. 2019;8(21), 1900527. | |
dcterms.references | Drozd NN, Lunkov AP, Shagdarova BT, Zhuikova Y V., Il’ina A V., Varlamov VP. Thromboresistance of Polyurethane Plates Modified with Quaternized Chitosan and Heparin. Appl Biochem Microbiol. 2022;58(3), :315–21. | |
dcterms.references | Vakili H, Mohseni M, Ghanbari H, Yahyaei H, Makki H, González A, et al. Enhanced hemocompatibility of a PEGilated polycarbonate based segmented polyurethane. Int J Polym Mater Polym Biomater [Internet]. 2022;71(7), :531–539. Available from: https://doi.org/10.1080/00914037.2020.1857760 | |
dcterms.references | Wang Y, Ma B, Liu K, Luo R, Wang Y. A multi-in-one strategy with glucosetriggered long-term antithrombogenicity and sequentially enhanced endothelialization for biological valve leaflets. Biomaterials [Internet]. 2021;275(June), :120981. Available from: https://doi.org/10.1016/j.biomaterials.2021.120981 | |
dcterms.references | Bremmell KE, Britcher L, Griesser HJ. Steric and electrostatic surface forces on sulfonated PEG graft surfaces with selective albumin adsorption. Colloids Surfaces B Biointerfaces [Internet]. 2013;106, :102–108. Available from: http://dx.doi.org/10.1016/j.colsurfb.2013.01.052 | |
dcterms.references | Fedel M, Motta A, Maniglio D, Migliaresi C. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices. J Biomed Mater Res - Part B Appl Biomater. 2009;90 B(1), :338–349. | |
dcterms.references | Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE. Effect of albumin coating on the in vitro blood compatibility of Dacron® arterial prostheses. Biomaterials. 1989;10(3), :147–155. | |
dcterms.references | Mishra V, Heath RJ. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. Int J Mol Sci. 2021;22(16), 8411. | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |