dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.advisor | Diaz Barrera, Luis Eduardo | |
dc.contributor.advisor | Arevalo Alquichire, Said Jose | |
dc.contributor.author | Cespedes Rojas, Jhoan Felipe | |
dc.date.accessioned | 2023-03-10T14:43:24Z | |
dc.date.available | 2023-03-10T14:43:24Z | |
dc.date.issued | 2023-02-10 | |
dc.identifier.uri | http://hdl.handle.net/10818/54342 | |
dc.description | 90 páginas | es_CO |
dc.description.abstract | Cardiovascular diseases have increased worldwide due to post complications generated by SARS-Cov-2 illness, and bad food habits settled after quarantine suffered from this situation. In this context, demand for vascular grafts has increased because these devices are used to solve obstructions of blood vessels. However, the autologous graft availability is low and synthetic materials used for these cardiovascular devices have shown low thromboresistance over frame time. Polyurethanes implemented in this field have shown good mechanical properties and biocompatibility. Nevertheless, thrombogenicity activity is high yet in comparison with autologous graft. Some efforts as surface, chemical backbone modifications and inclusion of fillers in polyurethanes have shown an improvement in anti-thrombogenicity activity in the short term, but this increase in this activity did not remain over the years. In the last years, zwitterionic moieties have been a tendency due to their anti-fouling properties, which prevent no-specific adsorption protein and the activation of cascade coagulation. These moieties have been included at the surface and inside the chemical backbone of polyurethanes. However, the inclusion of these compounds at the surface did not stay over time due to the shear force caused by blood flow. Additionally, the chemical modification of polyurethanes affects their mechanical properties to a significant degree. Therefore, this research studied the influence of addition potato and zwitterionic starch (at 1, 2 and 3%w/w) as fillers in polyurethane matrices obtained from polycaprolactone diol (PCL), polyethylene glycol (PEG), pentaerythritol (PE), and isophorone diisocyanate (IPDI) on their physicochemical, mechanical thermal, and biological properties. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Evaluation of zwitterionic starch filler in thermoset polyurethanes on the antithrombogenicity activity as candidates for cardiovascular applications | es_CO |
dc.type | master thesis | es_CO |
dc.identifier.local | 291525 | |
dc.identifier.local | TE12200 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Sistema cardiovascular -- Enfermedades | |
dc.subject.decs | SARS-CoV-2 | |
dc.subject.decs | Poliuretanos | |
dcterms.references | Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al.
Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update
From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. | |
dcterms.references | WHO. Mortality and global health estimates. 2020. Available from:
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates | |
dcterms.references | Muhammad DG, Abubakar IA. COVID-19 lockdown may increase cardiovascular
disease risk factors. Egypt Hear J. 2021;73(1). 10.1186/s43044-020-00127-4. | |
dcterms.references | Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system.
Nat Rev Cardiol [Internet]. 2020;17(5):259–260. | |
dcterms.references | Tulchinsky TH, Varavikova EA. Chapter 5 - Non-Communicable Diseases and
Conditions. In: Tulchinsky TH, Varavikova EABT-TNPH (Third E, editors. San
Diego: Academic Press; 2014. p. 237–309. | |
dcterms.references | Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to
Biomaterials in Medical Devices. Front Bioeng Biotechnol. 2020;8.
https://doi.org/10.3389/fbioe.2020.00123 | |
dcterms.references | López J, González E, Miguelena J, Martín M, Cuerpo G, Rodríguez-Roda J. Toma
de decisiones en cirugía coronaria. Indicaciones y resultados del tratamiento
quirúrgico del paciente con cardiopatía isquémica. Cirugía Cardiovasc.
2017;24(2):91–96. | |
dcterms.references | Aalto-Korte K, Engfeldt M, Estlander T, Jolanki R. Polyurethane resins. In:
Kanerva’s Occupational Dermatology. Finnish Institute of Occupational Health,
Helsinki, Finland: Springer International Publishing; 2019. p. 799–807.
10.1007/978-3-319-68617-2_53 | |
dcterms.references | Guhathakurta S, Galla S. Progress in cardiovascular biomaterials. Asian Cardiovasc
Thorac Ann. 2019;27(9).744–750. | |
dcterms.references | Navas-Gómez K, Valero MF. Why polyurethanes have been used in the manufacture
and design of cardiovascular devices: A systematic review. Materials (Basel).
2020;13(15). 10.3390/ma13153250 | |
dcterms.references | Arévalo FR, Osorio SA, Valcárcel NA, Ibarra JC, Valero MF. Characterization and
in vitro biocompatibility of binary mixtures of chitosan and polyurethanes
synthesized from chemically modified castor oil, as materials for medical use. Polym
from Renew Resour. 2018;9(1):23–38. | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation
of chitosan on the physico-chemical, mechanical properties and biological activity
on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J
Biomater Appl. 2016;31(5):708–720 | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile
heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for
hemocompatibility and antibacterial properties. Appl Surf Sci . 2020;528:146539. | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and
endothelialization of polyurethane for vascular tissue engineering applications: A
review. Biomater Sci. 2017;5(1):22–37. | |
dcterms.references | Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell
responses to castor oil-based polyurethane substrates functionalized by direct laser
ablation. Biomed Mater. 2017;12(6). 10.1088/1748-605X/aa8353 | |
dcterms.references | Major R, Plutecka H, Gruszczynska A, Lackner JM, Major B. Effects of the surface
modification of polyurethane substrates on genotoxicity and blood activation
processes. Mater Sci Eng C. 2017;79:756–762. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Diaz LE, Valero MF. Surface response
methodology-based mixture design to study the influence of polyol blend
composition on polyurethanes’ properties. Molecules. 2018;23(8). 1942. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today. 2020;38:84–98. | |
dcterms.references | Wen N, Lü S, Gao C, Xu X, Bai X, Wu C, et al. Glucose-responsive zwitterionic
dialdehyde starch-based micelles with potential anti-phagocytic behavior for insulin
delivery. Chem Eng J. 2018;335:52–62. | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the
prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117:384–391. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of
protein resistant zwitterionic starches: The effect of substitution degrees.
Starch/Staerke. 2015;67(11–12):920–929. | |
dcterms.references | Montaña Chaparro WF, Díaz Roa KA, Otálvaro Cifuentes EH. Situación actual de
los bancos de tejidos en Colombia: tejido cardiovascular. Rev Colomb Cardiol .
2020;27(5):461–468. | |
dcterms.references | Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, et al. Zwitterionic modification of
polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface
Sci. 2016;480:91–101. | |
dcterms.references | Ma X, Sheu M, Eramo L, Wainwright J, Li J. Anti-thrombogenic medical devices
and methods. 2015. | |
dcterms.references | Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the Hydration of
Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear
Magnetic Resonance. Langmuir. 2012;28(19):7436–7441. | |
dcterms.references | Xiao X, Chen H, Chen S. New zwitterionic polyurethanes containing pendant
carboxyl-pyridinium with shape memory, shape reconfiguration, and self-healing
properties. Polymer (Guildf). 2019;180:121727. | |
dcterms.references | Ye SH, Hong Y, Sakaguchi H, Shankarraman V, Luketich SK, DAmore A, et al.
Nonthrombogenic, biodegradable elastomeric polyurethanes with variable
sulfobetaine content. ACS Appl Mater Interfaces. 2014;6(24):22796–22806. | |
dcterms.references | Belanger A, Decarmine A, Jiang S, Cook K, Amoako KA. Evaluating the Effect of
Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a
Flow Cell. Langmuir. 2019;35(5):1984–1988 | |
dcterms.references | Averous L, Halley PJ. Chapter 1: Starch Polymers: From the Field to Industrial
Products. Starch Polym From Genet Eng to Green Appl. 2014;3–10. | |
dcterms.references | Solanki A, Das M, Thakore S. A review on carbohydrate embedded polyurethanes:
An emerging area in the scope of biomedical applications. Carbohydr Polym .
2018;181:1003–1016. | |
dcterms.references | Heydrick S, Roberts E, Kim J, Emani S, Wong JY. Pediatric cardiovascular grafts:
historical perspective and future directions. Curr Opin Biotechnol. 2016;40:119–124. | |
dcterms.references | Faturechi R, Hashemi A, Abolfathi N, Solouk A, Seifalian A. Fabrications of small
diameter compliance bypass conduit using electrospinning of clinical grade
polyurethane. Vascular. 2019;27(6):636–647. | |
dcterms.references | Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan
S, et al. Multifaceted prospects of nanocomposites for cardiovascular grafts and
stents. Int J Nanomedicine. 2015;10:2785–2803. | |
dcterms.references | Valero MF, Díaz LE. Polyurethane networks from pentaerythritol-modified castor
oil and lysine polyisocyanates: synthesis, mechanical, and thermal properties and in
vitro degradation. Quim Nova. 2014;37(9):1441–1445. | |
dcterms.references | Selvakumar M, Jaganathan SK, Nando GB, Chattopadhyay S. Synthesis and
characterization of novel polycarbonate based polyurethane/polymer wrapped
hydroxyapatite nanocomposites: Mechanical properties, osteoconductivity and
biocompatibility. J Biomed Nanotechnol. 2015;11(2):291–305. | |
dcterms.references | Kendaganna Swamy BK, Siddaramaiah. Structure-property relationship of starchfilled chain-extended polyurethanes. J Appl Polym Sci. 2003;90(11):2945–2954. | |
dcterms.references | 37. Zaredar Z, Askari F, Shokrolahi P. Polyurethane synthesis for vascular application. Prog Biomater. 2018;7(4):269–278. | |
dcterms.references | Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y.
Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug
molecule incorporation. J Mater Chem B. 2018;6(44):7288–7297. | |
dcterms.references | Zhu Z, Gao Q, Long Z, Huo Q, Ge Y, Vianney N, et al.
Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by
CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial
activity. Bioact Mater. 2021;6(8):2546–2556. | |
dcterms.references | Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-Inspired Surface
Chemistry for Multifunctional Coatings. Science (80- ). 2007;318(5849):426 LP –
430. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of
protein resistant zwitterionic starches : The effect of substitution degrees. 2015;1–10. | |
dcterms.references | Yao M, Sun H, Guo Z, Sun X, Yu Q, Wu X, et al. A starch-based zwitterionic
hydrogel coating for blood-contacting devices with durability and bio-functionality.
Chem Eng J. 2021;421:129702. | |
dcterms.references | Toh HW, Toong DWY, Ng JCK, Ow V, Lu S, Tan LP, et al. Polymer blends and
polymer composites for cardiovascular implants. Eur Polym J. 2021, 146. | |
dcterms.references | Haponiuk JT, Formela K. PU Polymers, Their Composites, and Nanocomposites:
State of the Art and New Challenges [Internet]. Polyurethane Polymers: Composites and
Nanocomposites. Elsevier Inc.; 2017. 1–20 p. | |
dcterms.references | Zieber L, Or S, Ruvinov E, Cohen S. Microfabrication of channel arrays promotes
vessel-like network formation in cardiac cell construct and vascularization in vivo.
Biofabrication [Internet]. 2014;6(2), 24102 | |
dcterms.references | Díaz-Herráez P, Garbayo E, Simón-Yarza T, Formiga FR, Prosper F, Blanco-Prieto
MJ. Adipose-derived stem cells combined with Neuregulin-1 delivery systems for heart
tissue engineering. Eur J Pharm Biopharm [Internet]. 2013;85(1), 143–150. | |
dcterms.references | Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G. Surface modification of
polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM)
coating for small-diameter vascular grafts applications. Mater Sci Eng C [Internet].
2021;128(June), 112301. | |
dcterms.references | Mora-Cortes LF, Rivas-Muñoz AN, Neira-Velázquez MG, Contreras-Esquivel JC,
Roger P, Mora-Cura YN, et al. Biocompatible enhancement of poly(ethylene terephthalate)
(PET) waste films by cold plasma aminolysis. J Chem Technol Biotechnol [Internet]. 2022. | |
dcterms.references | Kianpour G, Bagheri R, Pourjavadi A, Ghanbari H. In situ synthesized TiO2-
polyurethane nanocomposite for bypass graft application: In vitro endothelialization and
degradation. Mater Sci Eng C [Internet]. 2020;114(May), 111043. | |
dcterms.references | Lee TH, Yen CT, Hsu SH. Preparation of Polyurethane-Graphene Nanocomposite
and Evaluation of Neurovascular Regeneration. ACS Biomater Sci Eng. 2020;6(1), 597–
609. | |
dcterms.references | Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, et al.
Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for
Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol. 2020;11(5),
495–521. | |
dcterms.references | Gostev AA, Karpenko AA, Laktionov PP. Polyurethanes in cardiovascular
prosthetics. Polym Bull [Internet]. 2018;75(9), 4311–4325. | |
dcterms.references | Navas-Gómez K, Valero MF. Why polyurethanes have been used in the
manufacture and design of cardiovascular devices: A systematic review. Materials (Basel).
2020;13(15), 1–17. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Diaz LE, Valero MF. Surface response
methodology-based mixture design to study the influence of polyol blend composition on
polyurethanes’ properties. Molecules. 2018;23(8). | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and
endothelialization of polyurethane for vascular tissue engineering applications: A review.
Biomater Sci. 2017;5(1), 22–37. | |
dcterms.references | Król P, Uram Ł, Król B, Pielichowska K, Sochacka-Piętal M, Walczak M.
Synthesis and property of polyurethane elastomer for biomedical applications based on
nonaromatic isocyanates, polyesters, and ethylene glycol. Colloid Polym Sci. 2020;298(8),
1077–1093. | |
dcterms.references | Li G, Li D, Niu Y, He T, Chen KC, Xu K. Alternating block polyurethanes based on
PCL and PEG as potential nerve regeneration materials. J Biomed Mater Res - Part A.
2014;102(3), 685–697. | |
dcterms.references | Vadillo J, Larraza I, Calvo-Correas T, Gabilondo N, Derail C, Eceiza A. Role of in
situ added cellulose nanocrystals as rheological modulator of novel waterborne
polyurethane urea for 3D-printing technology. Cellulose [Internet]. 2021;28(8), 4729–4744. | |
dcterms.references | Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used
natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C
[Internet]. 2020;110(January), 110698. | |
dcterms.references | Villani M, Consonni R, Canetti M, Bertoglio F, Iervese S, Bruni G, et al.
Polyurethane-based composites: Effects of antibacterial fillers on the physical-mechanical
behavior of thermoplastic polyurethanes. Polymers (Basel). 2020;12(2). | |
dcterms.references | Arévalo FR, Osorio SA, Valcárcel NA, Ibarra JC, Valero MF. Characterization and
in vitro biocompatibility of binary mixtures of chitosan and polyurethanes synthesized from
chemically modified castor oil, as materials for medical use. Polym from Renew Resour.
2018;9(1), 23–38. | |
dcterms.references | Hormaiztegui MEV, Marin D, Gañán P, Stefani PM, Mucci V, Aranguren MI.
Nanocelluloses reinforced bio-waterborne polyurethane. Polymers (Basel). 2021;13(17). | |
dcterms.references | Gaaz TS, Sulong AB, Ansari MNM, Kadhum AAH, Al-Amiery AA, Nassir MH.
Effect of starch loading on the thermo-mechanical and morphological properties of
polyurethane composites. Materials (Basel). 2017;10(7). | |
dcterms.references | Torres FG, Commeaux S, Troncoso OP. Starch-based biomaterials for wounddressing applications. Starch/Staerke. 2013;65(7–8), 543–551. | |
dcterms.references | Carvalho AJF. Starch: Major sources, properties and applications as thermoplastic
materials. Monomers, Polym Compos from Renew Resour. 2008, 321–342. | |
dcterms.references | Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-Based Biomaterials in
Tissue Engineering: A Review. Tissue Eng - Part B Rev. 2021;27(6), 604–626. | |
dcterms.references | Zia F, Zia KM, Zuber M, Kamal S, Aslam N. Starch based polyurethanes: A critical
review updating recent literature. Carbohydr Polym [Internet]. 2015;134, 784–798. | |
dcterms.references | Zheng L, Sun Z, Li C, Wei Z, Jain P, Wu K. Progress in biodegradable zwitterionic
materials. Polym Degrad Stab [Internet]. 2017;139, 1–19. | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the
prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117, 384–391. | |
dcterms.references | Wang J, Li J, Yang H, Zhu C, Yang J, Yao F. Preparation and characterization of
protein resistant zwitterionic starches: The effect of substitution degrees. Starch/Staerke.
2015;67(11–12), 920–929. | |
dcterms.references | Liu Y, Yang L, Ma C, Zhang Y. Thermal behavior of sweet potato starch by nonisothermal thermogravimetric analysis. Materials (Basel). 2019;12(5). | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation
of chitosan on the physico-chemical, mechanical properties and biological activity on a
mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl.
2016;31(5), 708–720. | |
dcterms.references | Arévalo-Alquichire S, Morales-Gonzalez M, Navas-Gómez K, Diaz LE, GómezTejedor JA, Serrano MA, et al. Influence of polyol/crosslinker blend composition on phase
separation and thermo-mechanical properties of polyurethane thin films. Polymers (Basel).
2020;12(3). | |
dcterms.references | Morales-Gonzalez M, Arévalo-Alquichire S, Diaz LE, Sans JÁ, Vilarinõ-Feltrer G,
Gómez-Tejedor JA, et al. Hydrolytic stability and biocompatibility on smooth muscle cells
of polyethylene glycol-polycaprolactone-based polyurethanes. J Mater Res [Internet].
2020;35(23–24):3276–3285. | |
dcterms.references | Valero MF, Díaz LE. Polyurethane networks from pentaerythritol-modified castor
oil and lysine polyisocyanates: synthesis, mechanical, and thermal properties and in vitro
degradation. Quim Nova [Internet]. 2014; 37(9):1441–1445. | |
dcterms.references | Uscátegui YL, Arévalo-Alquichire SJ, Gómez-Tejedor JA, Vallés-Lluch A, Díaz
LE, Valero MF. Polyurethane-based bioadhesive synthesized from polyols derived from
castor oil (Ricinus communis) and low concentration of chitosan. J Mater Res.
2017;32(19), 3699–3711. | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile
heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for
hemocompatibility and antibacterial properties. Appl Surf Sci. 2020;528, 146539. | |
dcterms.references | Zhao H, Li KC, Wu W, Li Q, Jiang Y, Cheng BX, et al. Microstructure and
viscoelastic behavior of waterborne polyurethane/cellulose nanofiber nanocomposite. J Ind
Eng Chem [Internet]. 2022;110:150–157. | |
dcterms.references | Chi H, Xu K, Wu X, Chen Q, Xue D, Song C, et al. Effect of acetylation on the
properties of corn starch. Food Chem. 2008;106(3), 923–928. | |
dcterms.references | Pigłowska M, Kurc B, Rymaniak Ł, Lijewski P, Fuć P. Kinetics and
thermodynamics of thermal degradation of different starches and estimation the OH group
and H2O content on the surface by TG/DTG-DTA. Polymers (Basel). 2020;12(2). | |
dcterms.references | Cardoso J, Rubio L, Albores-Velasco M. Thermal degradation of
poly(sulfobetaines). J Appl Polym Sci. 1999;73(8), 1409–1414. | |
dcterms.references | Li M, Chen J, Li L, Ye C, Lin X, Qiu T. Novel multi–SO3H functionalized ionic
liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy Environ
[Internet]. 2021;6(2), 271–282. | |
dcterms.references | Dereszewska A, Olayo R, Cardoso J. Synthesis and Thermal Degradation of Poly(nbutylisocyanate) Modified by 1,3-Propanesultone. J Appl Polym Sci. 2003;90(13), 3594–
3601. | |
dcterms.references | Liu J, Zhong L, Zewen Y, Liu Y, Meng X, Zhang W, et al. High-efficiency
emulsification anionic surfactant for enhancing heavy oil recovery. Colloids Surfaces A
Physicochem Eng Asp [Internet]. 2022;642, 128654. | |
dcterms.references | Yan Y, Peng B, Niu B, Ji X, He Y, Shi M. Understanding the Structure, Thermal,
Pasting, and Rheological Properties of Potato and Pea Starches Affected by Annealing
Using Plasma-Activated Water. Front Nutr. 2022;9, 1–13. | |
dcterms.references | Fonseca-Santanilla EB, Betancourt-López LL. Physicochemical and structural
characterization of starches from Andean roots and tubers grown in Colombia. Food Sci
Technol Int. 2022;28(2), 144–156. | |
dcterms.references | Govindaraju I, Sunder M, Chakraborty I, Mumbrekar KD, Sankar Mal S, Mazumder
N. Investigation of physico-chemical properties of native and gamma irradiated starches.
Mater Today Proc [Internet]. 2022;55, 12–16. | |
dcterms.references | Ferraz CA, Fontes RLS, Fontes-Sant’Ana GC, Calado V, López EO, Rocha-Leão
MHM. Extraction, Modification, and Chemical, Thermal and Morphological
Characterization of Starch From the Agro-Industrial Residue of Mango (Mangifera indica
L) var. Ubá. Starch/Staerke. 2019;71(1–2). | |
dcterms.references | Wongsamut C, Suwanpreedee R, Manuspiya H. Thermoplastic polyurethane-based
polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion
properties. Int J Adhes Adhes [Internet]. 2020;102, 102677. | |
dcterms.references | Kasprzyk P, Benes H, Donato RK, Datta J. The role of hydrogen bonding on tuning
hard-soft segments in bio-based thermoplastic poly(ether-urethane)s. J Clean Prod
[Internet]. 2020;274, 122678. | |
dcterms.references | Zhao X, Qi Y, Li K, Zhang Z. Hydrogen bonds and FTIR peaks of polyether
polyurethane-urea. Key Eng Mater. 2019;815 KEM, 151–156. | |
dcterms.references | Shameli K, Ahmad M Bin, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H,
et al. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by
the green method. Int J Mol Sci. 2012;13(6), 6639–6650. | |
dcterms.references | Malay O, Oguz O, Kosak C, Yilgor E, Yilgor I, Menceloglu YZ. Polyurethaneureasilica nanocomposites: Preparation and investigation of the structure-property behavior.
Polymer (Guildf) [Internet]. 2013;54(20), 5310–5320. | |
dcterms.references | Lee HS, Hsu SL. An analysis of phase separation kinetics of model polyurethanes.
Macromolecules [Internet]. 1989 Mar 1;22(3), 1100–1105. | |
dcterms.references | Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, González A, et al.
Synthesis of segmented polyurethanes containing different oligo segments: Experimental
and computational approach. Prog Org Coatings. 2021;150. | |
dcterms.references | Li L, Liu X, Niu Y, Ye J, Huang S, Liu C, et al. Synthesis and wound healing of
alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol)
(PEG). J Biomed Mater Res - Part B Appl Biomater. 2017;105(5):1200–1209. | |
dcterms.references | Walter PA, Gnanasekaran D, Reddy BSR. Synthesis of different soft segmented
polyurethane membranes: Structural characterization and antimicrobial activity studies. J
Polym Mater. 2014;31(3), 305–316. | |
dcterms.references | Kumar S, Tewatia P, Samota S, Rattan G, Kaushik A. Ameliorating properties of
castor oil based polyurethane hybrid nanocomposites via synergistic addition of graphene
and cellulose nanofibers. J Ind Eng Chem [Internet]. 2022;109, 492–509. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for
antibiofouling applications in implantable devices. Mater Today [Internet]. 2020;38, 84–98. | |
dcterms.references | Yang Z, Wu G. Effects of soft segment characteristics on the properties of
biodegradable amphiphilic waterborne polyurethane prepared by a green process. J Mater
Sci [Internet]. 2020;55(7), 3139–3156. | |
dcterms.references | Polo Fonseca L, Bergamo Trinca R, Isabel Felisberti M. Thermo-responsive
polyurethane hydrogels based on poly(ethylene glycol) and poly(caprolactone): Physicochemical and mechanical properties. J Appl Polym Sci. 2016;133(25), 1–10. | |
dcterms.references | Kendaganna Swamy BK, Siddaramaiah. Structure-property relationship of starchfilled chain-extended polyurethanes. J Appl Polym Sci [Internet]. 2003;90(11, :2945–2954. | |
dcterms.references | Omidi-Ghallemohamadi M, Jafari P, Behniafar H. Polyurethane elastomer–silica
hybrid films based on oxytetramethylene soft segments: thermal and thermo-mechanical
investigations. J Polym Res [Internet]. 2021; 28(3), 3. | |
dcterms.references | Weng F, Zhang P, Koranteng E, Zhang Y, Wu Q, Zeng G. Effects of shell powder
size and content on the properties of polycaprolactone composites. J Appl Polym Sci.
2021;138(43), 1–11. | |
dcterms.references | Vrsaljko D, Blagojević SL, Leskovac M, Kovačević V. Effect of calcium carbonate
particle size and surface pretreatment on polyurethane composite Part I: Interface and
mechanical properties. Mater Res Innov. 2008;12(1), 40–46. | |
dcterms.references | Bharadwaj-Somaskandan S, Krishnamurthi B, Sergeeva T, Shutov F. Macro- and
Microfillers as Reinforcing Agents for Polyurethane Elastomers. J Elastomers Plast.
2003;35(4), 325–334. | |
dcterms.references | Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, et al. Electrospun
scaffolds for tissue engineering of vascular grafts. Acta Biomater [Internet]. 2014;10(1),
11–25. | |
dcterms.references | Asensio M, Costa V, Nohales A, Bianchi O, Gómez CM. Tunable structure and
properties of segmented thermoplastic polyurethanes as a function offlexible segment.
Polymers (Basel). 2019;11(12), 1–22. | |
dcterms.references | Cui Y, Wang H, Pan H, Yan T, Zong C. The effect of mixed soft segment on the
microstructure of thermoplastic polyurethane. J Appl Polym Sci. 2021;138(45), 1–10. | |
dcterms.references | Bashir MA. Use of Dynamic Mechanical Analysis (DMA) for Characterizing
Interfacial Interactions in Filled Polymers. Solids. 2021;2(1), 108–120. | |
dcterms.references | Amirkiai A, Panahi-Sarmad M, Sadeghi GMM, Arjmand M, Abrisham M, Dehghan
P, et al. Microstructural design for enhanced mechanical and shape memory performance of
polyurethane nanocomposites: Role of hybrid nanofillers of montmorillonite and halloysite
nanotube. Appl Clay Sci [Internet]. 2020;198, 105816. | |
dcterms.references | Jayanarayanan K, Rasana N, Mishra RK. Dynamic Mechanical Thermal Analysis of
Polymer Nanocomposites [Internet]. Vol. 3, Thermal and Rheological Measurement
Techniques for Nanomaterials Characterization. Elsevier Inc.; 2017. 123–157 p. | |
dcterms.references | Loh XJ, Colin Sng KB, Li J. Synthesis and water-swelling of thermo-responsive
poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and
poly(propylene glycol). Biomaterials. 2008;29(22), 3185–3194 | |
dcterms.references | alili Marand M, Rezaei M, Babaie A, Lotfi R. Synthesis, characterization,
crystallinity, mechanical properties, and shape memory behavior of
polyurethane/hydroxyapatite nanocomposites. J Intell Mater Syst Struct. 2020;31(14),
1662–1675 | |
dcterms.references | Mastroiacovo G, Guarino A, Pirola S, Gennari M, Capriuoli F, Micheli B, et al.
Cardiovascular tissue banking activity during SARS-CoV-2 pandemic: evolution of
national protocols and Lombardy experience. Cell Tissue Bank [Internet].
2021;22(4), :675–683. Available from: https://doi.org/10.1007/s10561-021-09959-z | |
dcterms.references | Montaña Chaparro WF, Díaz Roa KA, Otálvaro Cifuentes EH. Situación actual de
los bancos de tejidos en Colombia: tejido cardiovascular. Rev Colomb Cardiol
[Internet]. 2019. ; Available from:
http://www.sciencedirect.com/science/article/pii/S0120563319300397 | |
dcterms.references | Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, et al.
Considerations in the Development of Small-Diameter Vascular Graft as an
Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng
Technol. 2020;11(5), :495–521. | |
dcterms.references | Montrief T, Koyfman A, Long B. Coronary artery bypass graft surgery
complications: A review for emergency clinicians. Am J Emerg Med [Internet].
2018;36(12), :2289–2297. Available from:
https://doi.org/10.1016/j.ajem.2018.09.014 | |
dcterms.references | Sung YK, Lee DR, Chung DJ. Advances in the development of hemostatic
biomaterials for medical application. Biomater Res. 2021;25(1), :1–10. | |
dcterms.references | Horbett TA. Selected aspects of the state of the art in biomaterials for cardiovascular
applications. Colloids Surfaces B Biointerfaces. 2020;191, 110986. | |
dcterms.references | Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to
Biomaterials in Medical Devices. Front Bioeng Biotechnol. 2020;8. doi:
10.3389/fbioe.2020.00123. | |
dcterms.references | Horbett TA. Adsorbed Proteins on Biomaterials. Biomater Sci An Introd to Mater
Third Ed. 2013;394–408. | |
dcterms.references | Hanson SR, Tucker EI. Blood Coagulation and Blood - Materials Interactions.
Biomater Sci An Introd to Mater Third Ed. 2013;(1997), :551–557. | |
dcterms.references | Anderson JM. Inflammation, Wound Healing, and the Foreign-Body Response.
Biomater Sci An Introd to Mater Third Ed. 2013;(2005), :503–512. | |
dcterms.references | Lavery KS, Rhodes C, Mcgraw A, Eppihimer MJ. Anti-thrombotic technologies for
medical devices. Adv Drug Deliv Rev [Internet]. 2017;112, :2–11. Available from:
http://dx.doi.org/10.1016/j.addr.2016.07.008 | |
dcterms.references | Gostev AA, Karpenko AA, Laktionov PP. Polyurethanes in cardiovascular
prosthetics. Polym Bull [Internet]. 2018;75(9), :4311–4325. Available from:
https://doi.org/10.1007/s00289-017-2266-x | |
dcterms.references | Roth Y, Lewitus DY. The grafting of multifunctional antithrombogenic chemical
networks on polyurethane intravascular catheters. Polymers (Basel). 2020;12(5),
1131. | |
dcterms.references | Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y.
Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug
molecule incorporation. J Mater Chem B. 2018;6(44), :7288–7297. | |
dcterms.references | Ye SH, Hong Y, Sakaguchi H, Shankarraman V, Luketich SK, DAmore A, et al.
Nonthrombogenic, biodegradable elastomeric polyurethanes with variable
sulfobetaine content. ACS Appl Mater Interfaces. 2014;6(24), :22796–22806. | |
dcterms.references | Tazawa S, Maeda T, Nakayama M, Hotta A. Synthesis of Thermoplastic Poly(2-
methoxyethyl acrylate)-Based Polyurethane by RAFT and Condensation
Polymerization. Macromol Rapid Commun. 2020;41(19), :1–5. | |
dcterms.references | Chen X, Gu H, Lyu Z, Liu X, Wang L, Chen H, et al. Sulfonate Groups and
Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used
as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic
Properties. ACS Appl Mater Interfaces. 2018;10(1), :1440–1449. | |
dcterms.references | Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, et al. Zwitterionic modification of
polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface
Sci [Internet]. 2016;480, :91–101. Available from:
http://www.sciencedirect.com/science/article/pii/S0021979716304568 | |
dcterms.references | Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation
of chitosan on the physico-chemical, mechanical properties and biological activity
on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J
Biomater Appl. 2016;31(5), :708–720. | |
dcterms.references | . De Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM. A
silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater
Res - Part A. 2012;100 A(9), :2348–2357. | |
dcterms.references | Erathodiyil N, Chan H-M, Wu H, Ying JY. Zwitterionic polymers and hydrogels for
antibiofouling applications in implantable devices. Mater Today [Internet]. 2020;38,
:84–98. Available from:
http://www.sciencedirect.com/science/article/pii/S1369702120301012 | |
dcterms.references | Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F. Ionic starch-based hydrogels for the
prevention of nonspecific protein adsorption. Carbohydr Polym. 2015;117, :384–
391. | |
dcterms.references | Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y. Electrospun
biodegradable elastic polyurethane scaffolds with dipyridamole release for small
diameter vascular grafts. Acta Biomater [Internet]. 2014;10(11), :4618–4628.
Available from: http://dx.doi.org/10.1016/j.actbio.2014.07.031 | |
dcterms.references | Stahl AM, Yang YP. Tunable Elastomers with an Antithrombotic Component for
Cardiovascular Applications. Adv Healthc Mater. 2018;7(16), :1–10. | |
dcterms.references | Jin Y, Zhu Z, Liang L, Lan K, Zheng Q, Wang Y, et al. A facile
heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for
hemocompatibility and antibacterial properties. Appl Surf Sci [Internet]. 2020;528, :146539. | |
dcterms.references | Morales-Gonzalez M, Arévalo-Alquichire S, Diaz LE, Sans JÁ, Vilarinõ-Feltrer G,
Gómez-Tejedor JA, et al. Hydrolytic stability and biocompatibility on smooth
muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes. J Mater
Res. 2020;35(23–24), :3276–3285. | |
dcterms.references | Dey J, Xu H, Nguyen KT, Yang J. Crosslinked urethane doped polyester biphasic
scaffolds: Potential for in vivo vascular tissue engineering. J Biomed Mater Res -
Part A. 2010;95 A(2), :361–370. | |
dcterms.references | Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and
endothelialization of polyurethane for vascular tissue engineering applications: A
review. Biomater Sci. 2017;5(1), :22–37. | |
dcterms.references | Kumar S, Tewatia P, Samota S, Rattan G, Kaushik A. Ameliorating properties of
castor oil based polyurethane hybrid nanocomposites via synergistic addition of
graphene and cellulose nanofibers. J Ind Eng Chem [Internet]. 2022;109, :492–509.
Available from: https://doi.org/10.1016/j.jiec.2022.02.035 | |
dcterms.references | Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge.
Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater
[Internet]. 2019;94, :11–24. Available from:
https://doi.org/10.1016/j.actbio.2019.06.022 | |
dcterms.references | Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro
Thrombogenicity Testing of Biomaterials. Adv Healthc Mater. 2019;8(21), 1900527. | |
dcterms.references | Drozd NN, Lunkov AP, Shagdarova BT, Zhuikova Y V., Il’ina A V., Varlamov VP.
Thromboresistance of Polyurethane Plates Modified with Quaternized Chitosan and
Heparin. Appl Biochem Microbiol. 2022;58(3), :315–21. | |
dcterms.references | Vakili H, Mohseni M, Ghanbari H, Yahyaei H, Makki H, González A, et al.
Enhanced hemocompatibility of a PEGilated polycarbonate based segmented
polyurethane. Int J Polym Mater Polym Biomater [Internet]. 2022;71(7), :531–539.
Available from: https://doi.org/10.1080/00914037.2020.1857760 | |
dcterms.references | Wang Y, Ma B, Liu K, Luo R, Wang Y. A multi-in-one strategy with glucosetriggered long-term antithrombogenicity and sequentially enhanced
endothelialization for biological valve leaflets. Biomaterials [Internet].
2021;275(June), :120981. Available from:
https://doi.org/10.1016/j.biomaterials.2021.120981 | |
dcterms.references | Bremmell KE, Britcher L, Griesser HJ. Steric and electrostatic surface forces on
sulfonated PEG graft surfaces with selective albumin adsorption. Colloids Surfaces
B Biointerfaces [Internet]. 2013;106, :102–108. Available from:
http://dx.doi.org/10.1016/j.colsurfb.2013.01.052 | |
dcterms.references | Fedel M, Motta A, Maniglio D, Migliaresi C. Surface properties and blood
compatibility of commercially available diamond-like carbon coatings for
cardiovascular devices. J Biomed Mater Res - Part B Appl Biomater. 2009;90 B(1),
:338–349. | |
dcterms.references | Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE. Effect of albumin
coating on the in vitro blood compatibility of Dacron® arterial prostheses.
Biomaterials. 1989;10(3), :147–155. | |
dcterms.references | Mishra V, Heath RJ. Structural and biochemical features of human serum albumin
essential for eukaryotic cell culture. Int J Mol Sci. 2021;22(16), 8411. | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |