Mostrar el registro sencillo del ítem
Metodología para la extracción y análisis de información proveniente de twitter para la mejora de modelos operativos en la logística humanitaria
dc.contributor.advisor | Guerrero Rueda, William Javier | |
dc.contributor.advisor | Besiou, María | |
dc.contributor.author | Barón Rojas, Mateo Andrés | |
dc.date.accessioned | 2022-10-11T16:59:44Z | |
dc.date.available | 2022-10-11T16:59:44Z | |
dc.date.issued | 2022-08-11 | |
dc.identifier.uri | http://hdl.handle.net/10818/52208 | |
dc.description | 76 páginas | es_CO |
dc.description.abstract | Los desastres naturales son fenómenos que afectan a todas las poblaciones y comunidades de la tierra. Un reto logístico que persiste en las operaciones de respuesta a los desastres es cómo aumentar la eficiencia en los procesos de captura de información relacionada con el evento, sus impactos, los requerimientos que tiene la población afectada, y los daños a la infraestructura. Esta investigación tiene como objetivo diseñar una metodología de extracción y análisis de información durante y después de un desastre natural proveniente de Twitter, para la mejora de los tiempos en las fases de la logística humanitaria referentes al alistamiento y recolección de información para dar respuesta a las víctimas. Para esto, se propone una metodología basada en el método C-U-P (Capture-Understand-Present). Los resultados logran determinar un panel de información basado en los requerimientos mínimos que necesitan los grupos encargados de dar respuesta a las víctimas de un desastre natural. Estos son el nombre, geolocalización y nivel de afectación material por el desastre natural. También, se logró diseñar un algoritmo extracción y análisis de datos en Twitter generados posterior a un desastre natural, basados en la metodología mencionada. Posteriormente para su validación, se aplicó a dos desastres: el Huracán “Laura”, activo durante los meses de agosto y septiembre de 2020 en Estados Unidos y los Deslizamientos en El Litoral colombiano en marzo de 2019. Dentro de las dinámicas en común que presentaron los dos desastres se evidencian los sentimientos predominantes de los usuarios al momento de publicar su tweet y el mal uso que se da a las fuentes de información erróneas presentes en redes sociales. Por otro lado, dentro de los hallazgos más relevantes se encuentran que los usuarios de Twitter aprovechan eventos para generar contenido desde diferentes focos. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Metodología para la extracción y análisis de información proveniente de twitter para la mejora de modelos operativos en la logística humanitaria | es_CO |
dc.type | master thesis | es_CO |
dc.identifier.local | 288031 | |
dc.identifier.local | TE11987 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Desastres ambientales | |
dc.subject.armarc | Huracanes | |
dc.subject.armarc | Deslizamientos de tierra | |
dc.subject.armarc | Procesamiento electrónico de datos | |
dc.subject.armarc | Redes sociales | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |