dc.contributor.advisor | Figueredo Medina, Manuel Alfredo | |
dc.contributor.advisor | Mayorga, Edgar Yesid | |
dc.contributor.author | Rodríguez Mancera, Sandra Milena | |
dc.date.accessioned | 2021-11-25T20:03:20Z | |
dc.date.available | 2021-11-25T20:03:20Z | |
dc.date.issued | 2021-07-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/49329 | |
dc.description | 71 páginas | es_CO |
dc.description.abstract | El modelo de control predictivo MPC, model predictive control por sus siglas en inglés, es una estrategia de control de procesos caracterizada por su baja variabilidad favoreciendo la productividad, el uso eficiente de los recursos y la calidad de los productos. De amplio uso en industrias como refinerías, petroquímicas, manipulación de alimentos y minería, esta estrategia exhibe resultados satisfactorios principalmente en sistemas multivariables no lineales [1]. Fundamentado en modelos empíricos o en leyes de la conservación, representadas por medio de sistemas de ecuaciones diferenciales y algebraicas, lineales o no lineales, el comportamiento dinámico de un proceso es predicho en un horizonte de tiempo finito, comparándose continua mente con las mediciones reales y una trayectoria o punto de ajuste definido. Este proceso se ejecuta continuamente de modo que, en cada iteración, se ejecutan cambios en la o las variables manipuladas, sujetos a restricciones del proceso. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Efecto del número de variables y restricciones sobre el desempeño computacional de un SBC en la ejecución de un NMPC | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Control de procesos industriales | es_CO |
dc.subject.armarc | Petroquímicos | es_CO |
dc.subject.armarc | Alimentos | es_CO |
dc.subject.armarc | Industrias de minerales | es_CO |
dc.subject.armarc | Software de aplicación | es_CO |
dcterms.references | D. E. Seborg, Process Dynamics and Control. United States: Wiley, John & Sons, third
edition ed., 2011. | en |
dcterms.references | L. T. Biegler, “New directions for nonlinear process optimization,” Current Opinion in
Chemical Engineering, vol. 21, pp. 32–40, 2018. | en |
dcterms.references | F. Holtorf, A. Mitsos, and L. T. Biegler,“Multistage NMPC with on-line generated scenario
trees: Application to a semi-batch polymerization process,” Journal of Process Control,
vol. 80, pp. 167–179, 2019. | en |
dcterms.references | E. Aydin, D. Bonvin, and K. Sundmacher, “Computationally efficient NMPC for batch
and semi-batch processes using parsimonious input parameterization,” Journal of Process
Control, vol. 66, pp. 12–22, 2018 | en |
dcterms.references | R. Moriyasu, S. Nojiri, A. Matsunaga, T. Nakamura, and T. Jimbo, “Diesel engine air path
control based on neural approximation of nonlinear MPC,” Control Engineering Practice,
vol. 91, no. August, p. 104114, 2019. | en |
dcterms.references | A. Sharma, J. Drgoˇna, D. Ingole, J. Holaza, R. Valo, S. Koniar, and M. Kvasnica,“Teaching
Classical and Advanced Control of Binary Distillation Column,” IFAC-PapersOnLine,
vol. 49, no. 6, pp. 348–353, 2016 | en |
dcterms.references | Y. Zhu, Z. Xu, J. Zhao, K. Han, J. Qian, and W. Li, Development and application of an
integrated MPC technology, vol. 17. IFAC, 2008. | en |
dcterms.references | E. Camacho and C. Alba, Model predictive control. Sevilla: Springer, second edition ed.,
2013 | en |
dcterms.references | T. Vermon L, A guide to the Automation Body of Knowledge. United States: The instrumentation and automation society, second edition ed., 2006. | en |
dcterms.references | L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming using IPOPT: An
integrating framework for enterprise-wide dynamic optimization,”Computers and Chemical
Engineering, vol. 33, no. 3, pp. 575–582, 2009. | en |
dcterms.references | J. Kirby, L. Chapman, and V. Chapman, “Assessing the Raspberry Pi as a low-cost alternative for acquisition of near infrared hemispherical digital imagery,” Agricultural and
Forest Meteorology, vol. 259, no. May, pp. 232–239, 2018. | en |
dcterms.references | L. Beal, D. Hill, R. Martin, and J. Hedengren, “GEKKO Optimization Suite,” Processes,
vol. 6, no. 8, p. 106, 2018 | en |
dcterms.references | P. J. Basford, S. J. Johnston, C. S. Perkins, T. Garnock-Jones, F. P. Tso, D. Pezaros,
R. D. Mullins, E. Yoneki, J. Singer, and S. J. Cox, “Performance analysis of single board
computer clusters,” Future Generation Computer Systems, vol. 102, pp. 278–291, 2020 | en |
dcterms.references | A. C. E. Sousa, V. J. S. Leite, and I. R. Scola, “Affordable Control Platform with MPC ´
Application,” Studies in Informatics and Control, vol. 27, no. September, pp. 265–274,
2018. | en |
dcterms.references | M. O’Brien, A. Hall, J. Schrauwen, and J. van der Made, “An open-source approach to
automation in organic synthesis: The flow chemical formation of benzamides using an inline
liquid-liquid extraction system and a homemade 3-axis autosampling/product-collection
device,” Tetrahedron, vol. 74, no. 25, pp. 3152–3157, 2018 | en |
dcterms.references | V. Bagyaveereswaran, T. D. Mathur, S. Gupta, and P. Arulmozhivarman, “Performance
comparison of next generation controller and MPC in real time for a SISO process with
low cost DAQ unit,” Alexandria Engineering Journal, vol. 55, no. 3, pp. 2515–2524, 2016. | en |
dcterms.references | K. V. Ling, B. F. Wu, and J. Maciejowski, “Embedded Model Predictive Control (MPC)
using a FPGA,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 17, no. 1 PART 1,
pp. 15250–15255, 2008. | en |
dcterms.references | F. Lozano Santamar´ıa and J. M. G´omez, “Framework in PYOMO for the assessment and
implementation of (as)NMPC controllers,” Computers and Chemical Engineering, vol. 92,
pp. 93–111, 2016 | en |
dcterms.references | Y. Cao, D. Acevedo, Z. K. Nagy, and C. D. Laird, “Real-time feasible multi-objective
optimization based nonlinear model predictive control of particle size and shape in a batch
crystallization process,” Control Engineering Practice, vol. 69, no. March, pp. 1–8, 2017. | en |
dcterms.references | D. E. Bernal, C. Carrillo-Diaz, J. M. G´omez, and L. A. Ricardez-Sandoval, “Simultaneous
design and control of catalytic distillation columns using comprehensive rigorous dynamic
models,” Industrial and Engineering Chemistry Research, vol. 57, no. 7, pp. 2587–2608,
2018. | en |
dcterms.references | L. D. Beal, D. Petersen, D. Grimsman, S. Warnick, and J. D. Hedengren, “Integrated scheduling and control in discrete-time with dynamic parameters and constraints,” Computers
and Chemical Engineering, vol. 115, pp. 361–376, 2018 | en |
dcterms.references | H. M. Mora Escobar, Programaci´on Lineal, M´etodos y Programas. Depto de Matem´aticas
Universidad Nacional de Colombia, primera ed., 1997. | ita |
dcterms.references | D. de la Fuente García and P. Moreno, Programación lineal entera y programación no
lineal. Servicio de Publicaciones de la Universidad de Oviedo, 1996 | es_CO |
dcterms.references | W. Rudin and L. Garcia, Análisis funcional. Revert´e, 2002. | es_CO |
dcterms.references | H. Mora, Optimizaci´on No Lineal Y Din´amica. Departamento De Matemáticas Y Estadística Universidad Nacional de Colombia, 0 ed., 2001. | es_CO |
dcterms.references | Y. Shin, R. Smith, and S. Hwang, “Development of model predictive control system using
an artificial neural network: A case study with a distillation column,” Journal of Cleaner
Production, vol. 277, 2020. | en |
dcterms.references | A. Juneja and G. S. Murthy, “Model predictive control coupled with economic and environmental constraints for optimum algal production,” Bioresource Technology, vol. 250,
no. September 2017, pp. 556–563, 2018. | en |
dcterms.references | M. Manimaran, A. Arumugam, G. Balasubramanian, and K. Ramkumar, “Optimization
and composition control of distillation column using MPC,” International Journal of Engineering and Technology, vol. 5, no. 2, pp. 1224–1230, 2013. | en |
dcterms.references | G. Van, El tutorial de Python. Argentina: Fred L. Drake, primera ed ed., 2013. | es_CO |
dcterms.references | Skogestad; Sigurd in Dynamics and Control of distillation Columns].pdf, ch. 18, pp. Vol
18, No 3 177–217, sciencedirect, 1997. | en |
dcterms.references | B. W. Bequette, Process Dynamics Modeling, Analysis and Simulation. New Jersey: Prentice Hall PTR, 1998. | en |
dcterms.references | D. Seader, J.D. Henley, Ernest J. KeithRoper, Separation Process Principles, Chemical
and Biochemical Operations. J.Wiley & Sons, Inc., third edit ed., 2010. | en |
dcterms.references | S. M. Safdarnejad, “Developing Modeling, Optimization, and Advanced Process Control
Frameworks for Improving the Performance of Transient Energy-Intensive Applications,”
PhD Thesis, BYU university, 2016. | en |
dcterms.references | J. Smith, H. Van Ness, and M. Abbott, Introducción a la Termodinámica en Ingeniería
Qu´ımica. California: Mc Graw Hill, septima ed., 2009 | es_CO |
dcterms.references | J. Prausnitz, Fluid Phase Equilibria. United States: Prentice Hall, second edition ed., 1987. | en |
dcterms.references | T. L. Tolliver, “Fundamentals of Distillation Column Control,” Advances in Instrumentation, Proceedings, vol. 35, no. pt 2, pp. 611–626, 1980. | en |
dcterms.references | R. S. M. E. Figueredo, M., “Evaluation of dynamic model and assessing computational
time of an embedded system. Case study: A distillation column,” IEEExplore, vol. 69,
no. November, pp. 1–8, 2020 | en |
dcterms.references | M. Yamanee-Nolin, N. Andersson, B. Nilsson, M. Max-Hansen, and O. Pajalic, “Trajectory
optimization of an oscillating industrial two-stage evaporator utilizing a Python-Aspen
Plus Dynamics toolchain,” Chemical Engineering Research and Design, vol. 155, pp. 12–
17, 2020 | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |