Mostrar el registro sencillo del ítem

dc.contributor.advisorFigueredo Medina, Manuel Alfredo
dc.contributor.advisorMayorga, Edgar Yesid
dc.contributor.authorRodríguez Mancera, Sandra Milena
dc.date.accessioned2021-11-25T20:03:20Z
dc.date.available2021-11-25T20:03:20Z
dc.date.issued2021-07-14
dc.identifier.urihttp://hdl.handle.net/10818/49329
dc.description71 páginases_CO
dc.description.abstractEl modelo de control predictivo MPC, model predictive control por sus siglas en inglés, es una estrategia de control de procesos caracterizada por su baja variabilidad favoreciendo la productividad, el uso eficiente de los recursos y la calidad de los productos. De amplio uso en industrias como refinerías, petroquímicas, manipulación de alimentos y minería, esta estrategia exhibe resultados satisfactorios principalmente en sistemas multivariables no lineales [1]. Fundamentado en modelos empíricos o en leyes de la conservación, representadas por medio de sistemas de ecuaciones diferenciales y algebraicas, lineales o no lineales, el comportamiento dinámico de un proceso es predicho en un horizonte de tiempo finito, comparándose continua mente con las mediciones reales y una trayectoria o punto de ajuste definido. Este proceso se ejecuta continuamente de modo que, en cada iteración, se ejecutan cambios en la o las variables manipuladas, sujetos a restricciones del proceso.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEfecto del número de variables y restricciones sobre el desempeño computacional de un SBC en la ejecución de un NMPCes_CO
dc.typemaster thesises_CO
dc.identifier.local282703
dc.identifier.localTE11371
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcControl de procesos industrialeses_CO
dc.subject.armarcPetroquímicoses_CO
dc.subject.armarcAlimentoses_CO
dc.subject.armarcIndustrias de mineraleses_CO
dc.subject.armarcSoftware de aplicaciónes_CO
dcterms.referencesD. E. Seborg, Process Dynamics and Control. United States: Wiley, John & Sons, third edition ed., 2011.en
dcterms.referencesL. T. Biegler, “New directions for nonlinear process optimization,” Current Opinion in Chemical Engineering, vol. 21, pp. 32–40, 2018.en
dcterms.referencesF. Holtorf, A. Mitsos, and L. T. Biegler,“Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process,” Journal of Process Control, vol. 80, pp. 167–179, 2019.en
dcterms.referencesE. Aydin, D. Bonvin, and K. Sundmacher, “Computationally efficient NMPC for batch and semi-batch processes using parsimonious input parameterization,” Journal of Process Control, vol. 66, pp. 12–22, 2018en
dcterms.referencesR. Moriyasu, S. Nojiri, A. Matsunaga, T. Nakamura, and T. Jimbo, “Diesel engine air path control based on neural approximation of nonlinear MPC,” Control Engineering Practice, vol. 91, no. August, p. 104114, 2019.en
dcterms.referencesA. Sharma, J. Drgoˇna, D. Ingole, J. Holaza, R. Valo, S. Koniar, and M. Kvasnica,“Teaching Classical and Advanced Control of Binary Distillation Column,” IFAC-PapersOnLine, vol. 49, no. 6, pp. 348–353, 2016en
dcterms.referencesY. Zhu, Z. Xu, J. Zhao, K. Han, J. Qian, and W. Li, Development and application of an integrated MPC technology, vol. 17. IFAC, 2008.en
dcterms.referencesE. Camacho and C. Alba, Model predictive control. Sevilla: Springer, second edition ed., 2013en
dcterms.referencesT. Vermon L, A guide to the Automation Body of Knowledge. United States: The instrumentation and automation society, second edition ed., 2006.en
dcterms.referencesL. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization,”Computers and Chemical Engineering, vol. 33, no. 3, pp. 575–582, 2009.en
dcterms.referencesJ. Kirby, L. Chapman, and V. Chapman, “Assessing the Raspberry Pi as a low-cost alternative for acquisition of near infrared hemispherical digital imagery,” Agricultural and Forest Meteorology, vol. 259, no. May, pp. 232–239, 2018.en
dcterms.referencesL. Beal, D. Hill, R. Martin, and J. Hedengren, “GEKKO Optimization Suite,” Processes, vol. 6, no. 8, p. 106, 2018en
dcterms.referencesP. J. Basford, S. J. Johnston, C. S. Perkins, T. Garnock-Jones, F. P. Tso, D. Pezaros, R. D. Mullins, E. Yoneki, J. Singer, and S. J. Cox, “Performance analysis of single board computer clusters,” Future Generation Computer Systems, vol. 102, pp. 278–291, 2020en
dcterms.referencesA. C. E. Sousa, V. J. S. Leite, and I. R. Scola, “Affordable Control Platform with MPC ´ Application,” Studies in Informatics and Control, vol. 27, no. September, pp. 265–274, 2018.en
dcterms.referencesM. O’Brien, A. Hall, J. Schrauwen, and J. van der Made, “An open-source approach to automation in organic synthesis: The flow chemical formation of benzamides using an inline liquid-liquid extraction system and a homemade 3-axis autosampling/product-collection device,” Tetrahedron, vol. 74, no. 25, pp. 3152–3157, 2018en
dcterms.referencesV. Bagyaveereswaran, T. D. Mathur, S. Gupta, and P. Arulmozhivarman, “Performance comparison of next generation controller and MPC in real time for a SISO process with low cost DAQ unit,” Alexandria Engineering Journal, vol. 55, no. 3, pp. 2515–2524, 2016.en
dcterms.referencesK. V. Ling, B. F. Wu, and J. Maciejowski, “Embedded Model Predictive Control (MPC) using a FPGA,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 17, no. 1 PART 1, pp. 15250–15255, 2008.en
dcterms.referencesF. Lozano Santamar´ıa and J. M. G´omez, “Framework in PYOMO for the assessment and implementation of (as)NMPC controllers,” Computers and Chemical Engineering, vol. 92, pp. 93–111, 2016en
dcterms.referencesY. Cao, D. Acevedo, Z. K. Nagy, and C. D. Laird, “Real-time feasible multi-objective optimization based nonlinear model predictive control of particle size and shape in a batch crystallization process,” Control Engineering Practice, vol. 69, no. March, pp. 1–8, 2017.en
dcterms.referencesD. E. Bernal, C. Carrillo-Diaz, J. M. G´omez, and L. A. Ricardez-Sandoval, “Simultaneous design and control of catalytic distillation columns using comprehensive rigorous dynamic models,” Industrial and Engineering Chemistry Research, vol. 57, no. 7, pp. 2587–2608, 2018.en
dcterms.referencesL. D. Beal, D. Petersen, D. Grimsman, S. Warnick, and J. D. Hedengren, “Integrated scheduling and control in discrete-time with dynamic parameters and constraints,” Computers and Chemical Engineering, vol. 115, pp. 361–376, 2018en
dcterms.referencesH. M. Mora Escobar, Programaci´on Lineal, M´etodos y Programas. Depto de Matem´aticas Universidad Nacional de Colombia, primera ed., 1997.ita
dcterms.referencesD. de la Fuente García and P. Moreno, Programación lineal entera y programación no lineal. Servicio de Publicaciones de la Universidad de Oviedo, 1996es_CO
dcterms.referencesW. Rudin and L. Garcia, Análisis funcional. Revert´e, 2002.es_CO
dcterms.referencesH. Mora, Optimizaci´on No Lineal Y Din´amica. Departamento De Matemáticas Y Estadística Universidad Nacional de Colombia, 0 ed., 2001.es_CO
dcterms.referencesY. Shin, R. Smith, and S. Hwang, “Development of model predictive control system using an artificial neural network: A case study with a distillation column,” Journal of Cleaner Production, vol. 277, 2020.en
dcterms.referencesA. Juneja and G. S. Murthy, “Model predictive control coupled with economic and environmental constraints for optimum algal production,” Bioresource Technology, vol. 250, no. September 2017, pp. 556–563, 2018.en
dcterms.referencesM. Manimaran, A. Arumugam, G. Balasubramanian, and K. Ramkumar, “Optimization and composition control of distillation column using MPC,” International Journal of Engineering and Technology, vol. 5, no. 2, pp. 1224–1230, 2013.en
dcterms.referencesG. Van, El tutorial de Python. Argentina: Fred L. Drake, primera ed ed., 2013.es_CO
dcterms.referencesSkogestad; Sigurd in Dynamics and Control of distillation Columns].pdf, ch. 18, pp. Vol 18, No 3 177–217, sciencedirect, 1997.en
dcterms.referencesB. W. Bequette, Process Dynamics Modeling, Analysis and Simulation. New Jersey: Prentice Hall PTR, 1998.en
dcterms.referencesD. Seader, J.D. Henley, Ernest J. KeithRoper, Separation Process Principles, Chemical and Biochemical Operations. J.Wiley & Sons, Inc., third edit ed., 2010.en
dcterms.referencesS. M. Safdarnejad, “Developing Modeling, Optimization, and Advanced Process Control Frameworks for Improving the Performance of Transient Energy-Intensive Applications,” PhD Thesis, BYU university, 2016.en
dcterms.referencesJ. Smith, H. Van Ness, and M. Abbott, Introducción a la Termodinámica en Ingeniería Qu´ımica. California: Mc Graw Hill, septima ed., 2009es_CO
dcterms.referencesJ. Prausnitz, Fluid Phase Equilibria. United States: Prentice Hall, second edition ed., 1987.en
dcterms.referencesT. L. Tolliver, “Fundamentals of Distillation Column Control,” Advances in Instrumentation, Proceedings, vol. 35, no. pt 2, pp. 611–626, 1980.en
dcterms.referencesR. S. M. E. Figueredo, M., “Evaluation of dynamic model and assessing computational time of an embedded system. Case study: A distillation column,” IEEExplore, vol. 69, no. November, pp. 1–8, 2020en
dcterms.referencesM. Yamanee-Nolin, N. Andersson, B. Nilsson, M. Max-Hansen, and O. Pajalic, “Trajectory optimization of an oscillating industrial two-stage evaporator utilizing a Python-Aspen Plus Dynamics toolchain,” Chemical Engineering Research and Design, vol. 155, pp. 12– 17, 2020en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional