Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.advisorVillamil D., Luisa Marcela
dc.contributor.authorCano Lozano, Juan Andrés
dc.date.accessioned2021-08-12T16:54:13Z
dc.date.available2021-08-12T16:54:13Z
dc.date.issued2021-05-11
dc.identifier.urihttp://hdl.handle.net/10818/48162
dc.description127 páginases_CO
dc.description.abstractEn la aquicultura han adoptado un papel muy importante los probióticos, pero su producción contiene grandes retos. El objetivo de este trabajo fue evaluar el efecto del estrés hidrodinámico del potencial probiótico Lactococcus lactis para su uso en acuicultura de tilapina nilótica (Oreaochromis niloticus)es_CO
dc.description.abstractFisheries have adopted an important role in food production due to the high productivity and quality of products. Nowadays, Tilapia is the second most farmed fish in the world, but diseases due to intensive farming have generated a lot of economic losses. These diseases have been traditionally treated with antibiotics, but this is not sustainable over time, hence leading to the investigation of new alternatives, such as probiotics, and the microorganisms present in the host’s gut are of high interest given that specific species of microorganisms adapt to the appropriate host. The research group “Grupo de Investigación de procesos agroindustriales” (GIPA) has isolated the microorganism Lactococcus lactis A12 from the gastrointestinal tract of commercial tilapia. Lactococcus lactis has shown in some investigations to be of interest for its use as probiotic in aquaculture. The purpose of this study was to establish the best culture conditions for L. lactis A12 growth with its probiotic activity active. For this, tests were carried out to determine the effect of hydrodynamic stress on the production of viable biomass and on the probiotic activity of the microorganism.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherProducción alimenticiaes_CO
dc.subject.otherTilapiaes_CO
dc.subject.otherProbióticoses_CO
dc.titleEvaluation of the culture conditions in a stirred tank bioreactor and the probiotic potential of a Lactococcus lactisstrain isolated from the gastrointestinal tract of Nile tilapia (Oreochromis niloticus)es_CO
dc.typemasterThesises_CO
dc.identifier.local282175
dc.identifier.localTE11313
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcPesca
dc.subject.armarcAcuiculturaes_CO
dcterms.referencesYtrestøyl, T., T.S. Aas, and T. Åsgård:, Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture. 448, 365–374 (2015)
dcterms.referencesUnited Nations:, The Millennium Development Goals Report. United Nations, 72 (2015).
dcterms.referencesHigh Level Panel of Experts on World Food Security:, Sustainable fisheries and aquaculture for food security and nutrition. Fao, 1–119 (2014).
dcterms.referencesBéné, C., M. Barange, R. Subasinghe, P. Pinstrup-Andersen, G. Merino, G.I. Hemre, and M. Williams:, Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur. 7, 261–274 (2015).
dcterms.referencesBéné, C., R. Arthur, H. Norbury, E.H. Allison, M. Beveridge, S. Bush, L. Campling, W. Leschen, D. Little, D. Squires, S.H. Thilsted, M. Troell, and M. Williams:, Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev. 79, 177–196 (2016).
dcterms.referencesYones, A.-M.M., M.S. Hussein, M.W. Ali, and A.-A.M. Abdel-Azem:, Effect of dietary Lacto celcon probiotic on growth performance and hematology indices of fingerlings mono-sex Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Biol. Fish. 23, 227–239 (2019).
dcterms.referencesPandiyan, P., D. Balaraman, R. Thirunavukkarasu, E.G.J. George, K. Subaramaniyan, S. Manikkam, and B. Sadayappan:, Probiotics in aquaculture. Drug Invent. Today. 5, 55–59 (2013).
dcterms.referencesFoysal, M.J., M. Alam, A.Q.M.R. Kawser, F. Hasan, M.M. Rahman, C.-Y. Tay, M.S.H. Prodhan, and S.K. Gupta:, Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture. 520 (2020), doi:10.1016/j.aquaculture.2020.734974.
dcterms.referencesTan, H.Y., S.-W. Chen, and S.-Y. Hu:, Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 92, 265–275 (2019).
dcterms.referencesMidhun, S.J., D. Arun, S. Neethu, A. Vysakh, E.K. Radhakrishnan, and M. Jyothis:, Administration of probiotic Paenibacillus polymyxa HGA4C induces morphometric, enzymatic and gene expression changes in Oreochromis niloticus. Aquaculture. 508, 52–59 (2019).
dcterms.referencesWang, M., and M. Lu:, Tilapia polyculture: a global review. Aquac. Res. 47, 2363–2374 (2016).
dcterms.referencesFAO:, The State of World Fisheries and Aquaculture (2018)
dcterms.referencesEtyemez, M., and J.L. Balcazar:, Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Res. Vet. Sci. 105, 62–64 (2016).
dcterms.referencesVillamil, L., C. Reyes, and M.A. Martínez-Silva:, In vivo and in vitro assessment of Lactobacillus acidophilus as probiotic for tilapia (Oreochromis niloticus, Perciformes: Cichlidae) culture improvement. Aquac. Res. 45, 1116–1125 (2014).
dcterms.referencesHai, N. Van:, Research findings from the use of probiotics in tilapia aquaculture: A review. Fish Shellfish Immunol. 45, 592–597 (2015).
dcterms.referencesAbou-El-Atta, M.E., M. Abdel-Tawwab, N. Abdel-Razek, and T.M.N. Abdelhakim:, Effects of dietary probiotic Lactobacillus plantarum and whey protein concentrate on the productive parameters, immunity response and susceptibility of Nile tilapia, Oreochromis niloticus (L.), to Aeromonas sobria infection. Aquac. Nutr. 25, 1367–1377 (2019).
dcterms.referencesRuiz, M.L., M.S. Owatari, M.M. Yamashita, J.V.S. Ferrarezi, P. Garcia, L. Cardoso, M.L. Martins, and J.L.P. Mouriño:, Histological effects on the kidney, spleen, and liver of Nile tilapia Oreochromis niloticus fed different concentrations of probiotic Lactobacillus plantarum. Trop. Anim. Health Prod. 52, 167–176 (2020).
dcterms.referencesMakled, S.O., A.M. Hamdan, and A.-F.M. El-Sayed:, Growth promotion and immune stimulation in Nile tilapia, Oreochromis niloticus, fingerlings following dietary dministration of a novel marine probiotic, Psychrobacter maritimus. Probiotics Antimicrob. Proteins (2019), 2217 doi:10.1007/s12602-019-09575-0.
dcterms.referencesOpiyo, M.A., J. Jumbe, C.C. Ngugi, and H. Charo-Karisa:, Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Sci. African. 4 (2019), doi:10.1016/j.sciaf.2019.e00103.
dcterms.referencesSelim, K.M., and R.M. Reda:, Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol. 44, 496–503 (2015)
dcterms.referencesSIOC:, Acuicultura (2018), (available at https://sioc.minagricultura.gov.co/Acuicultura/Pages/default.aspx).
dcterms.referencesFedegan:, Consumo Aparente per Cápital Anual (2014), p. 2015.
dcterms.referencesPORTAFOLIO:, Producción rural, entre los líderes del PIB 2020 (2020), (available at https://www.portafolio.co/economia/produccion-rural-entre-los-lideres-del-pib-2020-544985).
dcterms.referencesViceprecidencia:, Más pescado y leche en la mesa de los colombianos, reto de los Pactos por el crecimiento (2020), (available at https://mlr.vicepresidencia.gov.co/Paginas/prensa/2020/Mas-pescado-y-leche-en-la-mesa-de-los-colombianos-reto-de-los-Pactos-por-el-crecimiento.aspx).
dcterms.referencesMiao, W.:, Aquaculture production and trade trends : carp , tilapia and shrimp Weimin Miao, FAO RAP. Fao, 18 (2015).
dcterms.referencesKuebutornye, F.K.A., Y. Lu, E.D. Abarike, Z. Wang, Y. Li, and M.E. Sakyi:, In vitro assessment of the probiotic characteristics of three Bacillus Species from the gut of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins (2019), doi:10.1007/s12602-019-09562-5.
dcterms.referencesBanerjee, G., and A.K. Ray:, The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 115, 66–77 (2017)
dcterms.referencesSookchaiyaporn, N., P. Srisapoome, S. Unajak, and N. Areechon:, Efficacy of Bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. on its growth and immunity, and control of pathogenic bacteria. Fish. Sci. (2020), doi:10.1007/s12562-019-01394-0.
dcterms.referencesRidha, M.T.M.T., and I.S.I.S. Azad:, Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquac. Res. 47, 2757–2767 (2016).
dcterms.referencesZhang, D., A. Li, Y. Guo, Q. Zhang, X. Chen, and X. Gong:, Molecular characterization of Streptococcus agalactiae in diseased farmed tilapia in China. Aquaculture. 412–413, 64–69 (2013)
dcterms.referencesNewaj-Fyzul, A., A.H. Al-Harbi, and B. Austin:, Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture. 431, 1–11 (2014).
dcterms.referencesICA, I.C.A.:, El ICA establece medida de prevención sanitaria por mortandad de peces en la represa de Betania. 785 (2015), (available at http://www.ica.gov.co/Noticias/Pecuaria/2015/El-ICA-establece-medida-de-prevencion-sanitaria-po.aspx).
dcterms.referencesAbass, D.A., K.A. Obirikorang, B.B. Campion, R.E. Edziyie, and P.V. Skov:, Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac. Int. 26, 843–855 (2018).
dcterms.referencesKuebutornye, F.K.A., E.D. Abarike, and Y. Lu:, A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 87, 820–828 (2019).
dcterms.referencesDawood, M.A.O., N.M. Eweedah, E.M. Moustafa, and M.G. Shahin:, Synbiotic effects of Aspergillus oryzae and beta-glucan on growth and oxidative and immune responses of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins (2019), doi:10.1007/s12602-018-9513-9
dcterms.referencesHaygood, A.M., and R. Jha:, Strategies to modulate the intestinal microbiota of Tilapia (Oreochromis sp.) in aquaculture: a review. Rev. Aquac. 10, 320–333 (2018).
dcterms.referencesHossain, M.I., M. Sadekuzzaman, and S. Do Ha:, Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res. Int. 100, 63–73 (2017)
dcterms.referencesStanden, B.T., A. Rodiles, D.L. Peggs, S.J. Davies, G.A. Santos, and D.L. Merrifield:, Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl. Microbiol. Biotechnol. 99, 8403–8417 (2015).
dcterms.referencesMuthukumar, P., and C. Kandeepan:, Isolation , Identification and Characterization of 124 Probiotic Organisms From Intestine of Fresh Water Fishes. 4, 607–616 (2015).
dcterms.referencesLarsen, A.M., H.H. Mohammed, and C.R. Arias:, Characterization of the gut microbiota of three commercially valuable warmwater fish species. J. Appl. Microbiol. 116, 1396–1404 (2014).
dcterms.referencesFečkaninová, A., J. Koščová, D. Mudroňová, P. Popelka, and J. Toropilová:, The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture. 469, 1–8 (2017)
dcterms.referencesDawood, M.A.O., and S. Koshio:, Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 454, 243–251 (2016).
dcterms.referencesFAO/WHO:, Probiotics in food: Health and nutritional properties and guidelines for evaluation, 413–426 (2001)
dcterms.referencesHassanien, A.E., G.M. El-Moghazy, M.M. Iraqi, M.A. Soltan, and G.A. Elsayad:, Physiological and haematological responses of the Nile tilapia (Oreochromis niloticus) fed on diets supplemented with probiotics. Egypt. J. Aquat. Biol. Fish. 21, 25–36 (2017).
dcterms.referencesElsabagh, M., R. Mohamed, E.M. Moustafa, A. Hamza, F. Farrag, O. Decamp, M.A.O. Dawood, and M. Eltholth:, Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 24, 1613–1622 (2018).
dcterms.referencesNayak, S.K.:, Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 29, 2–14 (2010).
dcterms.referencesGioia, Diana Di; Biavati, B.:, Probiotics and Prebiotics in Animal Health and Food Safety (Springer International Publishing, Cham, 2018; http://link.springer.com/10.1007/978-3-319-71950-4).
dcterms.referencesYang, E., L. Fan, J. Yan, Y. Jiang, C. Doucette, S. Fillmore, and B. Walker:, Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 8, 1–14 (2018)
dcterms.referencesDoran, P.:, Boprocess engineering principles (Elsevier Ltd, United Kingdom, 2013)
dcterms.referencesGomez, E., A. Alcon, S. Escobar, V.E. Santos, and F. Garcia-Ochoa:, Effect of fluiddynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochem. Eng. J. 99, 138–146 (2015).
dcterms.referencesFink, R., M. Oder, D. Rangus, P. Raspor, and K. Bohinc:, Microbial adhesion capacity. Influence of shear and temperature stress. Int. J. Environ. Health Res. 25, 656–669 (2015).
dcterms.referencesBuffo, M.M., L.J. Corrêa, M.N. Esperança, A.J.G. Cruz, C.S. Farinas, and A.C. Badino:, Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem. Eng. J. 114, 130–139 (2016).
dcterms.referencesLi, G., H. Li, G. Wei, X. He, S. Xu, K. Chen, P. Ouyang, and X. Ji:, Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger. Chem. Eng. Sci. 192, 665–677 (2018).
dcterms.referencesAraújo, P.A., J. Malheiro, I. MacHado, F. Mergulhão, L. Melo, and M. Simões:, Influence of flow velocity on the characteristics of pseudomonas fluorescens biofilms. J. Environ. Eng. (United States). 142, 1–8 (2016).
dcterms.referencesRodriguez, A., V. Ripoll, V.E. Santos, E. Gomez, and F. Garcia-Ochoa:, Effect of fluid dynamic conditions on 2,3-butanediol production by Raoultella terrigena in SBTR: oxygen transfer and uptake rates. J. Chem. Technol. Biotechnol. 92, 1266–1275 (2017).
dcterms.referencesWatanabe Wade O.; Losordo, T.M.. F.K.H.F.:, Tilapia Production Systems in the Americas: Technological Advances, Trends, and Challenges (2002), vol. 10.
dcterms.referencesRodriguez, D., G. Afanador, C. Ariza, O. Mayorga, D. Vásquez, M. Nuñez, and H. Jumenéz:, Uso de aceites esenciales de orégano como aditivo funcional en sistemas de producción de Tilapia (Orechromis Niloticus) (2011).
dcterms.referencesAbdel-Fattah M., and El-Sayed:, Tilapia culture (2006; http://www.cabi.org/cabebooks/ebook/20063084667).
dcterms.referencesAl-Harbi, A.H., and N. Uddin:, Bacterial diversity of tilapia (Oreochromis niloticus) cultured in brackish water in Saudi Arabia. Aquaculture. 250, 566–572 (2005).
dcterms.referencesKosin, B., and S.K. Rakshit:, Microbial and processing criteria for production of probiotics: A review. Food Technol. Biotechnol. 44, 371–379 (2006).
dcterms.referencesSilva, D.R., J. de C.O. Sardi, N. de S. Pitangui, S.M. Roque, A.C.B. da Silva, and P.L. Rosalen:, Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J. Funct. Foods. 73 (2020), p. 104080.
dcterms.referencesAlagawany, M., M.E. Abd El-Hack, M.R. Farag, S. Sachan, K. Karthik, and K. Dhama:, The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 25 (2018), pp. 10611–10618.
dcterms.referencesEzzariai, A., M. Hafidi, A. Khadra, Q. Aemig, L. El Fels, M. Barret, G. Merlina, D. Patureau, and E. Pinelli:, Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 359, 465–481 (2018).
dcterms.referencesGrześkowiak, L., E. Isolauri, S. Salminen, and M. Gueimonde:, Manufacturing process influences properties of probiotic bacteria. Br. J. Nutr. 105, 887–894 (2011).
dcterms.referencesEscobar, S., A. Rodriguez, E. Gomez, A. Alcon, V.E. Santos, and F. Garcia-Ochoa:, Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess Biosyst. Eng. 39 (2016), doi:10.1007/s00449-016-1536-6.
dcterms.referencesGarcia-Ochoa, F., E. Gomez, A. Alcon, and V.E. Santos:, The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess Biosyst. Eng. 36, 911–925 (2013).
dcterms.referencesBareither, R., and D. Pollard:, A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need. Biotechnol. Prog. 27, 2–14 (2011).
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional