Mostrar el registro sencillo del ítem

dc.contributor.advisorJiménez Junca, Carlos Alberto
dc.contributor.advisorQuintanilla Carvajal, María Ximena
dc.contributor.authorRamírez Rodríguez, Laura Cristina
dc.date.accessioned2021-03-02T12:42:06Z
dc.date.available2021-03-02T12:42:06Z
dc.date.issued2021-02-15
dc.identifier.urihttp://hdl.handle.net/10818/47055
dc.description104 páginases_CO
dc.description.abstractWater contamination with heavy metals such as mercury (Hg) and chromium (Cr), have a massive effect in the ecosystem due to the bioaccumulation and biomagnification that is produced in the organisms and the food chain. Consequently, several health and environmental problems are related to heavy metal pollution. Researchers have focused on adsorption to remove heavy metals from wastewater owing to its efficient highperformance and relatively low cost. A promising technology is the use of hybrid membranes produced by protein nanofibers combined with high surface area materials to remove heavy metals from water. Consequently, the aim of this study was to determine mercury and chromium removal of hybrid membranes mainly produced by whey protein using heat treatment and electrospinning methods. To develop the hybrid membranes, whey protein nanofibers (WPF) were obtained using a response surface methodology denaturing whey protein isolated (WPI) by heat treatment method or by using 2-Mercaptoethanol in the electrospinning process. The hybrid membranes were synthetized based on a simple process to functionalize activated carbon (AC) and polycaprolactone (PCL) with WPF obtaining a hybrid membrane of WPF-AC and another of WPI-PCL. The membranes were characterized by SEM, AFM, FT-IR, Red Congo, Contact Angle and TGA depending on the requirements of each membrane.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRemoval of heavy metals from water using hybrid membranes of whey protein fibrils and activated carbones_CO
dc.typemasterThesises_CO
dc.identifier.local280978
dc.identifier.localTE11201
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcContaminación del aguaspa
dc.subject.armarcHibridaciónspa
dc.subject.armarcMetales pesadosspa
dc.subject.armarcTecnología verdespa
dc.subject.armarcAguas residualesspa
dcterms.referencesAbd El-aziz, A. M., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ions from wastewater. Arabian Journal of Chemistry, 10(8), 1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025en
dcterms.referencesAbdus-Salam, N., & Buhari, M. (2016). Adsorption of alizarin and fluorescein dyes onto palm seeds activated carbon: Kinetic and thermodynamic studies. Journal of the Chemical Society of Pakistan, 38(4), 604–614.en
dcterms.referencesAceituno-Medina, M., Lopez-Rubio, A., Mendoza, S., & Lagaron, J. M. (2013). Development of novel ultrathin structures based in amaranth ( Amaranthus hypochondriacus ) protein isolate through electrospinning. Food Hydrocolloids, 31(2), 289–298.en
dcterms.referencesAcharya, Shveta, & Sharma, A. K. (2018). The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques. Zeitschrift Fur Physikalische Chemie, 233(8), 1073–1090. https://doi.org/10.1515/zpch-2018-132en
dcterms.referencesAcharya, Sourav, Sahoo, S., Sonal, S., Lee, J. H., Mishra, B. K., & Nayak, G. C. (2020). Adsorbed Cr(VI) based activated carbon/polyaniline nanocomposite: A superior electrode material for asymmetric supercapacitor device. Composites Part B: Engineering, 193(February), 107913. https://doi.org/10.1016/j.compositesb.2020.107913en
dcterms.referencesAdamcik, J., Jung, J.-M., Flakowski, J., De Los Rios, P., Dietler, G., & Mezzenga, R. (2010). Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotechnology, 5(6), 423–428. https://doi.org/10.1038/nnano.2010.59en
dcterms.referencesAguayo-Villarreal, I. A., Bonilla-Petriciolet, A., Hernández-Montoya, V., Montes-Morán, M. A., & Reynel-Avila, H. E. (2011). Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents. Chemical Engineering Journal, 167(1), 67–76. https://doi.org/10.1016/j.cej.2010.11.107en
dcterms.referencesAhmed, S. M., Ahmed, H., Tian, C., Tu, Q., Guo, Y., & Wang, J. (2016). Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Colloids and Surfaces B: Biointerfaces, 143, 371–381. https://doi.org/10.1016/j.colsurfb.2016.03.059en
dcterms.referencesAktas, D., Dizge, N., Yatmaz, H. C., Caliskan, Y., Ozay, Y., & Caputcu, A. (2017). The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies. Water Science and Technology, 76(11), 3114–3125. https://doi.org/10.2166/wst.2017.468en
dcterms.referencesAlam, M., Khan, M., Khan, A., Zeb, S., Khan, M. A., Amin, N., Sajid, M., & Khattak, A. M. (2018). Concentrations , dietary exposure , and human health risk assessment of heavy metals in market vegetables of Peshawar, Pakistan. Journal of Environmental Monitoring and Assessment, 190–505. https://doi.org/https://doi.org/10.1007/s10661-018-6881-2en
dcterms.referencesAlhashimi, H. A., & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 118, 13–26. https://doi.org/10.1016/j.resconrec.2016.11.016en
dcterms.referencesAli Alomari, A. (2020). Effect of Modified Eggshell on Adsorption Capacity of Chromium. Asian Journal of Chemistry, 32(7), 1549–1556.en
dcterms.referencesAnagnostopoulos, V. A., Manariotis, I. D., Karapanagioti, H. K., & Chrysikopoulos, C. V. (2012). Removal of mercury from aqueous solutions by malt spent rootlets. Chemical Engineering Journal, 213(December 2013), 135–141. https://doi.org/10.1016/j.cej.2012.09.074en
dcterms.referencesAndrade, S. ., Veloso, C. ., Fontan, R. C. ., Bonomo, R. C. ., Santos, L. ., Brito, M. J. ., & Diniz, G. . (2018). Chemical-activated carbon from coconut (cocos nucifera) endocarp waste and its application in the adsorption of β-lactoglobulin protein. Revista Mexicana de Ingeniería Química, 17(2), 463–475. http://www.redalyc.org/articulo.oa?id=62029966013en
dcterms.referencesArnaudov, L. N., de Vries, R., Ippel, H., & van Mierlo, C. P. M. (2003). Multiple steps during the formation of betalactoglobulin fibrils. Biomacromolecules, 4(6), 1614–1622. https://doi.org/10.1021/bm034096ben
dcterms.referencesAsadollahfardi, G., Naseraei, M. M., Asadi, M., & Alizadeh, R. (2018). The study of mercury removal using synthesized copper ferrite nanofiber in laboratory scale. Environmental Nanotechnology, Monitoring and Management, 10(March), 79–86. https://doi.org/10.1016/j.enmm.2018.05.007en
dcterms.referencesAttari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5(1), 391–399.en
dcterms.referencesAymard, P., Nicolai, T., Durand, D., & Clark, A. (1999). Static and Dynamic Scattering of β-Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2. Macromolecules, 32(8), 2542–2552. https://doi.org/10.1021/ma981689jen
dcterms.referencesAzimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010en
dcterms.referencesBacenetti, J., Bava, L., Schievano, A., & Zucali, M. (2018). Whey protein concentrate (WPC) production: Environmental impact assessment. Journal of Food Engineering, 224, 139–147. https://doi.org/10.1016/j.jfoodeng.2017.12.018en
dcterms.referencesBagbi, Y., Sarswat, A., Mohan, D., Pandey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering, 4(4), 4237–4247. https://doi.org/10.1016/j.jece.2016.09.026en
dcterms.referencesBello-Vieda, N. J., Pastrana, H. F., Garavito, M. F., Ávila, A. G., Celis, A. M., Muñoz-Castro, A., Restrepo, S., & Hurtado, J. J. (2018). Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules, 23(2). https://doi.org/10.3390/molecules23020361en
dcterms.referencesBera, B. (2016). Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR, 2(8), 972–984.en
dcterms.referencesBhatt, R., & Padmaj, P. (2019). A chitosan-thiomer polymer for highly efficacious adsorption of mercury. Carbohydrate Polymers, 207(December 2018), 663–674. https://doi.org/10.1016/j.carbpol.2018.12.018en
dcterms.referencesBhowmik, M., Debnath, A., & Saha, B. (2019). Fabrication of mixed phase CaFe2O4 and MnFe2O4 magnetic nanocomposite for enhanced and rapid adsorption of methyl orange dye: statistical modeling by neural network and response surface methodology. Journal of Dispersion Science and Technology, 0(0), 1–12. https://doi.org/10.1080/01932691.2019.1642209en
dcterms.referencesBolder, S. G., Hendrickx, H., Sagis, L. M. C., & Van Der Linden, E. (2006). Fibril assemblies in aqueous whey protein mixtures. Journal of Agricultural and Food Chemistry, 54(12), 4229–4234. https://doi.org/10.1021/jf060606sen
dcterms.referencesBolder, S. G., Vasbinder, A. J., Sagis, L. M. C., & van der Linden, E. (2007). Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation. International Dairy Journal, 17(7), 846–853. https://doi.org/10.1016/j.idairyj.2006.10.002en
dcterms.referencesBolder, S., Sagis, L., Venema, P., & Van Der Linden, E. (2007). Effect of stirring and seeding on whey protein fibril formation. Journal of Agricultural and Food Chemistry, 55(14), 5661–5669. https://doi.org/10.1021/jf063351ren
dcterms.referencesBolisetty, S., Arcari, M., Adamcik, J., & Mezzenga, R. (2015). Hybrid Amyloid Membranes for Continuous Flow Catalysis. Langmuir, 31(51), 13867–13873. https://doi.org/10.1021/acs.langmuir.5b03205en
dcterms.referencesBolisetty, S., & Mezzenga, R. (2016). Amyloid-carbon hybrid membranes for universal water purification. Nature Nanotechnology, 11(4), 365–371. https://doi.org/10.1038/nnano.2015.310en
dcterms.referencesBolisetty, S., Reinhold, N., Zeder, C., Orozco, M. N., & Mezzenga, R. (2017). Efficient purification of arseniccontaminated water using amyloid-carbon hybrid membranes. Chemical Communications, 53(42), 5714– 5717. https://doi.org/10.1039/C7CC00406Ken
dcterms.referencesBurakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. In Ecotoxicology and Environmental Safety (Vol. 148). https://doi.org/10.1016/j.ecoenv.2017.11.034en
dcterms.referencesCao, Y., & Mezzenga, R. (2019). Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science, 269, 334–356. https://doi.org/10.1016/j.cis.2019.05.002en
dcterms.referencesCarolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029en
dcterms.referencesChalermthai, B., Ashraf, M. T., Bastidas-Oyanedel, J. R., Olsen, B. D., Schmidt, J. E., & Taher, H. (2020). Techno-economic assessment of whey protein-based plastic production from a co-polymerization process. Polymers, 12(4). https://doi.org/10.3390/POLYM1204084en
dcterms.referencesChowdhury, T., Zhang, L., Zhang, J., & Aggarwal, S. (2018). Removal of Arsenic(III) from Aqueous Solution Using Metal Organic Framework-Graphene Oxide Nanocomposite. Nanomaterials, 8(12), 1062. https://doi.org/10.3390/nano8121062en
dcterms.referencesColín-Orozco, J., Zapata-Torres, M., Rodríguez-Gattorno, G., & Pedroza-Islas, R. (2014). Properties of Poly ( ethylene oxide )/ whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophysics, 10(2), 134–144. https://doi.org/10.1007/s11483-014-9372-1en
dcterms.referencesColmenares-Roldán, G. J., Quintero Martínez, Y., Agudelo Gómez, L. M., Rodríguez Vinasco, L. F., & Hoyos Palacio, L. M. (2017). Influence of the molecular weight of polymer, solvents and operational condition in 94 the electrospinning of polycaprolactone. Revista Facultad de Ingeniería Universidad de Antioquia, 84, 35– 45. https://doi.org/10.17533/udea.redin.n84a05en
dcterms.referencesCuberos, E., Rodriguez, A. I., & Prieto, E. (2009). Niveles de Cromo y Alteraciones de Salud en una Población Expuesta a las Actividades de Curtiembres en Bogotá, Colombia. Revista de Salud Pública, 11(2), 278– 289. http://www.scielo.org.co/pdf/rsap/v11n2/v11n2a12.pdfes_CO
dcterms.referencesDemirbaş, Ö., & Nas, M. (2016). Kinetics and Mechanism of the Adsorption of Methylene Blue from Aqueous Solution onto Turkish Green Clay. Archives of Current Research International, 6(3), 1–10. https://doi.org/10.9734/acri/2016/30677en
dcterms.referencesDíaz, U., & Corma, A. (2018). Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction Processes. Chemistry - A European Journal, 24(16), 3944–3958. https://doi.org/10.1002/chem.201704185en
dcterms.referencesDoke, K. M., & Khan, E. M. (2013). Adsorption thermodynamics to clean up wastewater: critical review. Reviews in Environmental Science and Biotechnology, 12(1), 25–44. https://doi.org/10.1007/s11157-012-9273-zen
dcterms.referencesDror, Y., Ziv, T., Makarov, V., Wolf, H., Admon, A., & Zussman, E. (2008). Nanofibers made of globular proteins. Biomacromolecules, 9(10), 2749–2754. https://doi.org/10.1021/bm8005243en
dcterms.referencesDrosou, C., Krokida, M., & Biliaderis, C. G. (2018). Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 77, 726–735. https://doi.org/10.1016/j.foodhyd.2017.11.014en
dcterms.referencesDuan, X. L., Yuan, C. G., Jing, T. T., & Yuan, X. D. (2019). Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. Fuel, 239(October 2018), 830– 840. https://doi.org/10.1016/j.fuel.2018.11.017en
dcterms.referencesDubey, S. P., Dwivedi, A. D., Kim, I. C., Sillanpaa, M., Kwon, Y. N., & Lee, C. (2014). Synthesis of graphenecarbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chemical Engineering Journal, 244, 160–167. https://doi.org/10.1016/j.cej.2014.01.042en
dcterms.referencesEfome, J. E., Rana, D., Matsuura, T., & Lan, C. Q. (2018). Metal-organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A, 6(10), 4550–4555. https://doi.org/10.1039/c7ta10428en
dcterms.referencesEl-Hendawy, A. N. A. (2006). Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. Journal of Analytical and Applied Pyrolysis, 75(2), 159–166. https://doi.org/10.1016/j.jaap.2005.05.004en
dcterms.referencesElizalde-González, M. P., Mattusch, J., Peláez-Cid, A. A., & Wennrich, R. (2007). Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. Journal of Analytical and Applied Pyrolysis, 78(1), 185–193. https://doi.org/10.1016/j.jaap.2006.06.008en
dcterms.referencesErdem, B. G., & Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food Chemistry, 339(August 2020), 127976. https://doi.org/10.1016/j.foodchem.2020.127976en
dcterms.referencesFan, F., Coutinho da Silva, M. A., Moraes, C. R., Dunham, A. D., HogenEsch, H., Turner, J. W., & Lannutti, J. J. (2020). Self-reinforcing nanoscalar polycaprolactone-polyethylene terephthalate electrospun fiber blends. Polymer, 202(April), 122573. https://doi.org/10.1016/j.polymer.2020.122573en
dcterms.referencesFaria, P. C. C., Órfão, J. J. M., & Pereira, M. F. R. (2004). Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 38(8), 2043–2052. https://doi.org/10.1016/j.watres.2004.01.034en
dcterms.referencesFarrokhi, F., Badii, F., Ehsani, M. R., & Hashemi, M. (2019). Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583(June), 124002. https://doi.org/10.1016/j.colsurfa.2019.124002en
dcterms.referencesFellenz, N., Perez-Alonso, F. J., Martin, P. P., García-Fierro, J. L., Bengoa, J. F., Marchetti, S. G., & Rojas, S. (2017). Chromium (VI) removal from water by means of adsorption-reduction at the surface of aminofunctionalized MCM-41 sorbents. Microporous and Mesoporous Materials, 239, 138–146. https://doi.org/10.1016/j.micromeso.2016.10.012en
dcterms.referencesFetz, A. E., Fantaziu, C. A., Smith, R. A., Radic, M. Z., & Bowlin, G. L. (2019). Surface Area to Volume Ratio of Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serumen
dcterms.referencesGarcía, O., Veiga, M. M., Cordy, P., Suescún, O. E., Molina, J. M., & Roeser, M. (2015). Artisanal gold mining in Antioquia, Colombia: a successful case of mercury reduction. Journal of Cleaner Production, 90, 244–252. https://doi.org/10.1016/J.JCLEPRO.2014.11.032en
dcterms.referencesGarg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1). https://doi.org/10.1063/1.3567097en
dcterms.referencesGbassi, G., Yolou, F., Sarr, S., Atheba, P., Amin, C., & Ake, M. (2012). Whey proteins analysis in aqueous medium and in artificial gastric and intestinal fluids. International Journal of Biological and Chemical 95 Sciences, 6(4), 1828–1837. https://doi.org/10.4314/ijbcs.v6i4.38en
dcterms.referencesGenthe, B., Kapwata, T., Le Roux, W., Chamier, J., & Wright, C. Y. (2018). The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere, 199, 1–9. https://doi.org/10.1016/j.chemosphere.2018.01.160en
dcterms.referencesGhanbarian, M., Nabizadeh, R., Nasseri, S., Shemirani, F., Mahvi, A. H., Beyki, M. H., & Mesdaghinia, A. (2017). Potential of amino-riched nano-structured MnFe2O4@cellulose for biosorption of toxic Cr (VI): Modeling, kinetic, equilibrium and comparing studies. International Journal of Biological Macromolecules, 104, 465– 480. https://doi.org/10.1016/j.ijbiomac.2017.06.060en
dcterms.referencesGherasim, C. V., Bourceanu, G., Olariu, R. I., & Arsene, C. (2011). A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. Journal of Hazardous Materials, 197, 244–253. https://doi.org/10.1016/j.jhazmat.2011.09.082en
dcterms.referencesGiles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). A System of Classi$cation of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of the Chemical Society, 846, 3973–3993.en
dcterms.referencesGoers, J., Permyakov, S. E., Permyakov, E. A., Uversky, V. N., & Fink, A. L. (2002). Conformational prerequisites for α-lactalbumin fibrillation. Biochemistry, 41(41), 12546–12551. https://doi.org/10.1021/bi0262698en
dcterms.referencesGonzález-Martínez, M. D., Huguet, C., Pearse, J., McIntyre, N., & Camacho, L. A. (2019). Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Applied Geochemistry, 108(December 2018), 104382. https://doi.org/10.1016/j.apgeochem.2019.104382en
dcterms.referencesGoscianska, J., Fathy, N. A., & Aboelenin, R. M. M. (2017). Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. Journal of Colloid and Interface Science, 505, 593–604. https://doi.org/10.1016/j.jcis.2017.06.052en
dcterms.referencesGowraraju, N. D., Jagadeesan, S., Ayyasamy, K., Olasunkanmi, L. O., Ebenso, E. E., & Subramanian, C. (2017). Adsorption characteristics of Iota-carrageenan and Inulin biopolymers as potential corrosion iGGnhibitors at mild steel/sulphuric acid interface. Journal of Molecular Liquids, 232, 9–19. https://doi.org/10.1016/j.molliq.2017.02.054en
dcterms.referencesGuan, C., He, X. F., Xu, H. H., Shao, M. L., Ma, J. Y., & Gao, Z. W. (2020). Comparative experiments of electrical conductivity from whey protein concentrates conventional film and nanofibril film. Journal of Dairy Research, 87(1), 103–109. https://doi.org/10.1017/S0022029919000876en
dcterms.referencesGuimarães, V., Rodríguez-Castellón, E., Algarra, M., Rocha, F., & Bobos, I. (2016). Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite. Journal of Hazardous Materials, 317, 246–258. https://doi.org/10.1016/j.jhazmat.2016.05.060en
dcterms.referencesGuo, M., & Wang, G. (2019). Future Development of Whey Protein Production. In M. Guo (Ed.), Whey Protein Production, Chemistry, Func- tionality, and Applications. (First, pp. 251–260). Wiley. http://repositorio.unan.edu.ni/2986/1/5624.pdfen
dcterms.referencesGuo, Z., Kang, Y., Liang, S., & Zhang, J. (2020). Detection of Hg(II) in adsorption experiment by a lateral flow biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone reader. Environmental Pollution, 266, 115389. https://doi.org/10.1016/j.envpol.2020.115389en
dcterms.referencesHaider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015en
dcterms.referencesHamad, A. A., Hassouna, M. S., Shalaby, T. I., Elkady, M. F., Abd Elkawi, M. A., & Hamad, H. A. (2020). Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. International Journal of Biological Macromolecules, 151, 1299–1313. https://doi.org/10.1016/j.ijbiomac.2019.10.176en
dcterms.referencesHargreaves, A. J., Vale, P., Whelan, J., Constantino, C., Dotro, G., & Cartmell, E. (2016). Mercury and antimony in wastewater: Fate and treatment. Water, Air, and Soil Pollution, 227(3). https://doi.org/10.1007/s11270- 016-2756-8en
dcterms.referencesHe, L., Lu, Y., Wang, F., Gao, X., Chen, Y., & Liu, Y. (2018). Bare eye detection of Hg(II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity. Microchimica Acta, 185(3), 1–8. https://doi.org/10.1007/s00604-018-2721-xen
dcterms.referencesHomaeigohar, S., & Elbahri, M. (2014). Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials, 7(2), 1017–1045. https://doi.org/10.3390/ma7021017en
dcterms.referencesHota, G., Kumar, B. R., Ng, W. J., & Ramakrishna, S. (2008). Fabrication and characterization of a boehmite nanoparticle impregnated electrospun fiber membrane for removal of metal ions. Journal of Materials Science, 43(1), 212–217. https://doi.org/10.1007/s10853-007-2142-4en
dcterms.referencesHuang, L., Shen, R., Liu, R., & Shuai, Q. (2020). Thiol-functionalized magnetic covalent organic frameworks by a cutting strategy for efficient removal of Hg2+ from water. Journal of Hazardous Materials, 392(December 2019), 122320. https://doi.org/10.1016/j.jhazmat.2020.122320en
dcterms.referencesHuang, R., Zhu, H., Su, R., Qi, W., & He, Z. (2016). Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. Environmental Science and Technology, 50(20), 11263–11273. https://doi.org/10.1021/acs.est.6b03431en
dcterms.referencesIgibah, E. C., Agashua, L. O., & Sadiq, A. A. (2019). Water contamination: Burden and stratagems for control. Journal of Physics: Conference Series, 1378(4). https://doi.org/10.1088/1742-6596/1378/4/042011en
dcterms.referencesIkeda, S., & Morris, V. J. (2002). Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules, 3(2), 382–389. https://doi.org/10.1021/bm0156429en
dcterms.referencesIqhwan Che, M., Hassan, M. I., Sultana, N., & Fauzi, A. (2017). Characterization of PCL/Zeolite electrospun membrane for the removal of silver in driking water. 2, 89–95.en
dcterms.referencesIrandoost, M., Pezeshki-Modaress, M., & Javanbakht, V. (2019). Removal of lead from aqueous solution with nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. Journal of Water Process Engineering, 32, 2–12. https://doi.org/10.1016/j.jwpe.2019.100981en
dcterms.referencesJavad Amiri, Mohammad Arshadi, M., & Giannakopoulos, Evangelos Kalavrouziotis, I. (2018). Removal of Mercury (II) and Lead (II) from Aqueous Media by Using a Green Adsorbent: Kinetics, Thermodynamic, and Mechanism Studies. Journal of Hazardous, Toxic, and Radioactive Waste, 22(2).en
dcterms.referencesJi, W., Xiao, L., Ling, Y., Ching, C., Matsumoto, M., Bisbey, R. P., Helbling, D. E., & Dichtel, W. R. (2018). Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. Journal of the American Chemical Society, 140(40), 12677–12681. https://doi.org/10.1021/jacs.8b06958en
dcterms.referencesJiang, B., Wang, L., Na, J., Zhang, X., Yuan, Y., Liu, C., & Feng, Z. (2020). Environmentally-friendly strategy for separation of α-lactalbumin from whey by aqueous two phase flotation. Arabian Journal of Chemistry, 13(1), 3391–3402. https://doi.org/10.1016/j.arabjc.2018.11.013en
dcterms.referencesJiang, L., Wang, L., Wang, N., Gong, S., Wang, L., Li, Q., Shen, C., & Turng, L. S. (2018). Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds. Applied Surface Science, 427, 311–325. https://doi.org/10.1016/j.apsusc.2017.08.005en
dcterms.referencesJin, X., Wang, H., Jin, X., Wang, H., Chen, L., Wang, W., Lin, T., & Zhu, Z. (2020a). Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr(VI). Science of the Total Environment, 710, 135546. https://doi.org/10.1016/j.scitotenv.2019.135546en
dcterms.referencesJin, X., Wang, H., Jin, X., Wang, H., Chen, L., Wang, W., Lin, T., & Zhu, Z. (2020b). Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr(VI). Science of the Total Environment, 710, 135546. https://doi.org/10.1016/j.scitotenv.2019.135546en
dcterms.referencesJung, J.-M., Savin, G., Pouzot, M., Schmitt, C., & Mezzenga, R. (2008). Structure of Heat-Induced BLactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate. Biomacromolecules, 9, 2477–2486. https://doi.org/10.1021/bm800502en
dcterms.referencesKabay, G., Kaleli, G., Sultanova, Z., Ölmez, T. T., Şeker, U. Ö. Ş., & Mutlu, M. (2016). Biocatalytic protein membranes fabricated by electrospinning. Reactive and Functional Polymers, 103, 26–32. https://doi.org/10.1016/j.reactfunctpolym.2016.03.015en
dcterms.referencesKabay, G., Meydan, A. E., Kaleli Can, G., Demirci, C., & Mutlu, M. (2017). Controlled release of a hydrophilic drug from electrospun amyloid-like protein blend nanofibers. Materials Science and Engineering C, 81(July), 271–279. https://doi.org/10.1016/j.msec.2017.08.003en
dcterms.referencesKanani-Jazi, M. H., Akbari, S., & Haghighat Kish, M. (2020). Efficient removal of Cr (VI) from aqueous solution by halloysite/poly(amidoamine) dendritic nano-hybrid materials: kinetic, isotherm and thermodynamic studies. Advanced Powder Technology, 31(9), 4018–4030. https://doi.org/10.1016/j.apt.2020.08.004en
dcterms.referencesKhulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8(1), 1–30. https://doi.org/10.1007/s13201-018-0661-6en
dcterms.referencesKolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530(February), 250–263. https://doi.org/10.1016/j.memsci.2017.02.019en
dcterms.referencesKontopidis, G., Holt, C., & Sawyer, L. (2010). Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function. Journal of Dairy Science. https://doi.org/10.3168/jds.s0022-0302(04)73222-1en
dcterms.referencesKrebs, M. R. H., Devlin, G. L., & Donald, A. M. (2009). Amyloid fibril-like structure underlies the aggregate structure across the pH range for β-lactoglobulin. Biophysical Journal, 96(12), 5013–5019. https://doi.org/10.1016/j.bpj.2009.03.028en
dcterms.referencesKumar, M., Singh, A. K., & Sikandar, M. (2020). Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon, 6(1), e03321. https://doi.org/10.1016/j.heliyon.2020.e03321en
dcterms.referencesKutzli, I., Gibis, M., Baier, S. K., & Weiss, J. (2018a). Fabrication and characterization of food-grade fibers from mixtures of maltodextrin and whey protein isolate using needleless electrospinning. Journal of Applied Polymer Science, 135(22), 1–9. https://doi.org/10.1002/app.46328en
dcterms.referencesKutzli, I., Gibis, M., Baier, S. K., & Weiss, J. (2018b). Formation of Whey Protein Isolate (WPI)–Maltodextrin Conjugates in Fibers Produced by Needleless Electrospinning. Journal of Agricultural and Food Chemistry, 66(39), 10283–10291. https://doi.org/10.1021/acs.jafc.8b02104en
dcterms.referencesLeunga, R., Venusb, C., Zengb, T., & Tsopmo, A. (2018). Structure-function of hydroxyl radical scavenging and chromium-VI reducing cysteine- tripeptides derived from rye secalin Rachel Leung. Food Chemistry, 254, 165–169.en
dcterms.referencesLi, C., Adamcik, J., & Mezzenga, R. (2012). Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotechnology, 7(7), 421–427. https://doi.org/10.1038/nnano.2012.62en
dcterms.referencesLi, C., & Mezzenga, R. (2013). The interplay between carbon nanomaterials and amyloid fibrils in bionanotechnology. Nanoscale, 5(14), 6207. https://doi.org/10.1039/c3nr01644gen
dcterms.referencesLi, X., Wang, C., Yang, S., Liu, P., & Zhang, B. (2018). Electrospun PCL/mupirocin and chitosan/ lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. International Journal of Nanomedicine, 13, 5287–5299. https://doi.org/10.2147/IJN.S177256en
dcterms.referencesLi, Z., Hanafy, H., Zhang, L., Sellaoui, L., Schadeck Netto, M., Oliveira, M. L. S., Seliem, M. K., Luiz Dotto, G., Bonilla-Petriciolet, A., & Li, Q. (2020). Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal, 388(December 2019), 124263. https://doi.org/10.1016/j.cej.2020.124263en
dcterms.referencesLin, W. C., & Razali, N. A. M. (2019). Temporary wettability tuning of PCL/PDMS micro pattern using the plasma treatments. Materials, 12(4). https://doi.org/10.3390/ma12040644en
dcterms.referencesLiu, C., Peng, J., Zhang, L., Wang, S., Ju, S., & Liu, C. (2018). Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination. Journal of Cleaner Production, 196, 109–121. https://doi.org/10.1016/j.jclepro.2018.06.027en
dcterms.referencesLiu, Xiang, Feng, P., Zhang, L., & Chen, Y. (2020). Mussel-inspired method to decorate commercial nanofiltration membrane for heavy metal ions removal. Polymers for Advanced Technologies, 31(4), 665–674. https://doi.org/10.1002/pat.4803en
dcterms.referencesLiu, Xiangxiang, Jiang, B., Yin, X., Ma, H., & Hsiao, B. S. (2020). Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification Technology, 233(August 2019), 115976. https://doi.org/10.1016/j.seppur.2019.115976en
dcterms.referencesLiu, Y., & Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61(3), 229–242. https://doi.org/10.1016/j.seppur.2007.10.002en
dcterms.referencesLoveday, S., Anema, S. G., & Singh, H. (2017). β-Lactoglobulin nanofibrils: The long and the short of it. International Dairy Journal, 67, 35–45. https://doi.org/10.1016/j.idairyj.2016.09.011en
dcterms.referencesLoveday, S. M., Wang, X. L., Rao, M. A., Anema, S. G., & Singh, H. (2011). Effect of pH, NaCl, CaCl 2 and temperature on self-assembly of β-lactoglobulin into nanofibrils: A central composite design study. Journal of Agricultural and Food Chemistry, 59(15), 8467–8474. https://doi.org/10.1021/jf201870zen
dcterms.referencesLuo, C. J., Stride, E., & Edirisinghe, M. (2012). Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules, 45(11), 4669–4680. https://doi.org/10.1021/ma300656uen
dcterms.referencesMahmood Albakaa, A. R. (2016). Determination of 2-Mercaptoethanol by Potentiometric Titration with Mercury (II) Chloride. Chemical Sciences Journal, 7(3). https://doi.org/10.4172/2150-3494.1000138en
dcterms.referencesMaity, S., Pal, S., Sardar, S., Sepay, N., Parvej, H., Begum, S., Dalui, R., Das, N., Pradhan, A., & Halder, U. C. (2018). Inhibition of amyloid fibril formation of β-lactoglobulin by natural and synthetic curcuminoids. New Journal of Chemistry, 42(23), 19260–19271. https://doi.org/10.1039/c8nj03194ken
dcterms.referencesMaleki, A., Hayati, B., Najafi, F., Gharibi, F., & Joo, S. W. (2016). Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. Journal of Molecular Liquids, 224, 95–104. https://doi.org/10.1016/J.MOLLIQ.2016.09.060en
dcterms.referencesManirethan, V., & Balakrishnan, R. M. (2020). Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon. Environmental Technology and Innovation, 20, 24723–24737. https://doi.org/10.1016/j.eti.2020.101085en
dcterms.referencesMarella, C., Muthukumarappan, K., & Metzger, L. E. (2011). Evaluation of commercially available, wide-pore ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate. Journal of Dairy Science, 94(3), 1165–1175. https://doi.org/10.3168/jds.2010-3739en
dcterms.referencesMartínez, S., & Romero, J. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista de La Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357es_CO
dcterms.referencesMartins, A. J., Bourbon, A. I., Vicente, A. A., Pinto, S., Lopes Da Silva, J. A., & Rocha, C. M. R. (2015). Physical and mass transfer properties of electrospun ε-polycaprolactone nanofiber membranes. Process 98 Biochemistry, 50(6), 885–892. https://doi.org/10.1016/j.procbio.2015.03.017en
dcterms.referencesMascarenhas, B. C., Tavares, F. A., & Paris, E. C. (2019). Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from aqueous media. Journal of Applied Polymer Science, 48561, 1–12. https://doi.org/10.1002/app.48561en
dcterms.referencesMenchik, P., & Moraru, C. I. (2019). Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study. Journal of Food Engineering, 253(October 2018), 40–48. https://doi.org/10.1016/j.jfoodeng.2019.02.015en
dcterms.referencesMerodio-Morales, E. E., Reynel-Ávila, H. E., Mendoza-Castillo, D. I., Duran-Valle, C. J., & Bonilla-Petriciolet, A. (2020). Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions. International Journal of Environmental Science and Technology, 17(1), 115– 128. https://doi.org/10.1007/s13762-019-02437-wen
dcterms.referencesMezzenga, R., Zhang, Q., Bolisetty, S., Cao, Y., Handschin, S., & Adamcik, J. (2019). Selective and efficient removal of fluoride from water by in-situ engineered amyloid fibrils-ZrO2 hybrid membranes- Supporting information. Angewandte Chemie - International Edition, 1–66. https://doi.org/10.1002/ejoc.201403115en
dcterms.referencesMiranda-Rodríguez, J. P., Romero-Espinosa, A. P., & Salcedo-Paeea, O. (2019). Analysis of sanitation conditions in Colombia. Case study: Atlantico Department. International Journal of Mechanical Engineering and Technology, 10(12), 241–246.en
dcterms.referencesMohamed, A., Nasser, W. S., Osman, T. A., Toprak, M. S., Muhammed, M., & Uheida, A. (2017). Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. Journal of Colloid and Interface Science, 505, 682–691. https://doi.org/10.1016/j.jcis.2017.06.066en
dcterms.referencesMorris, K., & Serpell, L. (2010). From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins and peptides using fibre diffraction. Chemical Society Reviews, 39(9), 3445. https://doi.org/10.1039/b919453nen
dcterms.referencesMortazavian, S., Saber, A., Hong, J., Bae, J. H., Chun, D., Wong, N., Gerrity, D., Batista, J., Kim, K. J., & Moon, J. (2019). Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber coating for aqueous hexavalent chromium removal. Journal of Industrial and Engineering Chemistry, 69, 196–210. https://doi.org/10.1016/j.jiec.2018.09.028en
dcterms.referencesMosquera, P. (2017). Aplicacion del modelo Z-Altman en cinco Pymes del sector calzado, cuero y marroquineria de la ciudad de Bogota para la medición del riesgo financiero. http://repository.lasalle.edu.co/bitstream/handle/10185/28440/11141654_2017.pdf?sequence=1&isAllow ed=yes_CO
dcterms.referencesMuñoz, M. I., Aller, A. J., & Littlejohn, D. (2014). The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid. Materials Chemistry and Physics, 143(3), 1469– 1480. https://doi.org/10.1016/j.matchemphys.2013.12.002en
dcterms.referencesNasouri, K., & Shoushtari, A. M. (2017). Effects of Diameter and Surface Area of Electrospun Nanocomposite Fibers on Electromagnetic Interference Shielding. https://doi.org/10.1134/S0965545X17050133en
dcterms.referencesNguyen, N. H. A., Streicher, C., & Anema, S. G. (2018). The effect of thiol reagents on the denaturation of the whey protein in milk and whey protein concentrate solutions. International Dairy Journal, 85, 285–293. https://doi.org/10.1016/j.idairyj.2018.06.012en
dcterms.referencesNicolai, T., Britten, M., & Schmitt, C. (2011). B-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25, 1945–1962. https://doi.org/10.1016/j.foodhyd.2011.02.006en
dcterms.referencesNieuwland, M., Geerdink, P., Brier, P., Van Den Eijnden, P., Henket, J. T. M. M., Langelaan, M. L. P., Stroeks, N., Van Deventer, H. C., & Martin, A. H. (2013). food-grade electrospinning of proteins. Innovative Food Science and Emerging Technologies, 20, 269–275. https://doi.org/10.1016/j.ifset.2014.07.006en
dcterms.referencesO’Loughlin, I. B., Kelly, P. M., Murray, B. A., Fitzgerald, R. J., & Brodkorb, A. (2015). Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. International Journal of Dairy Technology, 68(3), 349–356. https://doi.org/10.1111/1471-0307.12239en
dcterms.referencesOktar, F. N., Su, S., Ozbek, B., Yücel, S., Kazan, D., & Gunduz, O. (2018). Production and characterization of whey protein concentrate (WPC) based nano-fibers. Materials Science Forum, 923, 47–51. https://doi.org/10.4028/www.scientific.net/MSF.923.47en
dcterms.referencesOlivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705–1710. https://doi.org/10.1016/j.carbpol.2012.11.024en
dcterms.referencesPal, S., Maity, S., Sardar, S., Chakraborty, J., & Halder, U. C. (2016). Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin. International Journal of Biological Macromolecules, 84, 121–134. https://doi.org/10.1016/j.ijbiomac.2015.11.055en
dcterms.referencesPan, L., Wang, Z., Yang, Q., & Huang, R. (2018). Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials, 8(11). https://doi.org/10.3390/nano8110957en
dcterms.referencesPeydayesh, M., Bolisetty, S., Mohammadi, T., & Mezzenga, R. (2019). Assessing the Binding Performance of 99 Amyloid–Carbon Membranes Towards Heavy Metal Ions. Langmuir, 35(11), 4161–4170. https://doi.org/10.1021/acs.langmuir.8b04234en
dcterms.referencesPeydayesh, M., Suter, M. K., Bolisetty, S., Boulos, S., Handschin, S., Nyström, L., & Mezzenga, R. (2020). Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water. Advanced Materials, 1907932, 1–6. https://doi.org/10.1002/adma.201907932en
dcterms.referencesPryshchepa, O., Sagandykova, G. N., Pomastowski, P., Railean-Plugaru, V., Król, A., Rogowska, A., Rodzik, A., Sprynskyy, M., & Buszewski, B. (2019). A new approach for spontaneous silver ions immobilization onto casein. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20163864en
dcterms.referencesRaj Somera, L., Cuazon, R., Kenneth Cruz, J., & Joy Diaz, L. (2019). Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. IOP Conference Series: Materials Science and Engineering, 540(1). https://doi.org/10.1088/1757- 899X/540/1/012005en
dcterms.referencesRazmi, H., Musevi, S. J., & Mohammad-Rezaei, R. (2016). Solid phase extraction of mercury(II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Microchimica Acta, 183(2), 555–562. https://doi.org/10.1007/s00604-015-1665-7en
dcterms.referencesRengga, W. D. P., Chafidz, A., Sudibandriyo, M., Nasikin, M., & Abasaeed, A. E. (2017). Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. Journal of Environmental Chemical Engineering, 5(2), 1657–1665. https://doi.org/10.1016/j.jece.2017.02.033en
dcterms.referencesReynel-Avila, H. E., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., & Silvestre-Albero, J. (2015). Assessment of naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes. Journal of Molecular Liquids, 209, 187–195. https://doi.org/10.1016/j.molliq.2015.05.013en
dcterms.referencesRicaurte, L., & Quintanilla Carvajal, M. X. (2019). Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends in Food Science and Technology, 85(December 2018), 92–106. https://doi.org/10.1016/j.tifs.2019.01.006en
dcterms.referencesRicaurte, L., Tello-Camacho, E., & Quintanilla-Carvajal, M. X. (2020). Hydrolysed Gelatin-Derived, Solvent-Free, Electrospun Nanofibres for Edible Applications: Physical, Chemical and Thermal Behaviour. Food Biophysics, 15(1), 133–142. https://doi.org/10.1007/s11483-019-09608-9en
dcterms.referencesRodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380. https://doi.org/10.1016/j.cej.2017.04.106en
dcterms.referencesRodzik, A., Pomastowski, P., Sagandykova, G. N., & Buszewski, B. (2020). Interactions of whey proteins with metal ions. International Journal of Molecular Sciences, 21(6), 1–26. https://doi.org/10.3390/ijms21062156en
dcterms.referencesRoque-Ruiz, J. H., Cabrera-Ontiveros, E. A., Torres-Pérez, J., & Reyes-López, S. Y. (2016). Preparation of PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and Lead (Pb+2) Removal from Water. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270- 016-2990-0en
dcterms.referencesSahebjamee, N., Soltanieh, M., Mousavi, S. M., & Heydarinasab, A. (2019). Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane. Carbohydrate Polymers, 210(January), 264–273. https://doi.org/10.1016/j.carbpol.2019.01.074en
dcterms.referencesSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J., & Díez, S. (2017). Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environment International, 107, 47–54. https://doi.org/10.1016/j.envint.2017.06.011en
dcterms.referencesSaleh, T. A., Sari, A., & Tuzen, M. (2017). Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. Journal of Environmental Chemical Engineering, 5(1), 1079–1088. https://doi.org/10.1016/j.jece.2017.01.032en
dcterms.referencesShrestha, A., Sharma, S., Gerold, J., Erismann, S., Sagar, S., Koju, R., Schindler, C., Odermatt, P., Utzinger, J., & Cisse, G. (2017). Water quality, sanitation, and hygiene conditions in schools and households in dolakha and ramechhap districts, Nepal: Results from a cross-sectional survey. International Journal of Environmental Research and Public Health, 14(1), 1–21. https://doi.org/10.3390/ijerph14010089en
dcterms.referencesSullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 35, 36–50. https://doi.org/10.1016/j.foodhyd.2013.07.023en
dcterms.referencesSun, Q., Aguila, B., Perman, J., Earl, L. D., Abney, C. W., Cheng, Y., Wei, H., Nguyen, N., Wojtas, L., & Ma, S. (2017). Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 139(7), 2786–2793. https://doi.org/10.1021/jacs.6b12885en
dcterms.referencesTabor, R. F., Grieser, F., Dagastine, R., & Chan, D. Y. . (2014). The hydrophobic force: measurements and methods. Physical Chemistry Chemical Physics, 16(34), 18065–18075. https://doi.org/10.1039/b000000xen
dcterms.referencesTian, H., Yuan, L., Wang, J., Wu, H., Wang, H., Xiang, A., Ashok, B., & Rajulu, A. V. (2019). Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals. Journal of Hazardous Materials, 378(June), 120751. 100 https://doi.org/10.1016/j.jhazmat.2019.120751en
dcterms.referencesTorres, J. A., Nogueira, F. G. E., Silva, M. C., Lopes, J. H., Tavares, T. S., Ramalho, T. C., & Corrêa, A. D. (2017). Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste. RSC Advances, 7(27), 16460–16466. https://doi.org/10.1039/c7ra01309den
dcterms.referencesTorres, P., Cruz, C. H., & Patiño, P. (2009). Índices De Calidad De Agua En Fuentes Superficiales Utilizadas En La Producción De Agua Para Consumo Humano. Una Revisión Crítica. Revista Ingenierías Universidad de Medellín, 8(15), 79–94. https://doi.org/10.11144/Javeriana.IYU18-2.ifcdes_CO
dcterms.referencesTran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, 1–10. https://doi.org/10.1016/j.susmat.2019.e00146en
dcterms.referencesTran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. In Water Research. https://doi.org/10.1016/j.watres.2017.04.014en
dcterms.referencesTseng, C. H., Lei, C., & Chen, Y. C. (2018). Evaluating the health costs of oral hexavalent chromium exposure from water pollution: A case study in Taiwan. Journal of Cleaner Production, 172, 819–826. https://doi.org/10.1016/j.jclepro.2017.10.177en
dcterms.referencesTshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616–632. https://doi.org/10.1016/j.ijbiomac.2020.02.221en
dcterms.referencesTsotetsi, T. A., Mochane, M. J., Motaung, T. E., Gumede, T. P., & Linganiso, Z. L. (2017). Synergistic effect of EG and cloisite 15A on the thermomechanical properties and thermal conductivity of EVA/PCL blend. Materials Research, 20(1), 109–118. https://doi.org/10.1590/1980-5373-MR-2016-0277en
dcterms.referencesTuran, D., Gibis, M., Gunes, G., Baier, S. K., & Weiss, J. (2018). The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)–dextran conjugates in fibers produced by needleless electrospinning after annealing. Food & Function, 9(4), 2193–2200. https://doi.org/10.1039/C7FO02041Den
dcterms.referencesUllah, S., Hashmi, M., Hussain, N., Ullah, A., Sarwar, M. N., Saito, Y., Kim, S. H., & Kim, I. S. (2020). Stabilized nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal ions. Journal of Water Process Engineering, 33(September 2019), 101111. https://doi.org/10.1016/j.jwpe.2019.10111en
dcterms.referencesVazquez-Velez, E., Lopez-Zarate, L., & Martinez-Valencia, H. (2019). Electrospinning of polyacrylonitrile nanofibers embedded with zerovalent iron and cerium oxide nanoparticles, as Cr(VI) adsorbents for water treatment. Journal of Applied Polymer Science, 48663(Vi), 1–10. https://doi.org/10.1002/app.48663en
dcterms.referencesVeerman, C., Ruis, H., Sagis, L. M. C., & van der Linden, E. (2002). Effect of electrostatic interactions on the percolation concentration of fibrillar β-lactoglobulin gels. Biomacromolecules, 3(4), 869–873. https://doi.org/10.1021/bm025533+en
dcterms.referencesVega-Lugo, A. C., & Lim, L. T. (2012). Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. Journal of Polymer Science, Part B: Polymer Physics, 50(16), 1188–1197. https://doi.org/10.1002/polb.23106en
dcterms.referencesWang, C., Yin, J., Wang, R., Jiao, T., Huang, H., Zhou, J., Zhang, L., & Peng, Q. (2019). Facile preparation of self-assembled polydopamine-modified electrospun fibers for highly effective removal of organic dyes. Nanomaterials, 9(1). https://doi.org/10.3390/nano9010116en
dcterms.referencesWang, J., Wang, P., Wang, H., Dong, J., Chen, W., Wang, X., Wang, S., Hayat, T., Alsaedi, A., & Wang, X. (2017). Preparation of Molybdenum Disulfide Coated Mg/Al Layered Double Hydroxide Composites for Efficient Removal of Chromium(VI). ACS Sustainable Chemistry and Engineering, 5(8), 7165–7174. https://doi.org/10.1021/acssuschemeng.7b01347en
dcterms.referencesWang, S., Liu, K. N., Wen, W. S., & Wang, P. (2011). Fibril Formation of Bovine α-Lactalbumin Is Inhibited by Glutathione. Food Biophysics, 6(1), 138–151. https://doi.org/10.1007/s11483-010-9199-3en
dcterms.referencesWorld Health Organization (WHO); the United Nations Children’s Fund (UNICEF). (2017). Progress on drinking water, sanitation and hygiene: 2017. In Who and UNICEFen
dcterms.referencesYakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., & Bobylev, A. G. (2019). Congo Red and amyloids: History and relationship. Bioscience Reports, 39(1). https://doi.org/10.1042/BSR20181415en
dcterms.referencesYan, S., Yu, Z., Liu, C., Yuan, Z., Wang, C., Chen, J., Wei, L., & Chen, Y. (2020). Dual-Template Pore Engineering of Whey Powder-Derived Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst for Primary Zinc-Air Battery. Chemistry - An Asian Journal, 15(12), 1881–1889. https://doi.org/10.1002/asia.202000399en
dcterms.referencesYang, F., Zhang, M., Zhou, B. R., Chen, J., & Liang, Y. (2006). Oleic Acid Inhibits Amyloid Formation of the Intermediate of α-Lactalbumin at Moderately Acidic pH. Journal of Molecular Biology, 362(4), 821–834. https://doi.org/10.1016/j.jmb.2006.07.059en
dcterms.referencesYang, X., Zhou, Y., Sun, Z., Yang, C., & Tang, D. (2020). Effective strategy to fabricate ZIF-8@ZIF8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI). Colloids and 101 Surfaces A: Physicochemical and Engineering Aspects, 603(July). https://doi.org/10.1016/j.colsurfa.2020.125292en
dcterms.referencesYu, X., Liu, W., Deng, X., Yan, S., & Su, Z. (2018). Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chemical Engineering Journal, 335, 176–184. https://doi.org/10.1016/j.cej.2017.10.148en
dcterms.referencesYu, X., Sun, S., Zhou, L., Miao, Z., Zhang, X., Su, Z., & Wei, G. (2019). Removing Metal Ions from Water with Graphene–Bovine Serum Albumin Hybrid Membrane. Nanomaterials, 9(2), 276. https://doi.org/10.3390/nano9020276en
dcterms.referencesYuan, Z., Cheng, X., Zhong, L., Wu, R., & Zheng, Y. (2018). Preparation, characterization and performance of an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution. Journal of Environmental Sciences (China), 1–10. https://doi.org/10.1016/j.jes.2018.06.016en
dcterms.referencesYver, A. L., Bonnaillie, L. M., Yee, W., Mcaloon, A., & Tomasula, P. M. (2012). Fractionation of whey protein isolate with supercritical carbon dioxide-process modeling and cost estimation. International Journal of Molecular Sciences, 13(1), 240–259. https://doi.org/10.3390/ijms13010240en
dcterms.referencesZappone, B., Santo, M. P. De, Labate, C., & Guzzi, R. (2013). Catalytic activity of copper ions in the amyloid fibrillation of b-lactoglobulin Bruno. Soft Matter, 9, 2412–2419. https://doi.org/10.1039/c2sm27408fen
dcterms.referencesZare-Dorabei, R., Ferdowsi, S. M., Barzin, A., & Tadjarodi, A. (2016). Highly efficient simultaneous ultrasonicassisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: Central composite design optimization. Ultrasonics Sonochemistry, 32, 265–276. https://doi.org/10.1016/j.ultsonch.2016.03.020en
dcterms.referencesZhan, Y., He, S., Wan, X., Zhang, J., Liu, B., Wang, J., & Li, Z. (2018). Easy-handling bamboo-like polypyrrole nanofibrous mats with high adsorption capacity for hexavalent chromium removal. Journal of Colloid and Interface Science, 529, 385–395. https://doi.org/10.1016/j.jcis.2018.06.033en
dcterms.referencesZhang, D., Xu, W., Cai, J., Cheng, S. Y., & Ding, W. P. (2020). Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions. International Journal of Biological Macromolecules, 149, 459–466. https://doi.org/10.1016/j.ijbiomac.2020.01.199en
dcterms.referencesZhang, Q., Li, Y., Yang, Q., Chen, H., Chen, X., Jiao, T., & Peng, Q. (2018). Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. Journal of Hazardous Materials, 342, 732–740. https://doi.org/10.1016/j.jhazmat.2017.08.061en
dcterms.referencesZhang, Q., Zhang, S., Zhao, Z., Liu, M., Yin, X., Zhou, Y., Wu, Y., & Peng, Q. (2020). Highly effective lead (II) removal by sustainable alkaline activated β-lactoglobulin nanofibrils from whey protein. Journal of Cleaner Production, 255, 1–9. https://doi.org/10.1016/j.jclepro.2020.120297en
dcterms.referencesZhang, S., Shi, Q., Christodoulatos, C., & Meng, X. (2019). Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: Batch, spectroscopic, and modeling study. Chemosphere, 233, 405–413. https://doi.org/10.1016/j.chemosphere.2019.05.190en
dcterms.referencesZhang, Y., Ullah, I., Zhang, W., Ou, H., Domingos, M., Gloria, A., Zhou, J., Li, W., & Zhang, X. (2020). Preparation of electrospun nanofibrous polycaprolactone scaffolds using nontoxic ethylene carbonate and glacial acetic acid solvent system. Journal of Applied Polymer Science, 137(8), 2–9. https://doi.org/10.1002/app.48387en
dcterms.referencesZhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24(10), 1617–1629. https://doi.org/10.1021/tx200251ten
dcterms.referencesZhong, S., Zhang, Y., & Lim, C. T. (2012). Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review. Tissue Engineering - Part B: Reviews, 18(2), 77–87. https://doi.org/10.1089/ten.teb.2011.039en
dcterms.referencesZhu, F., Zheng, Y. M., Zhang, B. G., & Dai, Y. R. (2021). A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 401(June 2020), 123608. https://doi.org/10.1016/j.jhazmat.2020.123608en
dcterms.referencesZou, H., Lv, P. F., Wang, X., Wu, D., & Yu, D. G. (2017). Electrospun poly(2-aminothiazole)/cellulose acetate fiber membrane for removing Hg(II) from water. Journal of Applied Polymer Science, 134(21), 2–9. https://doi.org/10.1002/app.44879en
dcterms.referencesZúñiga-Muro, N. M., Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Duran-Valle, C. J., Ghalla, H., & Sellaoui, L. (2020). Recovery of grape waste for the preparation of adsorbents for water treatment: Mercury removal. Journal of Environmental Chemical Engineering, 8(3), 103738. https://doi.org/10.1016/j.jece.2020.103738en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional