dc.contributor.advisor | Jiménez Junca, Carlos Alberto | |
dc.contributor.advisor | Quintanilla Carvajal, María Ximena | |
dc.contributor.author | Ramírez Rodríguez, Laura Cristina | |
dc.date.accessioned | 2021-03-02T12:42:06Z | |
dc.date.available | 2021-03-02T12:42:06Z | |
dc.date.issued | 2021-02-15 | |
dc.identifier.uri | http://hdl.handle.net/10818/47055 | |
dc.description | 104 páginas | es_CO |
dc.description.abstract | Water contamination with heavy metals such as mercury (Hg) and chromium (Cr), have a massive effect in the ecosystem due to the bioaccumulation and biomagnification that is produced in the organisms and the food chain. Consequently, several health and environmental problems are related to heavy metal pollution. Researchers have focused on adsorption to remove heavy metals from wastewater owing to its efficient highperformance and relatively low cost. A promising technology is the use of hybrid membranes produced by protein nanofibers combined with high surface area materials to remove heavy metals from water. Consequently, the aim of this study was to determine mercury and chromium removal of hybrid membranes mainly produced by whey protein using heat treatment and electrospinning methods. To develop the hybrid membranes, whey protein nanofibers (WPF) were obtained using a response surface methodology denaturing whey protein isolated (WPI) by heat treatment method or by using 2-Mercaptoethanol in the electrospinning process. The hybrid membranes were synthetized based on a simple process to functionalize activated carbon (AC) and polycaprolactone (PCL) with WPF obtaining a hybrid membrane of WPF-AC and another of WPI-PCL. The membranes were characterized by SEM, AFM, FT-IR, Red Congo, Contact Angle and TGA depending on the requirements of each membrane. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Removal of heavy metals from water using hybrid membranes of whey protein fibrils and activated carbon | es_CO |
dc.type | masterThesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Contaminación del agua | spa |
dc.subject.armarc | Hibridación | spa |
dc.subject.armarc | Metales pesados | spa |
dc.subject.armarc | Tecnología verde | spa |
dc.subject.armarc | Aguas residuales | spa |
dcterms.references | Abd El-aziz, A. M., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA)
nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ions from
wastewater. Arabian Journal of Chemistry, 10(8), 1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025 | en |
dcterms.references | Abdus-Salam, N., & Buhari, M. (2016). Adsorption of alizarin and fluorescein dyes onto palm seeds activated
carbon: Kinetic and thermodynamic studies. Journal of the Chemical Society of Pakistan, 38(4), 604–614. | en |
dcterms.references | Aceituno-Medina, M., Lopez-Rubio, A., Mendoza, S., & Lagaron, J. M. (2013). Development of novel ultrathin
structures based in amaranth ( Amaranthus hypochondriacus ) protein isolate through electrospinning.
Food Hydrocolloids, 31(2), 289–298. | en |
dcterms.references | Acharya, Shveta, & Sharma, A. K. (2018). The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with
Egg Protein by Spectrometric and Diffusion Current Techniques. Zeitschrift Fur Physikalische Chemie,
233(8), 1073–1090. https://doi.org/10.1515/zpch-2018-132 | en |
dcterms.references | Acharya, Sourav, Sahoo, S., Sonal, S., Lee, J. H., Mishra, B. K., & Nayak, G. C. (2020). Adsorbed Cr(VI) based
activated carbon/polyaniline nanocomposite: A superior electrode material for asymmetric supercapacitor
device. Composites Part B: Engineering, 193(February), 107913.
https://doi.org/10.1016/j.compositesb.2020.107913 | en |
dcterms.references | Adamcik, J., Jung, J.-M., Flakowski, J., De Los Rios, P., Dietler, G., & Mezzenga, R. (2010). Understanding
amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotechnology,
5(6), 423–428. https://doi.org/10.1038/nnano.2010.59 | en |
dcterms.references | Aguayo-Villarreal, I. A., Bonilla-Petriciolet, A., Hernández-Montoya, V., Montes-Morán, M. A., & Reynel-Avila, H.
E. (2011). Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as
sorbents. Chemical Engineering Journal, 167(1), 67–76. https://doi.org/10.1016/j.cej.2010.11.107 | en |
dcterms.references | Ahmed, S. M., Ahmed, H., Tian, C., Tu, Q., Guo, Y., & Wang, J. (2016). Whey protein concentrate doped
electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Colloids and Surfaces B:
Biointerfaces, 143, 371–381. https://doi.org/10.1016/j.colsurfb.2016.03.059 | en |
dcterms.references | Aktas, D., Dizge, N., Yatmaz, H. C., Caliskan, Y., Ozay, Y., & Caputcu, A. (2017). The adsorption and Fenton
behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and
thermodynamic studies. Water Science and Technology, 76(11), 3114–3125.
https://doi.org/10.2166/wst.2017.468 | en |
dcterms.references | Alam, M., Khan, M., Khan, A., Zeb, S., Khan, M. A., Amin, N., Sajid, M., & Khattak, A. M. (2018). Concentrations
, dietary exposure , and human health risk assessment of heavy metals in market vegetables of Peshawar,
Pakistan. Journal of Environmental Monitoring and Assessment, 190–505.
https://doi.org/https://doi.org/10.1007/s10661-018-6881-2 | en |
dcterms.references | Alhashimi, H. A., & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared
with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 118, 13–26.
https://doi.org/10.1016/j.resconrec.2016.11.016 | en |
dcterms.references | Ali Alomari, A. (2020). Effect of Modified Eggshell on Adsorption Capacity of Chromium. Asian Journal of
Chemistry, 32(7), 1549–1556. | en |
dcterms.references | Anagnostopoulos, V. A., Manariotis, I. D., Karapanagioti, H. K., & Chrysikopoulos, C. V. (2012). Removal of
mercury from aqueous solutions by malt spent rootlets. Chemical Engineering Journal, 213(December
2013), 135–141. https://doi.org/10.1016/j.cej.2012.09.074 | en |
dcterms.references | Andrade, S. ., Veloso, C. ., Fontan, R. C. ., Bonomo, R. C. ., Santos, L. ., Brito, M. J. ., & Diniz, G. . (2018).
Chemical-activated carbon from coconut (cocos nucifera) endocarp waste and its application in the
adsorption of β-lactoglobulin protein. Revista Mexicana de Ingeniería Química, 17(2), 463–475.
http://www.redalyc.org/articulo.oa?id=62029966013 | en |
dcterms.references | Arnaudov, L. N., de Vries, R., Ippel, H., & van Mierlo, C. P. M. (2003). Multiple steps during the formation of betalactoglobulin fibrils. Biomacromolecules, 4(6), 1614–1622. https://doi.org/10.1021/bm034096b | en |
dcterms.references | Asadollahfardi, G., Naseraei, M. M., Asadi, M., & Alizadeh, R. (2018). The study of mercury removal using
synthesized copper ferrite nanofiber in laboratory scale. Environmental Nanotechnology, Monitoring and
Management, 10(March), 79–86. https://doi.org/10.1016/j.enmm.2018.05.007 | en |
dcterms.references | Attari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury
removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5(1), 391–399. | en |
dcterms.references | Aymard, P., Nicolai, T., Durand, D., & Clark, A. (1999). Static and Dynamic Scattering of β-Lactoglobulin
Aggregates Formed after Heat-Induced Denaturation at pH 2. Macromolecules, 32(8), 2542–2552.
https://doi.org/10.1021/ma981689j | en |
dcterms.references | Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial
Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010 | en |
dcterms.references | Bacenetti, J., Bava, L., Schievano, A., & Zucali, M. (2018). Whey protein concentrate (WPC) production:
Environmental impact assessment. Journal of Food Engineering, 224, 139–147.
https://doi.org/10.1016/j.jfoodeng.2017.12.018 | en |
dcterms.references | Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by
monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of
Environmental Chemical Engineering, 4(4), 4237–4247. https://doi.org/10.1016/j.jece.2016.09.026 | en |
dcterms.references | Bello-Vieda, N. J., Pastrana, H. F., Garavito, M. F., Ávila, A. G., Celis, A. M., Muñoz-Castro, A., Restrepo, S., &
Hurtado, J. J. (2018). Antibacterial activities of azole complexes combined with silver nanoparticles.
Molecules, 23(2). https://doi.org/10.3390/molecules23020361 | en |
dcterms.references | Bera, B. (2016). Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique).
Imperial Journal of Interdisciplinary Research (IJIR, 2(8), 972–984. | en |
dcterms.references | Bhatt, R., & Padmaj, P. (2019). A chitosan-thiomer polymer for highly efficacious adsorption of mercury.
Carbohydrate Polymers, 207(December 2018), 663–674. https://doi.org/10.1016/j.carbpol.2018.12.018 | en |
dcterms.references | Bhowmik, M., Debnath, A., & Saha, B. (2019). Fabrication of mixed phase CaFe2O4 and MnFe2O4 magnetic
nanocomposite for enhanced and rapid adsorption of methyl orange dye: statistical modeling by neural
network and response surface methodology. Journal of Dispersion Science and Technology, 0(0), 1–12.
https://doi.org/10.1080/01932691.2019.1642209 | en |
dcterms.references | Bolder, S. G., Hendrickx, H., Sagis, L. M. C., & Van Der Linden, E. (2006). Fibril assemblies in aqueous whey
protein mixtures. Journal of Agricultural and Food Chemistry, 54(12), 4229–4234.
https://doi.org/10.1021/jf060606s | en |
dcterms.references | Bolder, S. G., Vasbinder, A. J., Sagis, L. M. C., & van der Linden, E. (2007). Heat-induced whey protein isolate
fibrils: Conversion, hydrolysis, and disulphide bond formation. International Dairy Journal, 17(7), 846–853.
https://doi.org/10.1016/j.idairyj.2006.10.002 | en |
dcterms.references | Bolder, S., Sagis, L., Venema, P., & Van Der Linden, E. (2007). Effect of stirring and seeding on whey protein
fibril formation. Journal of Agricultural and Food Chemistry, 55(14), 5661–5669.
https://doi.org/10.1021/jf063351r | en |
dcterms.references | Bolisetty, S., Arcari, M., Adamcik, J., & Mezzenga, R. (2015). Hybrid Amyloid Membranes for Continuous Flow
Catalysis. Langmuir, 31(51), 13867–13873. https://doi.org/10.1021/acs.langmuir.5b03205 | en |
dcterms.references | Bolisetty, S., & Mezzenga, R. (2016). Amyloid-carbon hybrid membranes for universal water purification. Nature
Nanotechnology, 11(4), 365–371. https://doi.org/10.1038/nnano.2015.310 | en |
dcterms.references | Bolisetty, S., Reinhold, N., Zeder, C., Orozco, M. N., & Mezzenga, R. (2017). Efficient purification of arseniccontaminated water using amyloid-carbon hybrid membranes. Chemical Communications, 53(42), 5714–
5717. https://doi.org/10.1039/C7CC00406K | en |
dcterms.references | Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K.
(2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater
treatment purposes: A review. In Ecotoxicology and Environmental Safety (Vol. 148).
https://doi.org/10.1016/j.ecoenv.2017.11.034 | en |
dcterms.references | Cao, Y., & Mezzenga, R. (2019). Food protein amyloid fibrils: Origin, structure, formation, characterization,
applications and health implications. Advances in Colloid and Interface Science, 269, 334–356.
https://doi.org/10.1016/j.cis.2019.05.002 | en |
dcterms.references | Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the
removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical
Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029 | en |
dcterms.references | Chalermthai, B., Ashraf, M. T., Bastidas-Oyanedel, J. R., Olsen, B. D., Schmidt, J. E., & Taher, H. (2020).
Techno-economic assessment of whey protein-based plastic production from a co-polymerization process.
Polymers, 12(4). https://doi.org/10.3390/POLYM1204084 | en |
dcterms.references | Chowdhury, T., Zhang, L., Zhang, J., & Aggarwal, S. (2018). Removal of Arsenic(III) from Aqueous Solution
Using Metal Organic Framework-Graphene Oxide Nanocomposite. Nanomaterials, 8(12), 1062.
https://doi.org/10.3390/nano8121062 | en |
dcterms.references | Colín-Orozco, J., Zapata-Torres, M., Rodríguez-Gattorno, G., & Pedroza-Islas, R. (2014). Properties of Poly (
ethylene oxide )/ whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophysics, 10(2),
134–144. https://doi.org/10.1007/s11483-014-9372-1 | en |
dcterms.references | Colmenares-Roldán, G. J., Quintero Martínez, Y., Agudelo Gómez, L. M., Rodríguez Vinasco, L. F., & Hoyos
Palacio, L. M. (2017). Influence of the molecular weight of polymer, solvents and operational condition in
94
the electrospinning of polycaprolactone. Revista Facultad de Ingeniería Universidad de Antioquia, 84, 35–
45. https://doi.org/10.17533/udea.redin.n84a05 | en |
dcterms.references | Cuberos, E., Rodriguez, A. I., & Prieto, E. (2009). Niveles de Cromo y Alteraciones de Salud en una Población
Expuesta a las Actividades de Curtiembres en Bogotá, Colombia. Revista de Salud Pública, 11(2), 278–
289. http://www.scielo.org.co/pdf/rsap/v11n2/v11n2a12.pdf | es_CO |
dcterms.references | Demirbaş, Ö., & Nas, M. (2016). Kinetics and Mechanism of the Adsorption of Methylene Blue from Aqueous
Solution onto Turkish Green Clay. Archives of Current Research International, 6(3), 1–10.
https://doi.org/10.9734/acri/2016/30677 | en |
dcterms.references | Díaz, U., & Corma, A. (2018). Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction
Processes. Chemistry - A European Journal, 24(16), 3944–3958. https://doi.org/10.1002/chem.201704185 | en |
dcterms.references | Doke, K. M., & Khan, E. M. (2013). Adsorption thermodynamics to clean up wastewater: critical review. Reviews
in Environmental Science and Biotechnology, 12(1), 25–44. https://doi.org/10.1007/s11157-012-9273-z | en |
dcterms.references | Dror, Y., Ziv, T., Makarov, V., Wolf, H., Admon, A., & Zussman, E. (2008). Nanofibers made of globular proteins.
Biomacromolecules, 9(10), 2749–2754. https://doi.org/10.1021/bm8005243 | en |
dcterms.references | Drosou, C., Krokida, M., & Biliaderis, C. G. (2018). Composite pullulan-whey protein nanofibers made by
electrospinning: Impact of process parameters on fiber morphology and physical properties. Food
Hydrocolloids, 77, 726–735. https://doi.org/10.1016/j.foodhyd.2017.11.014 | en |
dcterms.references | Duan, X. L., Yuan, C. G., Jing, T. T., & Yuan, X. D. (2019). Removal of elemental mercury using large surface
area micro-porous corn cob activated carbon by zinc chloride activation. Fuel, 239(October 2018), 830–
840. https://doi.org/10.1016/j.fuel.2018.11.017 | en |
dcterms.references | Dubey, S. P., Dwivedi, A. D., Kim, I. C., Sillanpaa, M., Kwon, Y. N., & Lee, C. (2014). Synthesis of graphenecarbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications.
Chemical Engineering Journal, 244, 160–167. https://doi.org/10.1016/j.cej.2014.01.042 | en |
dcterms.references | Efome, J. E., Rana, D., Matsuura, T., & Lan, C. Q. (2018). Metal-organic frameworks supported on nanofibers
to remove heavy metals. Journal of Materials Chemistry A, 6(10), 4550–4555.
https://doi.org/10.1039/c7ta10428 | en |
dcterms.references | El-Hendawy, A. N. A. (2006). Variation in the FTIR spectra of a biomass under impregnation, carbonization and
oxidation conditions. Journal of Analytical and Applied Pyrolysis, 75(2), 159–166.
https://doi.org/10.1016/j.jaap.2005.05.004 | en |
dcterms.references | Elizalde-González, M. P., Mattusch, J., Peláez-Cid, A. A., & Wennrich, R. (2007). Characterization of adsorbent
materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. Journal of
Analytical and Applied Pyrolysis, 78(1), 185–193. https://doi.org/10.1016/j.jaap.2006.06.008 | en |
dcterms.references | Erdem, B. G., & Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from
sunflower oil and soy protein or whey protein isolates. Food Chemistry, 339(August 2020), 127976.
https://doi.org/10.1016/j.foodchem.2020.127976 | en |
dcterms.references | Fan, F., Coutinho da Silva, M. A., Moraes, C. R., Dunham, A. D., HogenEsch, H., Turner, J. W., & Lannutti, J. J.
(2020). Self-reinforcing nanoscalar polycaprolactone-polyethylene terephthalate electrospun fiber blends.
Polymer, 202(April), 122573. https://doi.org/10.1016/j.polymer.2020.122573 | en |
dcterms.references | Faria, P. C. C., Órfão, J. J. M., & Pereira, M. F. R. (2004). Adsorption of anionic and cationic dyes on activated
carbons with different surface chemistries. Water Research, 38(8), 2043–2052.
https://doi.org/10.1016/j.watres.2004.01.034 | en |
dcterms.references | Farrokhi, F., Badii, F., Ehsani, M. R., & Hashemi, M. (2019). Functional and thermal properties of nanofibrillated
whey protein isolate as functions of denaturation temperature and solution pH. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 583(June), 124002.
https://doi.org/10.1016/j.colsurfa.2019.124002 | en |
dcterms.references | Fellenz, N., Perez-Alonso, F. J., Martin, P. P., García-Fierro, J. L., Bengoa, J. F., Marchetti, S. G., & Rojas, S.
(2017). Chromium (VI) removal from water by means of adsorption-reduction at the surface of aminofunctionalized MCM-41 sorbents. Microporous and Mesoporous Materials, 239, 138–146.
https://doi.org/10.1016/j.micromeso.2016.10.012 | en |
dcterms.references | Fetz, A. E., Fantaziu, C. A., Smith, R. A., Radic, M. Z., & Bowlin, G. L. (2019). Surface Area to Volume Ratio of
Electrospun Polydioxanone Templates Regulates the Adsorption of Soluble Proteins from Human Serum | en |
dcterms.references | García, O., Veiga, M. M., Cordy, P., Suescún, O. E., Molina, J. M., & Roeser, M. (2015). Artisanal gold mining in
Antioquia, Colombia: a successful case of mercury reduction. Journal of Cleaner Production, 90, 244–252.
https://doi.org/10.1016/J.JCLEPRO.2014.11.032 | en |
dcterms.references | Garg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1).
https://doi.org/10.1063/1.3567097 | en |
dcterms.references | Gbassi, G., Yolou, F., Sarr, S., Atheba, P., Amin, C., & Ake, M. (2012). Whey proteins analysis in aqueous
medium and in artificial gastric and intestinal fluids. International Journal of Biological and Chemical
95
Sciences, 6(4), 1828–1837. https://doi.org/10.4314/ijbcs.v6i4.38 | en |
dcterms.references | Genthe, B., Kapwata, T., Le Roux, W., Chamier, J., & Wright, C. Y. (2018). The reach of human health risks
associated with metals/metalloids in water and vegetables along a contaminated river catchment: South
Africa and Mozambique. Chemosphere, 199, 1–9. https://doi.org/10.1016/j.chemosphere.2018.01.160 | en |
dcterms.references | Ghanbarian, M., Nabizadeh, R., Nasseri, S., Shemirani, F., Mahvi, A. H., Beyki, M. H., & Mesdaghinia, A. (2017).
Potential of amino-riched nano-structured MnFe2O4@cellulose for biosorption of toxic Cr (VI): Modeling,
kinetic, equilibrium and comparing studies. International Journal of Biological Macromolecules, 104, 465–
480. https://doi.org/10.1016/j.ijbiomac.2017.06.060 | en |
dcterms.references | Gherasim, C. V., Bourceanu, G., Olariu, R. I., & Arsene, C. (2011). A novel polymer inclusion membrane applied
in chromium (VI) separation from aqueous solutions. Journal of Hazardous Materials, 197, 244–253.
https://doi.org/10.1016/j.jhazmat.2011.09.082 | en |
dcterms.references | Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). A System of Classi$cation of Solution
Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific
Surface Areas of Solids. Journal of the Chemical Society, 846, 3973–3993. | en |
dcterms.references | Goers, J., Permyakov, S. E., Permyakov, E. A., Uversky, V. N., & Fink, A. L. (2002). Conformational prerequisites
for α-lactalbumin fibrillation. Biochemistry, 41(41), 12546–12551. https://doi.org/10.1021/bi0262698 | en |
dcterms.references | González-Martínez, M. D., Huguet, C., Pearse, J., McIntyre, N., & Camacho, L. A. (2019). Assessment of
potential contamination of Paramo soil and downstream water supplies in a coal-mining region of
Colombia. Applied Geochemistry, 108(December 2018), 104382.
https://doi.org/10.1016/j.apgeochem.2019.104382 | en |
dcterms.references | Goscianska, J., Fathy, N. A., & Aboelenin, R. M. M. (2017). Adsorption of solophenyl red 3BL polyazo dye onto
amine-functionalized mesoporous carbons. Journal of Colloid and Interface Science, 505, 593–604.
https://doi.org/10.1016/j.jcis.2017.06.052 | en |
dcterms.references | Gowraraju, N. D., Jagadeesan, S., Ayyasamy, K., Olasunkanmi, L. O., Ebenso, E. E., & Subramanian, C. (2017).
Adsorption characteristics of Iota-carrageenan and Inulin biopolymers as potential corrosion iGGnhibitors
at mild steel/sulphuric acid interface. Journal of Molecular Liquids, 232, 9–19.
https://doi.org/10.1016/j.molliq.2017.02.054 | en |
dcterms.references | Guan, C., He, X. F., Xu, H. H., Shao, M. L., Ma, J. Y., & Gao, Z. W. (2020). Comparative experiments of electrical
conductivity from whey protein concentrates conventional film and nanofibril film. Journal of Dairy
Research, 87(1), 103–109. https://doi.org/10.1017/S0022029919000876 | en |
dcterms.references | Guimarães, V., Rodríguez-Castellón, E., Algarra, M., Rocha, F., & Bobos, I. (2016). Influence of pH, layer charge
location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite.
Journal of Hazardous Materials, 317, 246–258. https://doi.org/10.1016/j.jhazmat.2016.05.060 | en |
dcterms.references | Guo, M., & Wang, G. (2019). Future Development of Whey Protein Production. In M. Guo (Ed.), Whey Protein
Production, Chemistry, Func- tionality, and Applications. (First, pp. 251–260). Wiley.
http://repositorio.unan.edu.ni/2986/1/5624.pdf | en |
dcterms.references | Guo, Z., Kang, Y., Liang, S., & Zhang, J. (2020). Detection of Hg(II) in adsorption experiment by a lateral flow
biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone
reader. Environmental Pollution, 266, 115389. https://doi.org/10.1016/j.envpol.2020.115389 | en |
dcterms.references | Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning
parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of
Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015 | en |
dcterms.references | Hamad, A. A., Hassouna, M. S., Shalaby, T. I., Elkady, M. F., Abd Elkawi, M. A., & Hamad, H. A. (2020).
Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals.
International Journal of Biological Macromolecules, 151, 1299–1313.
https://doi.org/10.1016/j.ijbiomac.2019.10.176 | en |
dcterms.references | Hargreaves, A. J., Vale, P., Whelan, J., Constantino, C., Dotro, G., & Cartmell, E. (2016). Mercury and antimony
in wastewater: Fate and treatment. Water, Air, and Soil Pollution, 227(3). https://doi.org/10.1007/s11270-
016-2756-8 | en |
dcterms.references | He, L., Lu, Y., Wang, F., Gao, X., Chen, Y., & Liu, Y. (2018). Bare eye detection of Hg(II) ions based on enzyme
inhibition and using mercaptoethanol as a reagent to improve selectivity. Microchimica Acta, 185(3), 1–8.
https://doi.org/10.1007/s00604-018-2721-x | en |
dcterms.references | Homaeigohar, S., & Elbahri, M. (2014). Nanocomposite electrospun nanofiber membranes for environmental
remediation. Materials, 7(2), 1017–1045. https://doi.org/10.3390/ma7021017 | en |
dcterms.references | Hota, G., Kumar, B. R., Ng, W. J., & Ramakrishna, S. (2008). Fabrication and characterization of a boehmite
nanoparticle impregnated electrospun fiber membrane for removal of metal ions. Journal of Materials
Science, 43(1), 212–217. https://doi.org/10.1007/s10853-007-2142-4 | en |
dcterms.references | Huang, L., Shen, R., Liu, R., & Shuai, Q. (2020). Thiol-functionalized magnetic covalent organic frameworks by
a cutting strategy for efficient removal of Hg2+ from water. Journal of Hazardous Materials, 392(December
2019), 122320. https://doi.org/10.1016/j.jhazmat.2020.122320 | en |
dcterms.references | Huang, R., Zhu, H., Su, R., Qi, W., & He, Z. (2016). Catalytic Membrane Reactor Immobilized with Alloy
Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. Environmental Science
and Technology, 50(20), 11263–11273. https://doi.org/10.1021/acs.est.6b03431 | en |
dcterms.references | Igibah, E. C., Agashua, L. O., & Sadiq, A. A. (2019). Water contamination: Burden and stratagems for control.
Journal of Physics: Conference Series, 1378(4). https://doi.org/10.1088/1742-6596/1378/4/042011 | en |
dcterms.references | Ikeda, S., & Morris, V. J. (2002). Fine-stranded and particulate aggregates of heat-denatured whey proteins
visualized by atomic force microscopy. Biomacromolecules, 3(2), 382–389.
https://doi.org/10.1021/bm0156429 | en |
dcterms.references | Iqhwan Che, M., Hassan, M. I., Sultana, N., & Fauzi, A. (2017). Characterization of PCL/Zeolite electrospun
membrane for the removal of silver in driking water. 2, 89–95. | en |
dcterms.references | Irandoost, M., Pezeshki-Modaress, M., & Javanbakht, V. (2019). Removal of lead from aqueous solution with
nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. Journal
of Water Process Engineering, 32, 2–12. https://doi.org/10.1016/j.jwpe.2019.100981 | en |
dcterms.references | Javad Amiri, Mohammad Arshadi, M., & Giannakopoulos, Evangelos Kalavrouziotis, I. (2018). Removal of
Mercury (II) and Lead (II) from Aqueous Media by Using a Green Adsorbent: Kinetics, Thermodynamic,
and Mechanism Studies. Journal of Hazardous, Toxic, and Radioactive Waste, 22(2). | en |
dcterms.references | Ji, W., Xiao, L., Ling, Y., Ching, C., Matsumoto, M., Bisbey, R. P., Helbling, D. E., & Dichtel, W. R. (2018).
Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent
Organic Frameworks. Journal of the American Chemical Society, 140(40), 12677–12681.
https://doi.org/10.1021/jacs.8b06958 | en |
dcterms.references | Jiang, B., Wang, L., Na, J., Zhang, X., Yuan, Y., Liu, C., & Feng, Z. (2020). Environmentally-friendly strategy for
separation of α-lactalbumin from whey by aqueous two phase flotation. Arabian Journal of Chemistry,
13(1), 3391–3402. https://doi.org/10.1016/j.arabjc.2018.11.013 | en |
dcterms.references | Jiang, L., Wang, L., Wang, N., Gong, S., Wang, L., Li, Q., Shen, C., & Turng, L. S. (2018). Fabrication of
polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for
tissue engineering scaffolds. Applied Surface Science, 427, 311–325.
https://doi.org/10.1016/j.apsusc.2017.08.005 | en |
dcterms.references | Jin, X., Wang, H., Jin, X., Wang, H., Chen, L., Wang, W., Lin, T., & Zhu, Z. (2020a). Preparation of keratin/PET
nanofiber membrane and its high adsorption performance of Cr(VI). Science of the Total Environment,
710, 135546. https://doi.org/10.1016/j.scitotenv.2019.135546 | en |
dcterms.references | Jin, X., Wang, H., Jin, X., Wang, H., Chen, L., Wang, W., Lin, T., & Zhu, Z. (2020b). Preparation of keratin/PET
nanofiber membrane and its high adsorption performance of Cr(VI). Science of the Total Environment,
710, 135546. https://doi.org/10.1016/j.scitotenv.2019.135546 | en |
dcterms.references | Jung, J.-M., Savin, G., Pouzot, M., Schmitt, C., & Mezzenga, R. (2008). Structure of Heat-Induced BLactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate. Biomacromolecules, 9,
2477–2486. https://doi.org/10.1021/bm800502 | en |
dcterms.references | Kabay, G., Kaleli, G., Sultanova, Z., Ölmez, T. T., Şeker, U. Ö. Ş., & Mutlu, M. (2016). Biocatalytic protein
membranes fabricated by electrospinning. Reactive and Functional Polymers, 103, 26–32.
https://doi.org/10.1016/j.reactfunctpolym.2016.03.015 | en |
dcterms.references | Kabay, G., Meydan, A. E., Kaleli Can, G., Demirci, C., & Mutlu, M. (2017). Controlled release of a hydrophilic
drug from electrospun amyloid-like protein blend nanofibers. Materials Science and Engineering C,
81(July), 271–279. https://doi.org/10.1016/j.msec.2017.08.003 | en |
dcterms.references | Kanani-Jazi, M. H., Akbari, S., & Haghighat Kish, M. (2020). Efficient removal of Cr (VI) from aqueous solution
by halloysite/poly(amidoamine) dendritic nano-hybrid materials: kinetic, isotherm and thermodynamic
studies. Advanced Powder Technology, 31(9), 4018–4030. https://doi.org/10.1016/j.apt.2020.08.004 | en |
dcterms.references | Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption
techniques. Applied Water Science, 8(1), 1–30. https://doi.org/10.1007/s13201-018-0661-6 | en |
dcterms.references | Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown
biopolymer nanofiber membranes. Journal of Membrane Science, 530(February), 250–263.
https://doi.org/10.1016/j.memsci.2017.02.019 | en |
dcterms.references | Kontopidis, G., Holt, C., & Sawyer, L. (2010). Invited Review: β-Lactoglobulin: Binding Properties, Structure, and
Function. Journal of Dairy Science. https://doi.org/10.3168/jds.s0022-0302(04)73222-1 | en |
dcterms.references | Krebs, M. R. H., Devlin, G. L., & Donald, A. M. (2009). Amyloid fibril-like structure underlies the aggregate
structure across the pH range for β-lactoglobulin. Biophysical Journal, 96(12), 5013–5019.
https://doi.org/10.1016/j.bpj.2009.03.028 | en |
dcterms.references | Kumar, M., Singh, A. K., & Sikandar, M. (2020). Biosorption of Hg (II) from aqueous solution using algal biomass:
kinetics and isotherm studies. Heliyon, 6(1), e03321. https://doi.org/10.1016/j.heliyon.2020.e03321 | en |
dcterms.references | Kutzli, I., Gibis, M., Baier, S. K., & Weiss, J. (2018a). Fabrication and characterization of food-grade fibers from
mixtures of maltodextrin and whey protein isolate using needleless electrospinning. Journal of Applied
Polymer Science, 135(22), 1–9. https://doi.org/10.1002/app.46328 | en |
dcterms.references | Kutzli, I., Gibis, M., Baier, S. K., & Weiss, J. (2018b). Formation of Whey Protein Isolate (WPI)–Maltodextrin
Conjugates in Fibers Produced by Needleless Electrospinning. Journal of Agricultural and Food Chemistry,
66(39), 10283–10291. https://doi.org/10.1021/acs.jafc.8b02104 | en |
dcterms.references | Leunga, R., Venusb, C., Zengb, T., & Tsopmo, A. (2018). Structure-function of hydroxyl radical scavenging and
chromium-VI reducing cysteine- tripeptides derived from rye secalin Rachel Leung. Food Chemistry, 254,
165–169. | en |
dcterms.references | Li, C., Adamcik, J., & Mezzenga, R. (2012). Biodegradable nanocomposites of amyloid fibrils and graphene with
shape-memory and enzyme-sensing properties. Nature Nanotechnology, 7(7), 421–427.
https://doi.org/10.1038/nnano.2012.62 | en |
dcterms.references | Li, C., & Mezzenga, R. (2013). The interplay between carbon nanomaterials and amyloid fibrils in bionanotechnology. Nanoscale, 5(14), 6207. https://doi.org/10.1039/c3nr01644g | en |
dcterms.references | Li, X., Wang, C., Yang, S., Liu, P., & Zhang, B. (2018). Electrospun PCL/mupirocin and chitosan/ lidocaine
hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications.
International Journal of Nanomedicine, 13, 5287–5299. https://doi.org/10.2147/IJN.S177256 | en |
dcterms.references | Li, Z., Hanafy, H., Zhang, L., Sellaoui, L., Schadeck Netto, M., Oliveira, M. L. S., Seliem, M. K., Luiz Dotto, G.,
Bonilla-Petriciolet, A., & Li, Q. (2020). Adsorption of congo red and methylene blue dyes on an ashitaba
waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization
and physical interpretations. Chemical Engineering Journal, 388(December 2019), 124263.
https://doi.org/10.1016/j.cej.2020.124263 | en |
dcterms.references | Lin, W. C., & Razali, N. A. M. (2019). Temporary wettability tuning of PCL/PDMS micro pattern using the plasma
treatments. Materials, 12(4). https://doi.org/10.3390/ma12040644 | en |
dcterms.references | Liu, C., Peng, J., Zhang, L., Wang, S., Ju, S., & Liu, C. (2018). Mercury adsorption from aqueous solution by
regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted
decontamination. Journal of Cleaner Production, 196, 109–121.
https://doi.org/10.1016/j.jclepro.2018.06.027 | en |
dcterms.references | Liu, Xiang, Feng, P., Zhang, L., & Chen, Y. (2020). Mussel-inspired method to decorate commercial nanofiltration
membrane for heavy metal ions removal. Polymers for Advanced Technologies, 31(4), 665–674.
https://doi.org/10.1002/pat.4803 | en |
dcterms.references | Liu, Xiangxiang, Jiang, B., Yin, X., Ma, H., & Hsiao, B. S. (2020). Highly permeable nanofibrous composite
microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification
Technology, 233(August 2019), 115976. https://doi.org/10.1016/j.seppur.2019.115976 | en |
dcterms.references | Liu, Y., & Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification
Technology, 61(3), 229–242. https://doi.org/10.1016/j.seppur.2007.10.002 | en |
dcterms.references | Loveday, S., Anema, S. G., & Singh, H. (2017). β-Lactoglobulin nanofibrils: The long and the short of it.
International Dairy Journal, 67, 35–45. https://doi.org/10.1016/j.idairyj.2016.09.011 | en |
dcterms.references | Loveday, S. M., Wang, X. L., Rao, M. A., Anema, S. G., & Singh, H. (2011). Effect of pH, NaCl, CaCl 2 and
temperature on self-assembly of β-lactoglobulin into nanofibrils: A central composite design study. Journal
of Agricultural and Food Chemistry, 59(15), 8467–8474. https://doi.org/10.1021/jf201870z | en |
dcterms.references | Luo, C. J., Stride, E., & Edirisinghe, M. (2012). Mapping the influence of solubility and dielectric constant on
electrospinning polycaprolactone solutions. Macromolecules, 45(11), 4669–4680.
https://doi.org/10.1021/ma300656u | en |
dcterms.references | Mahmood Albakaa, A. R. (2016). Determination of 2-Mercaptoethanol by Potentiometric Titration with Mercury
(II) Chloride. Chemical Sciences Journal, 7(3). https://doi.org/10.4172/2150-3494.1000138 | en |
dcterms.references | Maity, S., Pal, S., Sardar, S., Sepay, N., Parvej, H., Begum, S., Dalui, R., Das, N., Pradhan, A., & Halder, U. C.
(2018). Inhibition of amyloid fibril formation of β-lactoglobulin by natural and synthetic curcuminoids. New
Journal of Chemistry, 42(23), 19260–19271. https://doi.org/10.1039/c8nj03194k | en |
dcterms.references | Maleki, A., Hayati, B., Najafi, F., Gharibi, F., & Joo, S. W. (2016). Heavy metal adsorption from industrial
wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. Journal of
Molecular Liquids, 224, 95–104. https://doi.org/10.1016/J.MOLLIQ.2016.09.060 | en |
dcterms.references | Manirethan, V., & Balakrishnan, R. M. (2020). Batch and continuous studies on the removal of heavy metals
using biosynthesised melanin impregnated activated carbon. Environmental Technology and Innovation,
20, 24723–24737. https://doi.org/10.1016/j.eti.2020.101085 | en |
dcterms.references | Marella, C., Muthukumarappan, K., & Metzger, L. E. (2011). Evaluation of commercially available, wide-pore
ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate. Journal of
Dairy Science, 94(3), 1165–1175. https://doi.org/10.3168/jds.2010-3739 | en |
dcterms.references | Martínez, S., & Romero, J. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos
y productos: un análisis de su competitividad. Revista de La Facultad de Ciencias Económicas, 26(1),
113–124. https://doi.org/10.18359/rfce.2357 | es_CO |
dcterms.references | Martins, A. J., Bourbon, A. I., Vicente, A. A., Pinto, S., Lopes Da Silva, J. A., & Rocha, C. M. R. (2015). Physical
and mass transfer properties of electrospun ε-polycaprolactone nanofiber membranes. Process
98
Biochemistry, 50(6), 885–892. https://doi.org/10.1016/j.procbio.2015.03.017 | en |
dcterms.references | Mascarenhas, B. C., Tavares, F. A., & Paris, E. C. (2019). Functionalized faujasite zeolite immobilized on
poly(lactic acid) composite fibers to remove dyes from aqueous media. Journal of Applied Polymer
Science, 48561, 1–12. https://doi.org/10.1002/app.48561 | en |
dcterms.references | Menchik, P., & Moraru, C. I. (2019). Nonthermal concentration of liquid foods by a combination of reverse
osmosis and forward osmosis. Acid whey: A case study. Journal of Food Engineering, 253(October 2018),
40–48. https://doi.org/10.1016/j.jfoodeng.2019.02.015 | en |
dcterms.references | Merodio-Morales, E. E., Reynel-Ávila, H. E., Mendoza-Castillo, D. I., Duran-Valle, C. J., & Bonilla-Petriciolet, A.
(2020). Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption
of fluoride and arsenic ions. International Journal of Environmental Science and Technology, 17(1), 115–
128. https://doi.org/10.1007/s13762-019-02437-w | en |
dcterms.references | Mezzenga, R., Zhang, Q., Bolisetty, S., Cao, Y., Handschin, S., & Adamcik, J. (2019). Selective and efficient
removal of fluoride from water by in-situ engineered amyloid fibrils-ZrO2 hybrid membranes- Supporting
information. Angewandte Chemie - International Edition, 1–66. https://doi.org/10.1002/ejoc.201403115 | en |
dcterms.references | Miranda-Rodríguez, J. P., Romero-Espinosa, A. P., & Salcedo-Paeea, O. (2019). Analysis of sanitation
conditions in Colombia. Case study: Atlantico Department. International Journal of Mechanical Engineering
and Technology, 10(12), 241–246. | en |
dcterms.references | Mohamed, A., Nasser, W. S., Osman, T. A., Toprak, M. S., Muhammed, M., & Uheida, A. (2017). Removal of
chromium (VI) from aqueous solutions using surface modified composite nanofibers. Journal of Colloid
and Interface Science, 505, 682–691. https://doi.org/10.1016/j.jcis.2017.06.066 | en |
dcterms.references | Morris, K., & Serpell, L. (2010). From natural to designer self-assembling biopolymers, the structural
characterisation of fibrous proteins and peptides using fibre diffraction. Chemical Society Reviews, 39(9),
3445. https://doi.org/10.1039/b919453n | en |
dcterms.references | Mortazavian, S., Saber, A., Hong, J., Bae, J. H., Chun, D., Wong, N., Gerrity, D., Batista, J., Kim, K. J., & Moon,
J. (2019). Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber
coating for aqueous hexavalent chromium removal. Journal of Industrial and Engineering Chemistry, 69,
196–210. https://doi.org/10.1016/j.jiec.2018.09.028 | en |
dcterms.references | Mosquera, P. (2017). Aplicacion del modelo Z-Altman en cinco Pymes del sector calzado, cuero y marroquineria
de la ciudad de Bogota para la medición del riesgo financiero.
http://repository.lasalle.edu.co/bitstream/handle/10185/28440/11141654_2017.pdf?sequence=1&isAllow
ed=y | es_CO |
dcterms.references | Muñoz, M. I., Aller, A. J., & Littlejohn, D. (2014). The bonding of heavy metals on nitric acid-etched coal fly ashes
functionalized with 2-mercaptoethanol or thioglycolic acid. Materials Chemistry and Physics, 143(3), 1469–
1480. https://doi.org/10.1016/j.matchemphys.2013.12.002 | en |
dcterms.references | Nasouri, K., & Shoushtari, A. M. (2017). Effects of Diameter and Surface Area of Electrospun Nanocomposite
Fibers on Electromagnetic Interference Shielding. https://doi.org/10.1134/S0965545X17050133 | en |
dcterms.references | Nguyen, N. H. A., Streicher, C., & Anema, S. G. (2018). The effect of thiol reagents on the denaturation of the
whey protein in milk and whey protein concentrate solutions. International Dairy Journal, 85, 285–293.
https://doi.org/10.1016/j.idairyj.2018.06.012 | en |
dcterms.references | Nicolai, T., Britten, M., & Schmitt, C. (2011). B-Lactoglobulin and WPI aggregates: Formation, structure and
applications. Food Hydrocolloids, 25, 1945–1962. https://doi.org/10.1016/j.foodhyd.2011.02.006 | en |
dcterms.references | Nieuwland, M., Geerdink, P., Brier, P., Van Den Eijnden, P., Henket, J. T. M. M., Langelaan, M. L. P., Stroeks,
N., Van Deventer, H. C., & Martin, A. H. (2013). food-grade electrospinning of proteins. Innovative Food
Science and Emerging Technologies, 20, 269–275. https://doi.org/10.1016/j.ifset.2014.07.006 | en |
dcterms.references | O’Loughlin, I. B., Kelly, P. M., Murray, B. A., Fitzgerald, R. J., & Brodkorb, A. (2015). Concentrated whey protein
ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation.
International Journal of Dairy Technology, 68(3), 349–356. https://doi.org/10.1111/1471-0307.12239 | en |
dcterms.references | Oktar, F. N., Su, S., Ozbek, B., Yücel, S., Kazan, D., & Gunduz, O. (2018). Production and characterization of
whey protein concentrate (WPC) based nano-fibers. Materials Science Forum, 923, 47–51.
https://doi.org/10.4028/www.scientific.net/MSF.923.47 | en |
dcterms.references | Olivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013).
Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate
Polymers, 92(2), 1705–1710. https://doi.org/10.1016/j.carbpol.2012.11.024 | en |
dcterms.references | Pal, S., Maity, S., Sardar, S., Chakraborty, J., & Halder, U. C. (2016). Insight into the co-solvent induced
conformational changes and aggregation of bovine β-lactoglobulin. International Journal of Biological
Macromolecules, 84, 121–134. https://doi.org/10.1016/j.ijbiomac.2015.11.055 | en |
dcterms.references | Pan, L., Wang, Z., Yang, Q., & Huang, R. (2018). Efficient removal of lead, copper and cadmium ions from water
by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials, 8(11).
https://doi.org/10.3390/nano8110957 | en |
dcterms.references | Peydayesh, M., Bolisetty, S., Mohammadi, T., & Mezzenga, R. (2019). Assessing the Binding Performance of
99
Amyloid–Carbon Membranes Towards Heavy Metal Ions. Langmuir, 35(11), 4161–4170.
https://doi.org/10.1021/acs.langmuir.8b04234 | en |
dcterms.references | Peydayesh, M., Suter, M. K., Bolisetty, S., Boulos, S., Handschin, S., Nyström, L., & Mezzenga, R. (2020).
Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water. Advanced
Materials, 1907932, 1–6. https://doi.org/10.1002/adma.201907932 | en |
dcterms.references | Pryshchepa, O., Sagandykova, G. N., Pomastowski, P., Railean-Plugaru, V., Król, A., Rogowska, A., Rodzik, A.,
Sprynskyy, M., & Buszewski, B. (2019). A new approach for spontaneous silver ions immobilization onto
casein. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20163864 | en |
dcterms.references | Raj Somera, L., Cuazon, R., Kenneth Cruz, J., & Joy Diaz, L. (2019). Kinetics and Isotherms Studies of the
Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. IOP
Conference Series: Materials Science and Engineering, 540(1). https://doi.org/10.1088/1757-
899X/540/1/012005 | en |
dcterms.references | Razmi, H., Musevi, S. J., & Mohammad-Rezaei, R. (2016). Solid phase extraction of mercury(II) using soluble
eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping
voltammetry. Microchimica Acta, 183(2), 555–562. https://doi.org/10.1007/s00604-015-1665-7 | en |
dcterms.references | Rengga, W. D. P., Chafidz, A., Sudibandriyo, M., Nasikin, M., & Abasaeed, A. E. (2017). Silver nano-particles
deposited on bamboo-based activated carbon for removal of formaldehyde. Journal of Environmental
Chemical Engineering, 5(2), 1657–1665. https://doi.org/10.1016/j.jece.2017.02.033 | en |
dcterms.references | Reynel-Avila, H. E., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., & Silvestre-Albero, J. (2015). Assessment of
naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes. Journal of
Molecular Liquids, 209, 187–195. https://doi.org/10.1016/j.molliq.2015.05.013 | en |
dcterms.references | Ricaurte, L., & Quintanilla Carvajal, M. X. (2019). Use of electrospinning technique to produce nanofibres for
food industries: A perspective from regulations to characterisations. Trends in Food Science and
Technology, 85(December 2018), 92–106. https://doi.org/10.1016/j.tifs.2019.01.006 | en |
dcterms.references | Ricaurte, L., Tello-Camacho, E., & Quintanilla-Carvajal, M. X. (2020). Hydrolysed Gelatin-Derived, Solvent-Free,
Electrospun Nanofibres for Edible Applications: Physical, Chemical and Thermal Behaviour. Food
Biophysics, 15(1), 133–142. https://doi.org/10.1007/s11483-019-09608-9 | en |
dcterms.references | Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment
technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380.
https://doi.org/10.1016/j.cej.2017.04.106 | en |
dcterms.references | Rodzik, A., Pomastowski, P., Sagandykova, G. N., & Buszewski, B. (2020). Interactions of whey proteins with
metal ions. International Journal of Molecular Sciences, 21(6), 1–26. https://doi.org/10.3390/ijms21062156 | en |
dcterms.references | Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., Torres-Pérez, J., & Reyes-López, S. Y. (2016). Preparation of
PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and
Lead (Pb+2) Removal from Water. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-
016-2990-0 | en |
dcterms.references | Sahebjamee, N., Soltanieh, M., Mousavi, S. M., & Heydarinasab, A. (2019). Removal of Cu2+, Cd2+ and Ni2+
ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane. Carbohydrate
Polymers, 210(January), 264–273. https://doi.org/10.1016/j.carbpol.2019.01.074 | en |
dcterms.references | Salazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J., & Díez, S. (2017). Dietary
human exposure to mercury in two artisanal small-scale gold mining communities of northwestern
Colombia. Environment International, 107, 47–54. https://doi.org/10.1016/j.envint.2017.06.011 | en |
dcterms.references | Saleh, T. A., Sari, A., & Tuzen, M. (2017). Optimization of parameters with experimental design for the adsorption
of mercury using polyethylenimine modified-activated carbon. Journal of Environmental Chemical
Engineering, 5(1), 1079–1088. https://doi.org/10.1016/j.jece.2017.01.032 | en |
dcterms.references | Shrestha, A., Sharma, S., Gerold, J., Erismann, S., Sagar, S., Koju, R., Schindler, C., Odermatt, P., Utzinger, J.,
& Cisse, G. (2017). Water quality, sanitation, and hygiene conditions in schools and households in dolakha
and ramechhap districts, Nepal: Results from a cross-sectional survey. International Journal of
Environmental Research and Public Health, 14(1), 1–21. https://doi.org/10.3390/ijerph14010089 | en |
dcterms.references | Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of
whey protein nanofibers. Food Hydrocolloids, 35, 36–50. https://doi.org/10.1016/j.foodhyd.2013.07.023 | en |
dcterms.references | Sun, Q., Aguila, B., Perman, J., Earl, L. D., Abney, C. W., Cheng, Y., Wei, H., Nguyen, N., Wojtas, L., & Ma, S.
(2017). Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury
Removal. Journal of the American Chemical Society, 139(7), 2786–2793.
https://doi.org/10.1021/jacs.6b12885 | en |
dcterms.references | Tabor, R. F., Grieser, F., Dagastine, R., & Chan, D. Y. . (2014). The hydrophobic force: measurements and
methods. Physical Chemistry Chemical Physics, 16(34), 18065–18075. https://doi.org/10.1039/b000000x | en |
dcterms.references | Tian, H., Yuan, L., Wang, J., Wu, H., Wang, H., Xiang, A., Ashok, B., & Rajulu, A. V. (2019). Electrospinning of
polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy
metals. Journal of Hazardous Materials, 378(June), 120751.
100
https://doi.org/10.1016/j.jhazmat.2019.120751 | en |
dcterms.references | Torres, J. A., Nogueira, F. G. E., Silva, M. C., Lopes, J. H., Tavares, T. S., Ramalho, T. C., & Corrêa, A. D.
(2017). Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained
from agricultural waste. RSC Advances, 7(27), 16460–16466. https://doi.org/10.1039/c7ra01309d | en |
dcterms.references | Torres, P., Cruz, C. H., & Patiño, P. (2009). Índices De Calidad De Agua En Fuentes Superficiales Utilizadas En
La Producción De Agua Para Consumo Humano. Una Revisión Crítica. Revista Ingenierías Universidad
de Medellín, 8(15), 79–94. https://doi.org/10.11144/Javeriana.IYU18-2.ifcd | es_CO |
dcterms.references | Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based
electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies,
23, 1–10. https://doi.org/10.1016/j.susmat.2019.e00146 | en |
dcterms.references | Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding
adsorption of contaminants from aqueous solutions: A critical review. In Water Research.
https://doi.org/10.1016/j.watres.2017.04.014 | en |
dcterms.references | Tseng, C. H., Lei, C., & Chen, Y. C. (2018). Evaluating the health costs of oral hexavalent chromium exposure
from water pollution: A case study in Taiwan. Journal of Cleaner Production, 172, 819–826.
https://doi.org/10.1016/j.jclepro.2017.10.177 | en |
dcterms.references | Tshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of
contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616–632.
https://doi.org/10.1016/j.ijbiomac.2020.02.221 | en |
dcterms.references | Tsotetsi, T. A., Mochane, M. J., Motaung, T. E., Gumede, T. P., & Linganiso, Z. L. (2017). Synergistic effect of
EG and cloisite 15A on the thermomechanical properties and thermal conductivity of EVA/PCL blend.
Materials Research, 20(1), 109–118. https://doi.org/10.1590/1980-5373-MR-2016-0277 | en |
dcterms.references | Turan, D., Gibis, M., Gunes, G., Baier, S. K., & Weiss, J. (2018). The impact of the molecular weight of dextran
on formation of whey protein isolate (WPI)–dextran conjugates in fibers produced by needleless
electrospinning after annealing. Food & Function, 9(4), 2193–2200. https://doi.org/10.1039/C7FO02041D | en |
dcterms.references | Ullah, S., Hashmi, M., Hussain, N., Ullah, A., Sarwar, M. N., Saito, Y., Kim, S. H., & Kim, I. S. (2020). Stabilized
nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal
ions. Journal of Water Process Engineering, 33(September 2019), 101111.
https://doi.org/10.1016/j.jwpe.2019.10111 | en |
dcterms.references | Vazquez-Velez, E., Lopez-Zarate, L., & Martinez-Valencia, H. (2019). Electrospinning of polyacrylonitrile
nanofibers embedded with zerovalent iron and cerium oxide nanoparticles, as Cr(VI) adsorbents for water
treatment. Journal of Applied Polymer Science, 48663(Vi), 1–10. https://doi.org/10.1002/app.48663 | en |
dcterms.references | Veerman, C., Ruis, H., Sagis, L. M. C., & van der Linden, E. (2002). Effect of electrostatic interactions on the
percolation concentration of fibrillar β-lactoglobulin gels. Biomacromolecules, 3(4), 869–873.
https://doi.org/10.1021/bm025533+ | en |
dcterms.references | Vega-Lugo, A. C., & Lim, L. T. (2012). Effects of poly(ethylene oxide) and pH on the electrospinning of whey
protein isolate. Journal of Polymer Science, Part B: Polymer Physics, 50(16), 1188–1197.
https://doi.org/10.1002/polb.23106 | en |
dcterms.references | Wang, C., Yin, J., Wang, R., Jiao, T., Huang, H., Zhou, J., Zhang, L., & Peng, Q. (2019). Facile preparation of
self-assembled polydopamine-modified electrospun fibers for highly effective removal of organic dyes.
Nanomaterials, 9(1). https://doi.org/10.3390/nano9010116 | en |
dcterms.references | Wang, J., Wang, P., Wang, H., Dong, J., Chen, W., Wang, X., Wang, S., Hayat, T., Alsaedi, A., & Wang, X.
(2017). Preparation of Molybdenum Disulfide Coated Mg/Al Layered Double Hydroxide Composites for
Efficient Removal of Chromium(VI). ACS Sustainable Chemistry and Engineering, 5(8), 7165–7174.
https://doi.org/10.1021/acssuschemeng.7b01347 | en |
dcterms.references | Wang, S., Liu, K. N., Wen, W. S., & Wang, P. (2011). Fibril Formation of Bovine α-Lactalbumin Is Inhibited by
Glutathione. Food Biophysics, 6(1), 138–151. https://doi.org/10.1007/s11483-010-9199-3 | en |
dcterms.references | World Health Organization (WHO); the United Nations Children’s Fund (UNICEF). (2017). Progress on drinking
water, sanitation and hygiene: 2017. In Who and UNICEF | en |
dcterms.references | Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., & Bobylev, A. G. (2019). Congo Red and amyloids: History
and relationship. Bioscience Reports, 39(1). https://doi.org/10.1042/BSR20181415 | en |
dcterms.references | Yan, S., Yu, Z., Liu, C., Yuan, Z., Wang, C., Chen, J., Wei, L., & Chen, Y. (2020). Dual-Template Pore
Engineering of Whey Powder-Derived Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst
for Primary Zinc-Air Battery. Chemistry - An Asian Journal, 15(12), 1881–1889.
https://doi.org/10.1002/asia.202000399 | en |
dcterms.references | Yang, F., Zhang, M., Zhou, B. R., Chen, J., & Liang, Y. (2006). Oleic Acid Inhibits Amyloid Formation of the
Intermediate of α-Lactalbumin at Moderately Acidic pH. Journal of Molecular Biology, 362(4), 821–834.
https://doi.org/10.1016/j.jmb.2006.07.059 | en |
dcterms.references | Yang, X., Zhou, Y., Sun, Z., Yang, C., & Tang, D. (2020). Effective strategy to fabricate ZIF-8@ZIF8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI). Colloids and
101
Surfaces A: Physicochemical and Engineering Aspects, 603(July).
https://doi.org/10.1016/j.colsurfa.2020.125292 | en |
dcterms.references | Yu, X., Liu, W., Deng, X., Yan, S., & Su, Z. (2018). Gold nanocluster embedded bovine serum albumin
nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chemical
Engineering Journal, 335, 176–184. https://doi.org/10.1016/j.cej.2017.10.148 | en |
dcterms.references | Yu, X., Sun, S., Zhou, L., Miao, Z., Zhang, X., Su, Z., & Wei, G. (2019). Removing Metal Ions from Water with
Graphene–Bovine Serum Albumin Hybrid Membrane. Nanomaterials, 9(2), 276.
https://doi.org/10.3390/nano9020276 | en |
dcterms.references | Yuan, Z., Cheng, X., Zhong, L., Wu, R., & Zheng, Y. (2018). Preparation, characterization and performance of
an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution.
Journal of Environmental Sciences (China), 1–10. https://doi.org/10.1016/j.jes.2018.06.016 | en |
dcterms.references | Yver, A. L., Bonnaillie, L. M., Yee, W., Mcaloon, A., & Tomasula, P. M. (2012). Fractionation of whey protein
isolate with supercritical carbon dioxide-process modeling and cost estimation. International Journal of
Molecular Sciences, 13(1), 240–259. https://doi.org/10.3390/ijms13010240 | en |
dcterms.references | Zappone, B., Santo, M. P. De, Labate, C., & Guzzi, R. (2013). Catalytic activity of copper ions in the amyloid
fibrillation of b-lactoglobulin Bruno. Soft Matter, 9, 2412–2419. https://doi.org/10.1039/c2sm27408f | en |
dcterms.references | Zare-Dorabei, R., Ferdowsi, S. M., Barzin, A., & Tadjarodi, A. (2016). Highly efficient simultaneous ultrasonicassisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide
modified with 2,2′-dipyridylamine: Central composite design optimization. Ultrasonics Sonochemistry, 32,
265–276. https://doi.org/10.1016/j.ultsonch.2016.03.020 | en |
dcterms.references | Zhan, Y., He, S., Wan, X., Zhang, J., Liu, B., Wang, J., & Li, Z. (2018). Easy-handling bamboo-like polypyrrole
nanofibrous mats with high adsorption capacity for hexavalent chromium removal. Journal of Colloid and
Interface Science, 529, 385–395. https://doi.org/10.1016/j.jcis.2018.06.033 | en |
dcterms.references | Zhang, D., Xu, W., Cai, J., Cheng, S. Y., & Ding, W. P. (2020). Citric acid-incorporated cellulose nanofibrous
mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions.
International Journal of Biological Macromolecules, 149, 459–466.
https://doi.org/10.1016/j.ijbiomac.2020.01.199 | en |
dcterms.references | Zhang, Q., Li, Y., Yang, Q., Chen, H., Chen, X., Jiao, T., & Peng, Q. (2018). Distinguished Cr(VI) capture with
rapid and superior capability using polydopamine microsphere: Behavior and mechanism. Journal of
Hazardous Materials, 342, 732–740. https://doi.org/10.1016/j.jhazmat.2017.08.061 | en |
dcterms.references | Zhang, Q., Zhang, S., Zhao, Z., Liu, M., Yin, X., Zhou, Y., Wu, Y., & Peng, Q. (2020). Highly effective lead (II)
removal by sustainable alkaline activated β-lactoglobulin nanofibrils from whey protein. Journal of Cleaner
Production, 255, 1–9. https://doi.org/10.1016/j.jclepro.2020.120297 | en |
dcterms.references | Zhang, S., Shi, Q., Christodoulatos, C., & Meng, X. (2019). Lead and cadmium adsorption by electrospun
PVA/PAA nanofibers: Batch, spectroscopic, and modeling study. Chemosphere, 233, 405–413.
https://doi.org/10.1016/j.chemosphere.2019.05.190 | en |
dcterms.references | Zhang, Y., Ullah, I., Zhang, W., Ou, H., Domingos, M., Gloria, A., Zhou, J., Li, W., & Zhang, X. (2020). Preparation
of electrospun nanofibrous polycaprolactone scaffolds using nontoxic ethylene carbonate and glacial
acetic acid solvent system. Journal of Applied Polymer Science, 137(8), 2–9.
https://doi.org/10.1002/app.48387 | en |
dcterms.references | Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research
in Toxicology, 24(10), 1617–1629. https://doi.org/10.1021/tx200251t | en |
dcterms.references | Zhong, S., Zhang, Y., & Lim, C. T. (2012). Fabrication of large pores in electrospun nanofibrous scaffolds for
cellular infiltration: A review. Tissue Engineering - Part B: Reviews, 18(2), 77–87.
https://doi.org/10.1089/ten.teb.2011.039 | en |
dcterms.references | Zhu, F., Zheng, Y. M., Zhang, B. G., & Dai, Y. R. (2021). A critical review on the electrospun nanofibrous
membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials,
401(June 2020), 123608. https://doi.org/10.1016/j.jhazmat.2020.123608 | en |
dcterms.references | Zou, H., Lv, P. F., Wang, X., Wu, D., & Yu, D. G. (2017). Electrospun poly(2-aminothiazole)/cellulose acetate
fiber membrane for removing Hg(II) from water. Journal of Applied Polymer Science, 134(21), 2–9.
https://doi.org/10.1002/app.44879 | en |
dcterms.references | Zúñiga-Muro, N. M., Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Duran-Valle, C. J.,
Ghalla, H., & Sellaoui, L. (2020). Recovery of grape waste for the preparation of adsorbents for water
treatment: Mercury removal. Journal of Environmental Chemical Engineering, 8(3), 103738.
https://doi.org/10.1016/j.jece.2020.103738 | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |