Mostrar el registro sencillo del ítem

dc.contributor.advisorCobo Ángel, Martha Isabel
dc.contributor.advisorCifuentes Vanegas, Bernay
dc.contributor.authorJuly Paola Gómez Pereira
dc.date.accessioned2021-02-26T14:58:33Z
dc.date.available2021-02-26T14:58:33Z
dc.date.issued2021-02-08
dc.identifier.urihttp://hdl.handle.net/10818/46964
dc.description86 páginases_CO
dc.description.abstractLas tecnologías basadas en hidrógeno suponen una alternativa para el desarrollo de procesos sostenibles que permitan la obtención de compuestos químicos y energía. Específicamente, los sistemas que aprovechan el hidrógeno obtenido de fuentes renovables como la biomasa tienen potencial para integrarse al sector agroindustrial debido a que no emiten compuestos tóxicos y suponen un beneficio económico. Sin embargo, en Colombia la producción de hidrógeno aún es limitada debido a la falta de tecnologías que aprovechan los recursos locales para tal fin. Por ejemplo, el bioetanol producido en el país (alrededor de 40.000 m3/mes) podría usarse para la producción de hidrógeno en lugar de emplearse en procesos de combustión interna, lo cuales generan contaminación. En este trabajo se evaluó la producción de hidrógeno a partir de bioetanol, usando monolitos de cordierita recubiertos con un catalizador de RhPt/CeO2-SiO2.spa
dc.description.abstractThe technologies based on hydrogen suppose an alternative to development renewable process, which permit the obtention of chemical compounds and energy. Specifically, the systems that take advantage of the hydrogen obtained of renewable sources such as biomass have the potential to be integrate inside the agro-industrial sector due these systems do not emit toxic compounds, besides, these systems suppose an economic benefit. However, in Colombia the hydrogen production is still limited due to the lack of technologies that take advantage of local resources for this purpose. For example, the bioethanol produced in the country (around 40,000 m3/month) can be used for the hydrogen production and not for internal combustion processes, which generate pollution to the environment. In this work, the hydrogen production from bioethanol was evaluated using cordierite monoliths washcoated with RhPt/CeO2-SiO2 catalyst.eng
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherEtanolspa
dc.titleProducción de hidrógeno por reformado con vapor de etanol usando reactores monolíticos recubiertos con un catalizador de RhPt/CeO2-SiO2es_CO
dc.typemasterThesises_CO
dc.identifier.local280862
dc.identifier.localTE11149
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcCatalizadoresspa
dc.subject.armarcGas de síntesisspa
dc.subject.armarcRecursos energéticos renovablesspa
dcterms.referencesT.A. Napp, S. Few, A. Sood, D. Bernie, A. Hawkes, A. Gambhir, Appl. Energy. 238 (2019) 351–367en
dcterms.referencesA. Ollila, Int. J. Clim. Chang. Strateg. Manag. 11 (2019) 18–34.en
dcterms.referencesC. Dang, S. Wu, G. Yang, Y. Cao, H. Wang, F. Peng, et al., J. Energy Chem. 43 (2020) 90–97en
dcterms.referencesC. Sotiriou, A. Michopoulos, T. Zachariadis, Energy Policy. 128 (2019) 519–529en
dcterms.referencesR. Baruah, M. Dixit, A. Parejiya, P. Basarkar, A. Bhargav, S. Sharma, Int. J. Hydrogen Energy. 42 (2017) 10184–10198.en
dcterms.referencesJ.J. Harou, J.H. Matthews, D.M. Smith, R.A. McDonnell, E. Borgomeo, J.J. Sara, et al., Water Manag. 173 (2020) 55–58.en
dcterms.referencesB. Dogan, D. Erol, The Future of Fossil and Alternative Fuels Used in Automotive Industry, in: Futur. Foss. Altern. Fuels Used Autom. Ind., 2019.en
dcterms.referencesM.F. Chavez-Rodriguez, P.E. Carvajal, J.E. Martinez Jaramillo, A. Egüez, R.E. Gonzalez Mahecha, R. Schaeffer, et al., Energy Strateg. Rev. 20 (2018) 35–48.en
dcterms.referencesC.T. Albulescu, (2020) 1–13.es_CO
dcterms.referencesG. Henry, J. Pahun, E. Trigo, Rev. La Fac. Ciencias Económicas y Soc. 42 (2014) 125–141es_CO
dcterms.referencesJ.M. Rincón Martínez, D.M. Durán Hernández, O. Quintero Montoya, C.S. Duarte González, P.O. Guevara Patiño, M.E. Velásquez Lozano, Rev. CIDET. (2018) 16– 25.es_CO
dcterms.referencesC. Robles Algarin, O. Rodríguez Álvarez, Rev. Espac. 39 (2018) 1–10.es_CO
dcterms.referencesJ. Arias-Gaviria, S.X. Carvajal-Quintero, S. Arango-Aramburo, Renew. Energy. 139 (2019) 1111–1119es_CO
dcterms.referencesQ. Hu, Y. Shen, J. Wei, T. Ge, C.-H. Wang, Chem. Eng. J. 379 (2020) 122346.en
dcterms.referencesG. Duman, K. Akarsu, A. Yilmazer, T. Keskin, N. Azbar, J. Yanik, Int. J. Hydrogen Energy. 43 (2018) 10595–10604.en
dcterms.referencesQ.-V. Bach, H.-R. Gye, D. Song, C. Lee, Int. J. Hydrogen Energy. 44 (2019) 14387– 14394en
dcterms.referencesN. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Int. J. Hydrogen Energy. 41 (2016) 81 5640–5651en
dcterms.referencesR. Tavares, E. Monteiro, F. Tabet, A. Rouboa, Renew. Energy. 146 (2020) 1309– 1314en
dcterms.referencesJ.H. Ghouse, D. Seepersad, T.A. Adams II, Fuel Process. Technol. 138 (2015) 378– 389en
dcterms.referencesH. Ishaq, I. Dincer, Energy Reports. 6 (2020) 771–781.en
dcterms.referencesA. Mikhailovich, R. Franciélle, J.L. Silveira, Energy. 199 (2020) 117419.en
dcterms.referencesR. Kothari, V. Kumar, V. V Pathak, S. Ahmad, O. Aoyi, V. V Tyagi, Front. Biosci. 22 (2017) 1195–1220en
dcterms.referencesB. Cifuentes, F. Bustamante, J.A. Conesa, L.F. Córdoba, M. Cobo, Int. J. Hydrogen Energy. 43 (2018) 17216–17229.en
dcterms.referencesD. Parra, L. Valverde, F.J. Pino, M.K. Patel, Renew. Sustain. Energy Rev. 101 (2019) 279–294.en
dcterms.referencesV. Palma, C. Ruocco, A. Ricca, Renew. Energy. 125 (2018) 356–364en
dcterms.referencesS.E. Hosseini, M.A. Wahid, Int. J. Energy Res. 44 (2020) 4110–4131en
dcterms.referencesN. Sanchez, R.Y. Ruiz, N. Infante, M. Cobo, Energies. 10 (2017) 2112es_CO
dcterms.referencesN. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Waste Manag. 98 (2019) 1–13en
dcterms.referencesB. Cifuentes, M. Hernández, S. Monsalve, M. Cobo, Appl. Catal. A Gen. 523 (2016) 283–293.es_CO
dcterms.referencesB. Cifuentes, F. Bustamante, M. Cobo, Catalysts. 9 (2019) 852en
dcterms.referencesL. Fabbrini, I. Rossetti, L. Forni, Appl. Catal. B Environ. 44 (2003) 107–116en
dcterms.referencesB.D. Mukri, M.S. Hegde, J. Chem. Sci. 129 (2017) 1363–1372.en
dcterms.referencesB. Cifuentes, M. Figueredo, M. Cobo, Catalysts. 7 (2017) 15en
dcterms.referencesB. Cifuentes, M.F. Valero, J.A. Conesa, M. Cobo, Catalysts. 5 (2015) 1872–1896es_CO
dcterms.referencesJ.D. Mosquera, S. Fernandez Henao, J.C. Mosquera, Sci. Tech. 45 (2010) 141– 146es_CO
dcterms.referencesW.-C. Chiu, R.-F. Horng, H.-M. Chou, Int. J. Hydrogen Energy. 38 (2013) 2760– 2769.en
dcterms.referencesR. Kothari, D. Buddhi, R.L. Sawhney, Renew. Sustain. Energy Rev. 12 (2008) 553– 563.en
dcterms.referencesM. Uddin, A. Abd, A. Yousuf, M. Zahangir, Int. J. Hydrogen Energy. 45 (2020) 18241–18249.en
dcterms.referencesG. Pio, A. Ricca, V. Palma, E. Salzano, Int. J. Hydrogen Energy. 45 (2020) 1084– 1095.en
dcterms.referencesV.P. Santos, G. Pollefeyt, D.F. Yancey, A. Ciftci, B. Vanchura, D.L.S. Nieskens, et al., J. Catal. 381 (2020) 108–120en
dcterms.referencesW. Song, Y. Hou, Z. Chen, D. Cai, W. Qian, Chem. Eng. Sci. 212 (2020) 115328.en
dcterms.referencesE.T. Liakakou, B.J. Vreugdenhil, N. Cerone, F. Zimbardi, F. Pinto, R. André, et al., Fuel. 251 (2019) 580–592.en
dcterms.referencesT. Mondal, K.K. Pant, A.K. Dalai, Appl. Catal. A Gen. 499 (2015) 19–31.en
dcterms.referencesB. Sawatmongkhon, K. Theinnoi, T. Wongchang, C. Haoharn, C. Wongkhorsub, A. Tsolakis, Energy & Fuels. 33 (2019) 6742–6753.en
dcterms.referencesM.D. Zhurka, A.A. Lemonidou, J.A. Anderson, P.N. Kechagiopoulos, React. Chem. Eng. 3 (2018) 883–897en
dcterms.referencesB.L. Lobato, M.C. Ribeiro, F.J. Cadete, V. Teixeira, F. Bellot, Catal. Today. 344 (2020) 67–74.en
dcterms.referencesS. Ogo, Y. Sekine, Fuel Process. Technol. 199 (2020) 106238.en
dcterms.referencesV. Palma, C. Ruocco, E. Meloni, F. Gallucci, A. Ricca, Catal. Today. 307 (2018) 175–188en
dcterms.referencesC. Ruocco, V. Palma, A. Ricca, Top. Catal. 62 (2019) 467–478.en
dcterms.referencesT.S. Moraes, H.N. Cozendey da Silva, L.P. Zotes, L.V. Mattos, L.E. Pizarro Borges, R. Farrauto, et al., Int. J. Hydrogen Energy. 44 (2019) 21205–21219.en
dcterms.referencesM. Cobo, D. Pieruccini, R. Abello, L. Ariza, L.F. Córdoba, J. a. Conesa, Int. J. Hydrogen Energy. 38 (2013) 5580–5593en
dcterms.referencesL. Guerrero, S. Castilla, M. Cobo, Quim. Nova. 37 (2014) 850–856es_CO
dcterms.referencesV. Palma, C. Ruocco, E. Meloni, A. Ricca, Chem. Eng. Trans. 57 (2017) 1675– 1680.en
dcterms.referencesB. Sosna, O. Korup, R. Horn, J. Catal. 381 (2020) 285–294en
dcterms.referencesR.G. Milazzo, S.M.S. Privitera, S. Scalese, S.A. Lombardo, Energies. 12 (2019) 12163116en
dcterms.referencesL. He, Y. Fan, L. Luo, J. Bellettre, J. Yue, Chem. Eng. J. 380 (2020) 122424.en
dcterms.referencesS. Mehla, J. Das, D. Jampaiah, S. Periasamy, A. Nafady, S.K. Bhargava, Catal. Sci. Technol. 9 (2019) 3582–3602en
dcterms.referencesB. Verougstraete, A. Martín-calvo, S. Van Der Perre, G. Baron, V. Finsy, J.F.M. 83 Denayer, Chem. Eng. J. 383 (2020) 123075es_CO
dcterms.referencesT.S. Moraes, L.E.P. Borges, R. Farrauto, F.B. Noronha, Int. J. Hydrogen Energy. 43 (2018) 115–126.en
dcterms.referencesC. Gaudillere, J.J. González, A. Chica, J.M. Serra, Appl. Catal. A Gen. 538 (2017) 165–173es_CO
dcterms.referencesE. López, N.J. Divins, A. Anzola, S. Schbib, D. Borio, J. Llorca, Int. J. Hydrogen Energy. 38 (2013) 4418–4428.es_CO
dcterms.referencesN.J. Divins, E. López, Á. Rodríguez, D. Vega, J. Llorca, Chem. Eng. Process. Process Intensif. 64 (2013) 31–37en
dcterms.referencesD. Pashchenko, Int. J. Hydrogen Energy. 44 (2019) 30865–30875.en
dcterms.referencesG. Özkan, B. Sahdudak, G. Özkan, Int. J. Hydrogen Energy. 44 (2019) 9823–9829.en
dcterms.referencesT.P. Kaur Sidhu, A. Govil, S. Roy, Int. J. Hydrogen Energy. 42 (2017) 7770–7785en
dcterms.referencesM.L.G. Renó, O.A. Del Olmo, J.C.E. Palacio, E.E.S. Lora, O.J. Venturini, Energy Convers. Manag. 86 (2014) 981–991.en
dcterms.referencesJ. Bok Heo, Y.-S. Lee, C.-H. Chung, Biotechnol. Adv. 37 (2019) 107422.en
dcterms.referencesE. Gnansounou, J.K. Raman, Bioresour. Technol. 262 (2018) 203–211en
dcterms.referencesJ. Becerra, M. Figueredo, M. Cobo, J. Environ. Chem. Eng. 5 (2017) 1554–1564.es_CO
dcterms.referencesA.H. Sebayang, H.H. Masjuki, H.C. Ong, S. Dharma, A.S. Silitonga, F. Kusumo, et al., Fuel. 210 (2017) 914–921.en
dcterms.referencesJ.R. Phillips, H.K. Atiyeh, R.S. Tanner, J.R. Torres, J. Saxena, M.R. Wilkins, et al., Bioresour. Technol. 190 (2015) 114–121en
dcterms.referencesA. Iulianelli, V. Palma, G. Bagnato, C. Ruocco, Y. Huang, N.T. Veziroğlu, et al., Renew. Energy. 119 (2018) 834–843.en
dcterms.references] I. Rossetti, A. Tripodi, G. Ramis, Int. J. Hydrogen Energy. 45 (2020) 10292–10303.en
dcterms.referencesI. Rossetti, J. Lasso, M. Compagnoni, G. De Guido, L. Pellegrini, Chem. Eng. Trans. 43 (2015) 229–234en
dcterms.referencesH. Lee, I. Jung, G. Roh, Y. Na, H. Kang, Energies. 13 (2020) 224.en
dcterms.referencesT. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, J. Taiwan Inst. Chem. Eng. 97 (2019) 216–226spa
dcterms.referencesR.M. Heck, R.J. Farrauto, S.T. Gulati, 2012.en
dcterms.referencesW. Mulewa, M. Tahir, N.A.S. Amin, Chem. Eng. J. 326 (2017) 956–969.en
dcterms.referencesS. Bepari, S. Basu, N.C. Pradhan, A.K. Dalai, Catal. Today. 291 (2017) 47–57.en
dcterms.referencesC. Montero, A. Remiro, P.L. Benito, J. Bilbao, A.G. Gayubo, Fuel Process. Technol. 169 (2018) 207–216.en
dcterms.referencesG. Rabenstein, V. Hacker, J. Power Sources. 185 (2008) 1293–1304en
dcterms.referencesC.A. Chagas, R.L. Manfro, F. Souza Toniolo, Catal. Letters. (2020) 1–13en
dcterms.referencesA. Martínez-Arias, A.B. Hungría, G. Munuera, D. Gamarra, Appl. Catal. B Environ. 65 (2006) 207–216es_CO
dcterms.referencesD.R. Sahoo, S. Vajpai, S. Patel, K.K. Pant, Chem. Eng. J. 125 (2007) 139–147en
dcterms.referencesD. Zanchet, J.B.O. Santos, S. Damyanova, J.M.R. Gallo, J.M. C. Bueno, ACS Catal. 5 (2015) 3841–3863.es_CO
dcterms.referencesL. Rahmanzadeh, M. Taghizadeh, Int. J. Chem. React. Eng. 17 (2019) 20180212.es_CO
dcterms.referencesF. Barzegari, M. Kazemeini, F. Farhadi, M. Rezaei, A. Keshavarz, Int. J. Hydrogen Energy. 45 (2020) 6604–6620en
dcterms.references] K. Polychronopoulou, N.D. Charisiou, G.I. Siakavelas, A.A. Alkhoori, V. Sebastian, D.S.J. Hinder, et al., Sustain. Energy Fuels. 3 (2019) 673–691.en
dcterms.referencesL. Proaño, E. Tello, M.A. Arellano-Trevino, S. Wang, R.J. Farrauto, M. Cobo, Appl. Surf. Sci. 479 (2019) 25–30.es_CO
dcterms.referencesD. Chen, W. Wang, C. Liu, Renew. Energy. 145 (2020) 2647–2657en
dcterms.referencesY. Khani, F. Bahadoran, N. Safari, S. Soltanali, S. Taheri, Int. J. Hydrogen Energy. 44 (2019) 18824–18837.en
dcterms.referencesL. Huang, C. Choong, L. Chen, Z. Wang, Z. Zhong, K.A. Chng, et al., RSC Adv. 5 (2015) 99461–99482en
dcterms.referencesJ. Llorca, V. Cortés Corberán, N.J. Divins, R. Olivera Fraile, E. Taboada, Hydrogen from Bioethanol, in: Renew. Hydrog. Technol., 2013: pp. 135–169en
dcterms.referencesV. Palma, C. Ruocco, E. Meloni, A. Ricca, Catalysts. 7 (2017) 226–241en
dcterms.referencesJ.A. Calles, A. Carrero, A.J. Vizcaíno, M. Lindo, Catalysts. 5 (2015) 58–76en
dcterms.referencesN. Sanchez, R. Ruiz, V. Hacker, M. Cobo, Int. J. Hydrogen Energy. 45 (2020) 11923–11942en
dcterms.referencesJ. Vicente, C. Montero, J. Ereña, M.J. Azkoiti, J. Bilbao, A.G. Gayubo, Int. J. Hydrogen Energy. 39 (2014) 12586–12596en
dcterms.referencesV. Palma, C. Ruocco, E. Meloni, A. Ricca, J. Clean. Prod. 166 (2017) 263–272en
dcterms.referencesJ. Dobosz, M. Małecka, M. Zawadzki, J. Energy Inst. 91 (2018) 411–423en
dcterms.referencesC. Liu, D. Chen, Y. Cao, T. Zhang, Y. Mao, W. Wang, et al., Renew. Energy. 161 85 (2020) 408–418en
dcterms.referencesD.A. Rueda Ordoñez, M. Leal, A. Bonomi, L.A. Barbosa Cortez, Biofuels, Bioprod. Biorefining. 125 (2018) 857–872es_CO
dcterms.referencesJ.A. Francesconi, M.C. Mussati, R.O. Mato, P.A. Aguirre, J. Power Sources. 167 (2007) 151–161.en
dcterms.referencesL. Tartakovsky, A. Mosyak, Y. Zvirin, Int. J. Energy Res. 37 (2013) 259–267en
dcterms.referencesM.E. Durán-García, R.A. Ruiz-navas, Maderas. Cienc. y Tecnol. 22 (2020) 347– 364.es_CO
dcterms.referencesY. Cengel, A. Ghajar, 2010en
dcterms.referencesA. Manzur, J. Cardoso, Rev. Mex. Física. 61 (2015) 31–34es_CO
dcterms.referencesT. Tabakova, Front. Chem. 7 (2019) 1–43.en
dcterms.referencesK. Chouhan, S. Sinha, S. Kumar, S. Kumar, J. Environ. Chem. Eng. 7 (2019) 103018en
dcterms.referencesY. Xiang, L. Cai, Y. Guan, W. Liu, Z. Cheng, Z. Liu, Energy. 206 (2020) 118131en
dcterms.referencesC. Wang, J.M. Herreros, C. Jiang, A. Sahu, H. Xu, Energy & Fuels. 32 (2018) 1724– 1732.en
dcterms.referencesZ. Khila, I. Baccar, I. Jemel, N. Hajjaji, Energy Sustain. Dev. 37 (2017) 66–78en
dcterms.referencesN. Hajjaji, Z. Khila, I. Baccar, M. Pons, J. Energy Storage. 7 (2016) 204–219en
dcterms.referencesB. Cifuentes, F. Bustamante, D. Araiza G., G. Diaz, M. Cobo, Appl. Catal. A, Gen. 598 (2020) 117568es_CO
dcterms.referencesR. González-Gil, C. Herrera, M.A. Larrubia, F. Mariño, M. Laborde, L.J. Alemany, Int. J. Hydrogen Energy. 41 (2016) 16786–16796es_CO
dcterms.referencesV. Palma, C. Ruocco, A. Ricca, Int. J. Hydrogen Energy. 41 (2016) 11526–11536en
dcterms.referencesA. Casanovas, C. De Leitenburg, A. Trovarelli, J. Llorca, Catal. Today. 138 (2008) 187–192.en
dcterms.referencesR.J. Farrauto, Chem. Eng. J. 238 (2014) 172–177.en
dcterms.referencesM. Cobo, A. Orrego, J.A. Conesa, Appl. Catal. A Gen. 445–446 (2012) 83–91en
dcterms.referencesC. Italiano, R. Balzarotti, A. Vita, S. Latorrata, C. Fabiano, L. Pino, et al., Catal. Today. 273 (2016) 3–11en
dcterms.referencesM. Oliveira Palm, M.E. Silva Júnior, L.R. Cardoso, D. Duarte, R.C. Catapan, Energy&Fuels. 34 (2020) 2205–2213es_CO
dcterms.referencesN. Goyal, K.K. Pant, R. Gupta, Int. J. Hydrogen Energy. 38 (2013) 921–933.en
dcterms.referencesA.G. Revesz, J. Electrochem. Soc. 126 (1979) 122–130spa
dcterms.referencesM. Labaki, S. Aouad, S. Hany, C. Abou, E. Abi-Aad, A. Aboukaïs, et al., Chem. Phys. 527 (2019) 110472en
dcterms.referencesP. Barbato, A. Benedetto, G. Landi, L. Lisi, Top. Catal. 59 (2016) 1371–1382en
dcterms.referencesS. Cavallaro, Energy & Fuels. 14 (2000) 1195–1199.en
dcterms.referencesA. Vita, C. Italiano, M.A. Ashraf, L. Pino, S. Specchia, Int. J. Hydrogen Energy. 43 (2018) 11731–11744.en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International