Mostrar el registro sencillo del ítem

dc.contributor.advisorAcosta González, Alejandro
dc.contributor.advisorJiménez Junca, Carlos
dc.contributor.advisorPrieto, Erlide
dc.contributor.authorMeza López, Angela Liliana
dc.date.accessioned2021-02-25T20:37:00Z
dc.date.available2021-02-25T20:37:00Z
dc.date.issued2021-02-01
dc.identifier.urihttp://hdl.handle.net/10818/46936
dc.description94 páginases_CO
dc.description.abstractPseudomonas lipases are widely used in industrial applications due to their unique biochemical properties. Due to low yields when the lipase is produced in the original strain, a recombinant lipase production strategy was used with E. coli. However, due to the incorrect folding, the recombinant enzyme only achieves the secondary structure which aggregates and form inclusion bodies that seriously reduce the biological activity, therefore the evaluation of different fermentation conditions are necessary to improve the activity of the enzyme and to decrease the inclusion bodies formation. In this study, a statistical experimental design was implemented to evaluate the effects of temperature, agitation rate and osmolyte concentration on the recombinant lipase activity produced in E. coli BL21 (DE3). Once the significant variables were identified, a Response Surface Methodology was performed to determine the optimal fermentation conditions for lipase production. As a result, the growth at 5°C, 110 rpm, and 0.1 M of glycerol significantly increased the specific lipase activity and showed that the data fitted the model very well. These culture conditions were validated against experimental results, and 452.01 U/mg of specific lipase activity was obtained, which was significantly higher than the control group where no glycerol was added (271.38 U/mg). Besides, it could be demonstrated that when E. coli BL21(DE3) was grown at the optimal culture condition at 5°C, the relative recombinant lipase expression was 2.7-fold lower compared to 25 °C. However, at 5°C the lipase activity was significantly higher compared to 25°C. Furthermore, when the 2 L Bioreactor (equipped with anchor impeller) was used to perform a preliminary scale-up process, the specific lipase activity was significantly different from that found at the 100 mL Schott scale (337,91 U/mg and 452,01 U/mg, respectively). Nevertheless, when the 3 L shaken Erlenmeyer Bioreactor was used, the specific lipase activity was not significantly different to that found at the Schott scale (408,4 U/mg and 452,0 U/mg, respectively), meaning that the optimal growth conditions used for the scale-up process can be a guide for future productions. This study represents a reliable and low-cost strategy for recombinant lipase production through the optimization of fermentation conditions. In our case, the recombinant lipase activity was enhanced at low temperatures, low agitation rates and the addition of glycerol to the auto-inducing media. It also demonstrates the utility of using the design of experiments to optimize the fermentation conditions at small scale before scaling-up the production of the recombinant enzyme in E. coli BL21 (DE3). Further studies using the strategy used here may lead to identifying optimal culture conditions for a given recombinant enzyme facilitating the large-scale bioprocess implementation and enhancing the biological activity of the target enzyme.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherLipasaspa
dc.titleOptimization of culture parameters to improve the recombinant lipase activity in e. Coli bl21 (de3) and preliminary scale-up process in two bioreactor platformses_CO
dc.typemasterThesises_CO
dc.identifier.local280821
dc.identifier.localTE11136
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcPseudomonasspa
dc.subject.armarcEnzimasspa
dc.subject.armarcFermentaciónspa
dc.subject.armarcSeparación (Tecnología)spa
dc.subject.armarcOptimización combinatoriaspa
dcterms.referencesBorrelli GM, Trono D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci. 2015;16:20774–840en
dcterms.referencesHasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb Technol. 2006;39:235–51en
dcterms.referencesJaved S, Azeem F, Hussain S, Rasul I, Hussnain M, Riaz M, et al. Bacterial lipases : A review on puri fi cation and characterization. Prog Biophys Mol Biol. 2018;132:23–34.en
dcterms.referencesGolaki BP, Aminzadeh S, Karkhane AA, Yakhchali B, Farrokh P, Khaleghinejad SH, et al. Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expr Purif. 2015;109:120–6. doi:10.1016/j.pep.2014.10.002en
dcterms.referencesHorga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CFRO, Yovcheva DS, et al. Tuning recombinant protein expression to match secretion capacity. Microb Cell Fact. 2018;17:1–18. doi:10.1186/s12934-018- 1047-zen
dcterms.referencesSchillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. Front Plant Sci. 2019;en
dcterms.referencesWeselake RJ, Singer SD, Chen G. An Integrated Approach to Plant Bioproduct Production. New York: Springer; 2018. p. 267.en
dcterms.referencesZhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier JW, et al. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Men
dcterms.referencesJia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli : current status and future perspectives. Open Biol. 2016;6:1–17en
dcterms.references. Rinas U, Garcia-Fruitós E, Corchero JL, Vázquez E, Seras-Franzoso J, Villaverde A. Bacterial Inclusion Bodies: Discovering Their Better Half. Trends Biochem Sci. 2017;42:726en
dcterms.referencesRehm FBH, Chen S, Rehm B. Enzyme engineering for in situ immobilizaen
dcterms.referencesSwati Kapoor AR and SS. Protein engineering and its applications in food industry. Crit Rev Food Sci Nutr. 2015;57:2321–9.en
dcterms.referencesQi X, Sun Y, Xiong S. A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form. Microb Cell Fact. 2015;14:1–12.en
dcterms.referencesRodríguez E, Cano O, Seras J, Villaverde A, García E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact. 2010;9:1–9en
dcterms.referencesGurramkonda C, Kumar G, Koritala B. iMedPub Journals Strategies for the Production of Soluble Recombinant Proteins Using Escherichia Coli : A Review Chaperone Based Solubility Enrichments. J Mol Biol Biotechnol. 2018;3:1–8.en
dcterms.referencesMustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Rahim RA, et al. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall- anchoring motif ( LysM ) from inclusion bodies using non-denaturing reagent ( N- laurylsarcosine ). BMC Biotechnol. 2019;19:1–11.en
dcterms.referencesDako E, Bernier A-M, Thomas A, K. C. The Problems Associated with Enzyme Purification. In: Chemical Biology. 2012. p. 19–40.en
dcterms.referencesEL-Baky NA, Linjawi MH, Redwan EM. Auto-induction expression of human consensus interferon-alpha in Escherichia coli. BMC Biotechnol. 2015;15:1–10en
dcterms.referencesCui S, Lin X, Shen J. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif. 2011;77:166–72.en
dcterms.referencesJohar SS, Talbert JN. Strep-tag II fusion technology for the modification and immobilization of lipase B from Candida antarctica (CALB). J Genet Eng Biotechnol. 2017;15:359–67. doi:10.1016/j.jgeb.2017.06.011.en
dcterms.referencesMohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Shahverdi AR, Faramarzi MA, Setayesh N. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme Microb Technol. 2016;93–94:18–28. doi:10.1016/j.enzmictec.2016.07.006.en
dcterms.referencesMohammad SF, Feng Y, Yang G. Optimization of cell culture and cell disruption processes to enhance the production of thermophilic cellulase FnCel5A in E.coli using response surface methodology. PLoS One. 2019;14.en
dcterms.referencesGutiérrez M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, et al. Optimization of culture 90 conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep. 2019;9:1–11en
dcterms.referencesSørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4 Figure 1:1–8.en
dcterms.referencesJhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: Effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol. 2012;123:135–43. doi:10.1016/j.biortech.2012.07.011eng
dcterms.referencesVasina JA, Baneyx F. Recombinant protein expression at low temperatures under the transcriptional control of the major Eschenchia coli cold shock promoter cspA. Appl Environ Microbiol. 1996;62:1444–7.en
dcterms.referencesSan-Miguel T, Pérez-Bermúdez P, Gavidia I. Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus. 2013;2:1–4. 28. Al-samarrai TH, Jones WT, Harvey D, Kirk CA, Templtone M. Effect of 4 % glycerol and low aeration on result of expression in Escherichia coli of Cin3 and three Venturia inaequalis EST ’ s recombinant proteins. 2013;2013 January:1–9en
dcterms.referencesWang Y, Wang Z, Xu Q, Du G, Hua Z, Liu L, et al. Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem. 2009;44:949–54. 30. Ukkonen K. Improvement of recombinant protein production in shaken cultures : focus on aeration and enzyme-controlled glucose feeding. 2014en
dcterms.referencesErnst R, Ejsing CS, Antonny B. Homeoviscous Adaptation and the Regulation of Membrane Lipids. J Mol Biol. 2016;428:4776–91. doi:10.1016/j.jmb.2016.08.013.en
dcterms.referencesPoger D, Mark AE. A ring to rule them all: The effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J Phys Chem B. 2015;119:5487–95.en
dcterms.referencesArneborg N, Salskov-iversen AS, Mathiasen TE. Arneborg 1993.pdf. 1993;:353–7.en
dcterms.referencesChakrabarti AC. Permeability of membranes to amino acids and modified amino acids: Mechanisms involved in translocation. Amino Acids. 1994;6:213–29en
dcterms.referencesPrasad S, Khadatare P, Ipsita R. Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol. 2011;77:4603–9.en
dcterms.referencesRashid N, Thapliyal C, Chattopadhyay PC. Osmolyte induced enhancement of expression and solubility of human Dihydrofolate reductase : an in vivo study. Int J Biol Macromol. 2017;103:1044–53. doi:10.1016/j.ijbiomac.2017.05.143.en
dcterms.referencesWang Y, Li YZ. Cultivation to improve in vivo solubility of overexpressed arginine deiminases in Escherichia coli and the enzyme characteristics. BMC Biotechnol. 2014;14:1–10en
dcterms.referencesZhang W, Lu J, Zhang S, Liu L, Pang X, Lv I. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact. 2018;17:1–12en
dcterms.referencesAuton M, Rösgenb J, Sinevb M, Holthauzenc L, Wayne D. Osmolyte effects on protein stability and solubility: a balancing act between backbone and side-chains. Biophys Chem. 2011;159:90–9.en
dcterms.referencesBaumer K. Determining the effects of methanol , ethanol , isopropanol , and glycerol on both thermal stability and catalytic activity of Rv0045c , an enzyme from M . tuberculosis. 2017en
dcterms.referencesHong H, Zhao X, Wu Z. A two-stage glycine supplementation strategy enhances the extracellular expression of sortase A in Escherichia coli. Process Biochem. 2019;76 October 2018:11–7. doi:10.1016/j.procbio.2018.09.022.en
dcterms.referencesYang X, Zhang Y. Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization. J Appl Microbiol Biotechnol. 2013;97:10423–33en
dcterms.referencesPapaneophytou C. Design of Experiments As a Tool for Optimization in Recombinant Protein Biotechnology: From Constructs to Crystals. Mol Biotechnol. 2019;61:873–91. doi:10.1007/s12033-019- 00218-x.en
dcterms.referencesWang Y, Luo D, Zhao Y, Tian S, Deng W, Li C, et al. High-level expression and characterization of solvent-tolerant lipase. J Biosci Bioeng. 2018;125:23–9.en
dcterms.referencesPfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:2003–7.en
dcterms.referencesGerritse G, Hommes R, Quax W. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol. 1998;64:2644–2451.en
dcterms.referencesZhao W, Wang J, Riqiang D, Wang X. Scale-up fermentation of recombinant Candida rugosa lipase 91 expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol. 2008;35:189–95en
dcterms.referencesLi Z, Kessler W, Van Den Heuvel J, Rinas U. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol. 2011;91:1203–13en
dcterms.referencesSarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, et al. Recent advances on sources and industrial applications of lipases. Biotechnol Prog. 2018;34:5–28en
dcterms.referencesKourist R, Hollmann F, Nguyen GS. Lipases as sustainable biocatalysts for the sustainable industrial production of fine chemicals and cosmetics. JSM Biotechnol Biomed Eng. 2014;2:1–12.en
dcterms.referencesVerma N, Thakur S, Bhatt AK. Microbial Lipases: Industrial Applications and Properties (A Review). Int Res J Biol Sci Int Res J Biol Sci. 2012;1:2278–3202en
dcterms.referencesWei Fenga, Xiao-Qiang Wangb , Wei Zhouc, Guang-Ying Liud and Y-JW. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J Insect Sci. 2011;11:135.en
dcterms.referencesBorkar PS, Bodade RG, Rao SR, Khobragade CN. Purification and Characterization of Extracellular Lipase From a New Strain − Pseudomonas Aeruginosa Srt 9. 2009;10 June:358–66en
dcterms.referencesBoonmahome P, Mongkolthanaruk W. Lipase-Producing Bacterium and its Enzyme Characterization. J Life Sci Technol. 2013;1:196–200.en
dcterms.referencesMazhar H, Abbas N, Ali S, Sohail A, Hussain Z, Ali SS. African Journal of Biotechnology Optimized production of lipase from Bacillus subtilis PCSIRNL-39. AFRICAN J Biotechnol. 2017;16:1106–15en
dcterms.referencesWu X, You P, Su E, Xu J, Gao B, Wei D. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnol. 2012;12:1en
dcterms.referencesNardini M, Lang DA, Liebeton K, Jaeger K, Bauke W. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation : the prototype for family I . 1 of bacterial lipases *. 2000.en
dcterms.referencesNoriko O, Kazuhiro Y, Takaaki N, Jun’ichi O. Lipase from Pseudomonas aeruginosa Production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem. 1993;246:239–46en
dcterms.referencesWilhelm S, Tommassen J, Jaeger KE. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol. 1999;181:6977–86.en
dcterms.referencesKhan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, et al. Role of recombinant DNA technology to improve life. International Journal of Genomics. 2016;:1–14en
dcterms.referencesPazernik C and. Recombinant proteins. In: Biotechnology. 2016. p. 225en
dcterms.referencesLiu L, Li T, Cheng XJ, Peng CT, Li CC, He LH, et al. Structural and functional studies on Pseudomonas aeruginosa DspI: Implications for its role in DSF biosynthesis. Sci Rep. 2018;8:1–11.en
dcterms.referencesVila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: An old friend with new tidings. FEMS Microbiol Rev. 2016;40:437–63en
dcterms.referencesGheibi S, Najmeh F, Behrouz G, Sahebkar A. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know. Curr Pharm Des. 2018;24:718–25. doi:10.2174/1381612824666180131121940.en
dcterms.referencesRatelade J, Miot MC, Johnson E, Betton JM, Mazodier P, Benaroudj N. Production of recombinant proteins in the lon-deficient BL21(DE3) strain of Escherichia coli in the absence of the DnaK chaperone. Appl Environ Microbiol. 2009;75:3803–7en
dcterms.referencesRosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol. 2014;5 APR:1–17en
dcterms.referencesQuyen DT, Schmidt-Dannert C, Schmid R. High-Level Formation of Active Pseudomonas cepacia Lipase after Heterologous Expression of the Encoding Gene and Its Modified Chaperone in Escherichia coli and Rapid In Vitro Refolding. Appl Environ Microbiol. 1999;65:787–94.en
dcterms.referencesSaeed HM, Zagloul TI, I. KA, Abdelbaeth MT. Molecular cloning and expression in Escherichia coli of Pseudomonas aeruginosa lipase gene. Biotechnology. 2006;5:62–8. doi:10.3923/biotech.2006.111.117en
dcterms.referencesSalwoom L, Rahman RNZRA, Salleh AB, Shariff FM, Convey P, Ali MSM. New recombinant coldadapted and organic solvent tolerant lipase from psychrophilic pseudomonas sp. Lsk25, isolated from signy island antarctica. Int J Mol Sci. 2019;20:1–21en
dcterms.referencesKraussa U, Jägera VD, Dienera M, Pohlb M., Jaeger K-E. Catalytically-active inclusion bodies—Carrierfree protein immobilizates for application in biotechnology and biomedicine. J Biotechnol. 2017;258 February:136–47. doi:10.1016/j.jbiotec.2017.04.033.en
dcterms.referencesFahnert B, Lilie H, Neubauer P. Inclusion Bodies: Formation and Utilisation. Adv Biochem Engin. 2004;89:93–142en
dcterms.referencesWallberg F, Sundstro H, Ledung E, Hewitt CJ, Enfors S-O. Monitoring and quantification of inclusion body formation in Escherichia coli by multi-parameter flow cytometry. Biotechnol Lett. 2005;27:919–26.en
dcterms.referencesGross-Selbeck S, Margreiter G, Obinger C, Bayer K. Fast quantification of recombinant protein inclusion bodies within intact cells by FT-IR spectroscopy. Biotechnol Prog. 2007;23:762–6en
dcterms.referencesAkbari N, Khajeh K, Ghaemi N, Salemi Z. Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expr Purif. 2010;70:254–9. doi:10.1016/j.pep.2009.10.009en
dcterms.referencesFreydell EJ, van der Wielen LAM, Eppink MHM, Ottens M. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process. Biotechnol Prog. 2011;27:1315–28en
dcterms.referencesSantos CA, Beloti LL, Toledo MAS, Crucello A, Favaro MTP, Mendes JS, et al. A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif. 2012;82:284–9. doi:10.1016/j.pep.2012.01.010en
dcterms.referencesWang Y, Van Oosterwijk N, Ali AM, Adawy A, Anindya AL, Dömling ASS, et al. A Systematic Protein Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential Variables. Sci Rep. 2017;7:1–10en
dcterms.referencesPark AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC. Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli. PLoS One. 2018;13:1–16. doi:10.1371/journal.pone.0201060.en
dcterms.referencesGovarthanan M, Park SH, Kim JW, Lee KJ, Cho M, Kamala-Kannan S, et al. Statistical optimization of alkaline protease production from brackish environment Bacillus sp. SKK11 by SSF using horse gram husk. Prep Biochem Biotechnol. 2014;44:119–31en
dcterms.referencesWang Y, Wang Q, Wang Y, Han H, Hou Y, Shi Y. Statistical optimization for the production of recombinant cold-adapted superoxide dismutase in E. coli using response surface methodology. Bioengineered. 2017;8:693–9. doi:10.1080/21655979.2017.1303589en
dcterms.referencesZare H, Mir Mohammad Sadeghi H, Akbari V. Optimization of Fermentation Conditions for Reteplase Expression by Escherichia coli Using Response Surface Methodology. Avicenna J Med Biotechnol. 2019;11:162–8en
dcterms.referencesQuiroga AL. Optimización del cultivo de Escherichia coli para la producción de cutinasas recombinantes. Universidad de Chile; 2010.en
dcterms.referencesVasina JA, Baneyx F. Expression of aggregation-prone recombinant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif. 1997;9:211– 8en
dcterms.referencesVera A, Gonzalez-Montalban N, Arıís A, Villaverde A. The Conformational Quality of Insoluble Recombinant Proteins Is Enhanced at Low Growth Temperatures. Biotechnol Bioeng. 2006;96:1101–6.en
dcterms.referencesFarewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 1998;180:4704–10en
dcterms.referencesMarco A, Laszlo V, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins in Escherichia coliby osmolytes, plasmid- or benzyl alcohol over-expressed molecular chaperones. Cell Stress Chaperones. 2005;10:329–39en
dcterms.referencesLeibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, van Voorhis WC. Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins. PLoS One. 2012;7:1–13.en
dcterms.referencesGekko K, Timasheff SN. Mechanism of Protein Stabilization by Glycerol: Preferential Hydration in Glycerol-Water Mixtures. Biochemistry. 1981;20:4667–76.en
dcterms.referencesCardoso AS, Büchs J b., Santos JL. Optimisation of Culture Conditions in P450 Monooxygenase Expression. 2006en
dcterms.referencesVagenende V, Yap MGS, Trout BL. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry. 2009;48:11084–96en
dcterms.referencesKopp J, Slouka C, Ulonska S, Kager J, Fricke J, Spadiut O, et al. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3). Bioengineering. 2017;5:1en
dcterms.referencesRezaei M, Zarkesh-Esfahani SH, Gharagozloo M. The effect of different media composition and temperatures on the production of recombinant human growth hormone by CHO cells. Res Pharm Sci. 2013;8:211–7en
dcterms.referencesKaderbhai NN. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem. 1997; January:53–7en
dcterms.referencesAl-Samarrai1 T, Jones WT, Harvey D, Christopher AK, Templtone M. Effect of 4% glycerol and low aeration on result of expression in Escherichia coli of Cin3 and three Venturia inaequalis EST’s recombinant proteins. Am J Mol Biol. 2013;03:1–9.en
dcterms.referencesZafar A, Aftab MN, Iqbal I, Din Z ud, Saleem MA. Pilot-scale production of a highly thermostable αamylase enzyme from Thermotoga petrophila cloned into E. coli and its application as a desizer in textile industry. RSC Adv. 2019;9:984–92en
dcterms.referencesRazak AR, Satrimafitrah P, Hardi J, Khoridah EN, Asmarni, Gita M, et al. Production of chitosanase from termophylic bacteria isolated from Bora Hotspring. J Phys Conf Ser. 2019;1242:1–6en
dcterms.referencesZapata LA. Escalamiento y optmizacion de la produccion de enzimas alginato liasas recombinantes. Universidad de chile; 2017.en
dcterms.referencesMarques MPC, Cabral JMS, Fernandes P. Bioprocess scale-up: Quest for the parameters to be used as criterion to move from microreactors to lab-scale. J Chem Technol Biotechnol. 2010;85:1184–98.en
dcterms.referencesGamboa RA, Marín LD, López L, Córdova NS, Valdez N., Trujillo MA. PARAMETER FOR SCALE-UP. Rev Mex Ing Química. 2019;18:1085–99.en
dcterms.referencesDorceus BYM. Cell Culture Scale-Up in Stirred-Tank Single-Use Bioreactors. 2018en
dcterms.referencesBüchs J, Maier U, Milbradt C, Zoels B. Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng. 2000;68:594–601en
dcterms.referencesWei Zhao, Jinwen Wang, Riqiang Deng XW. Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol. 2008;35:189–95. 104. Campani G, Gonc G, Teresa S, Zangirolami C, Perencin M, Ribeiro DA. Recombinant Escherichia coli cultivation in a pressurized airlift bioreactor : assessment of the influence of temperature on oxygen transfer and uptake rates. 2017; cmen
dcterms.referencesGamboa-Suasnavart RA, Marín-Palacio LD, Martínez-Sotelo JA, Espitia C, Servín-González L, Valdez-Cruz NA, et al. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World J Microbiol Biotechnol. 2013;29:1421–9.en
dcterms.referencesPulido IY, Prieto E, Pieffet GP, Méndez L, Jiménez-Junca CA. Functional heterologous expression of mature lipase lipa from Pseudomonas aeruginosa psa01 in escherichia coli shuffle and bl21 (De3): Effect of the expression host on thermal stability and solvent tolerance of the enzyme produced. Int J Mol Sci. 2020;21:1–19spa
dcterms.referencesPulido IY, Prieto E, Pieffet GP, Méndez L, Jiménez-Junca CA. Functional heterologous expression of mature lipase lipa from Pseudomonas aeruginosa psa01 in escherichia coli shuffle and bl21 (De3): Effect of the expression host on thermal stability and solvent tolerance of the enzyme produced. Int J Mol Sci. 2020;21:1–19en
dcterms.referencesStudier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.en
dcterms.referencesCarrió M, Cubarsi R, Villaverde A. Fine architecture of bacterial inclusion bodies. FEBS Lett. 2000;471:7–11.en
dcterms.referencesCantu-bustos JE, Cano KD, Vargas-cortez T, Morones-ramirez JR, Balderas-renteria I, Zarate X. Recombinant protein production data after expression in the bacterium Escherichia coli. Data Br. 2016;7:502–8. doi:10.1016/j.dib.2016.02.074en
dcterms.referencesKhurana J, Pratibha, Cameotra S, Kaur J. Studies on Recombinant Lipase Production by E. Coli: Effect of Media And Bacterial Expression System Optimization. Int J Mol Biol. 2017;2:17–23.en
dcterms.referencesZor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal Biochem. 1996;236:302–8en
dcterms.referencesGurr S. PCR PROTOCOL REFERENCE GUIDE. In: Biochemical and Molecular Biology. 1991. p. 45en
dcterms.referencesGheshlaghi R. Optimization of Recombinant Protein Production by a Fungal Host. University of Waterloo; 2007en
dcterms.referencesPapaneophytou C, Kontopidis G. A comparison of statistical approaches used for the optimization of soluble protein expression in Escherichia coli. Protein Expr Purif. 2016;120:126–37. doi:10.1016/j.pep.2015.12.014en
dcterms.referencesShida T, Mitsugi K, Komagata K. Reduction of lag time in bacterial growth. J Appl Microbiol.en
dcterms.referencesLarentis AL, Nicolau JFMQ, Esteves GDS, Vareschini DT, De Almeida FVR, Dos Reis MG, et al. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res Notes. 2014;7:1–13.en
dcterms.referencesHu J, Cai W, Wang C, Du X, Lin J, Cai J. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnol Biotechnol Equip. 2018;32:583–90.en
dcterms.referencesGilbert EJ, Cornish A, Jones CW. Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. J Gen Microbiol. 1991;137:2223–9en
dcterms.referencesLiu FF, Ji L, Zhang L, Dong XY, Sun Y. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations. J Chem Phys. 2010;132en
dcterms.referencesGhrist AC, Stauffer G V. Effects of glycine supplement on protein production and release in recombinant Escherichia coli. Microbiology. 1995;141:133–40en
dcterms.referencesTsuru D. Inhibitory effect of glycine on the production of amylase and proteinase by Bacillus subtilis. Agric Biol Chem. 1962;26:288–308en
dcterms.referencesIkura Y. Effect of Glycine and Its Derivatives on Production and Release of Galactosidase by Escherichia coli. J Agric Biol Chem. 1987;50:2747–53.en
dcterms.referencesAndersen KB, Meyenburg KVON. Are Growth Rates of Escherichia coli in Batch Cultures Limited by Respiration ? J Bacteriol. 1980;144:114–23en
dcterms.referencesKanno AI, Leite LC de C, Pereira LR, de Jesus MJR, Andreata-Santos R, Alves RP dos S, et al. Optimization and scale-up production of Zika virus ΔNS1 in Escherichia coli: application of Response Surface Methodology. AMB Express. 2020;10:1–13. doi:10.1186/s13568-019-0926-yen
dcterms.referencesVoulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. Efficient E. coli Expression Strategies for Production of Soluble Human Crystallin ALDH3A1. PLoS One. 2013;8:15–7en
dcterms.referencesGuerra ÁP, Calvo EP, Wasserman M, Chaparro-Olaya J. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. Biomedica. 2016;36:97–108.en
dcterms.referencesJanda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J Clin Microbiol. 2007;45:2761–4.en
dcterms.referencesAnderlei T, Mrotzek C, Bartsch S, Amoabediny G, Peter CP, Büchs J. New method to determine the mass transfer resistance of sterile closures for shaken bioreactors. Biotechnol Bioeng. 2007;98:999–1007en
dcterms.referencesSCHULTZ JS. Cotton Closure As an Aeration Barrier in Shaken Flask Fermentations. Appl Microbiol. 1964;12:305–10.en
dcterms.referencesGomez E, Santos VE, Alcon A, Garcia-Ochoa F. Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chem Eng Sci. 2006;61:4595–604en
dcterms.referencesMeier K, Klöckner W, Bonhage B, Antonov E, Regestein L, Büchs J. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Elsevier B.V.; 2016en
dcterms.referencesLange H, Taillandier P, Riba JP. Effect of high shear stress on microbial viability. J Chem Technol Biotechnol. 2001;76:501–5en
dcterms.referencesZheng JL, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog. 2002;18:437–44.en
dcterms.referencesKarimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, et al. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran J Environ Heal Sci Eng. 2013;10:1en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesoses_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International