dc.contributor.advisor | Acosta González, Alejandro | |
dc.contributor.advisor | Jiménez Junca, Carlos | |
dc.contributor.advisor | Prieto, Erlide | |
dc.contributor.author | Meza López, Angela Liliana | |
dc.date.accessioned | 2021-02-25T20:37:00Z | |
dc.date.available | 2021-02-25T20:37:00Z | |
dc.date.issued | 2021-02-01 | |
dc.identifier.uri | http://hdl.handle.net/10818/46936 | |
dc.description | 94 páginas | es_CO |
dc.description.abstract | Pseudomonas lipases are widely used in industrial applications due to their unique
biochemical properties. Due to low yields when the lipase is produced in the original strain, a
recombinant lipase production strategy was used with E. coli. However, due to the incorrect
folding, the recombinant enzyme only achieves the secondary structure which aggregates and
form inclusion bodies that seriously reduce the biological activity, therefore the evaluation of
different fermentation conditions are necessary to improve the activity of the enzyme and to
decrease the inclusion bodies formation. In this study, a statistical experimental design was
implemented to evaluate the effects of temperature, agitation rate and osmolyte concentration
on the recombinant lipase activity produced in E. coli BL21 (DE3). Once the significant
variables were identified, a Response Surface Methodology was performed to determine the
optimal fermentation conditions for lipase production. As a result, the growth at 5°C, 110 rpm,
and 0.1 M of glycerol significantly increased the specific lipase activity and showed that the
data fitted the model very well. These culture conditions were validated against experimental
results, and 452.01 U/mg of specific lipase activity was obtained, which was significantly
higher than the control group where no glycerol was added (271.38 U/mg). Besides, it could
be demonstrated that when E. coli BL21(DE3) was grown at the optimal culture condition at
5°C, the relative recombinant lipase expression was 2.7-fold lower compared to 25 °C.
However, at 5°C the lipase activity was significantly higher compared to 25°C. Furthermore,
when the 2 L Bioreactor (equipped with anchor impeller) was used to perform a preliminary
scale-up process, the specific lipase activity was significantly different from that found at the
100 mL Schott scale (337,91 U/mg and 452,01 U/mg, respectively). Nevertheless, when
the 3 L shaken Erlenmeyer Bioreactor was used, the specific lipase activity was not
significantly different to that found at the Schott scale (408,4 U/mg and 452,0 U/mg,
respectively), meaning that the optimal growth conditions used for the scale-up process can
be a guide for future productions. This study represents a reliable and low-cost strategy for
recombinant lipase production through the optimization of fermentation conditions. In our
case, the recombinant lipase activity was enhanced at low temperatures, low agitation rates
and the addition of glycerol to the auto-inducing media. It also demonstrates the utility of using
the design of experiments to optimize the fermentation conditions at small scale before
scaling-up the production of the recombinant enzyme in E. coli BL21 (DE3). Further studies using the strategy used here may lead to identifying optimal culture conditions for a given
recombinant enzyme facilitating the large-scale bioprocess implementation and enhancing
the biological activity of the target enzyme. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject.other | Lipasa | spa |
dc.title | Optimization of culture parameters to improve the recombinant lipase activity in e. Coli bl21 (de3) and preliminary scale-up process in two bioreactor platforms | es_CO |
dc.type | masterThesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Pseudomonas | spa |
dc.subject.armarc | Enzimas | spa |
dc.subject.armarc | Fermentación | spa |
dc.subject.armarc | Separación (Tecnología) | spa |
dc.subject.armarc | Optimización combinatoria | spa |
dcterms.references | Borrelli GM, Trono D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial
applications. Int J Mol Sci. 2015;16:20774–840 | en |
dcterms.references | Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb Technol.
2006;39:235–51 | en |
dcterms.references | Javed S, Azeem F, Hussain S, Rasul I, Hussnain M, Riaz M, et al. Bacterial lipases : A review on puri fi
cation and characterization. Prog Biophys Mol Biol. 2018;132:23–34. | en |
dcterms.references | Golaki BP, Aminzadeh S, Karkhane AA, Yakhchali B, Farrokh P, Khaleghinejad SH, et al. Cloning,
expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01.
Protein Expr Purif. 2015;109:120–6. doi:10.1016/j.pep.2014.10.002 | en |
dcterms.references | Horga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CFRO, Yovcheva DS, et al. Tuning recombinant
protein expression to match secretion capacity. Microb Cell Fact. 2018;17:1–18. doi:10.1186/s12934-018-
1047-z | en |
dcterms.references | Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of
Plants for the Production of Recombinant Proteins. Front Plant Sci. 2019; | en |
dcterms.references | Weselake RJ, Singer SD, Chen G. An Integrated Approach to Plant Bioproduct Production. New York:
Springer; 2018. p. 267. | en |
dcterms.references | Zhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier JW, et al. High-level production of
membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. M | en |
dcterms.references | Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli : current status and
future perspectives. Open Biol. 2016;6:1–17 | en |
dcterms.references | . Rinas U, Garcia-Fruitós E, Corchero JL, Vázquez E, Seras-Franzoso J, Villaverde A. Bacterial Inclusion
Bodies: Discovering Their Better Half. Trends Biochem Sci. 2017;42:726 | en |
dcterms.references | Rehm FBH, Chen S, Rehm B. Enzyme engineering for in situ immobiliza | en |
dcterms.references | Swati Kapoor AR and SS. Protein engineering and its applications in food industry. Crit Rev Food Sci
Nutr. 2015;57:2321–9. | en |
dcterms.references | Qi X, Sun Y, Xiong S. A single freeze-thawing cycle for highly efficient solubilization of inclusion body
proteins and its refolding into bioactive form. Microb Cell Fact. 2015;14:1–12. | en |
dcterms.references | Rodríguez E, Cano O, Seras J, Villaverde A, García E. Isolation of cell-free bacterial inclusion bodies.
Microb Cell Fact. 2010;9:1–9 | en |
dcterms.references | Gurramkonda C, Kumar G, Koritala B. iMedPub Journals Strategies for the Production of Soluble
Recombinant Proteins Using Escherichia Coli : A Review Chaperone Based Solubility Enrichments. J Mol
Biol Biotechnol. 2018;3:1–8. | en |
dcterms.references | Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Rahim RA, et al. Recovery of
recombinant Mycobacterium tuberculosis antigens fused with cell wall- anchoring motif ( LysM ) from
inclusion bodies using non-denaturing reagent ( N- laurylsarcosine ). BMC Biotechnol. 2019;19:1–11. | en |
dcterms.references | Dako E, Bernier A-M, Thomas A, K. C. The Problems Associated with Enzyme Purification. In: Chemical
Biology. 2012. p. 19–40. | en |
dcterms.references | EL-Baky NA, Linjawi MH, Redwan EM. Auto-induction expression of human consensus interferon-alpha
in Escherichia coli. BMC Biotechnol. 2015;15:1–10 | en |
dcterms.references | Cui S, Lin X, Shen J. Effects of co-expression of molecular chaperones on heterologous soluble
expression of the cold-active lipase Lip-948. Protein Expr Purif. 2011;77:166–72. | en |
dcterms.references | Johar SS, Talbert JN. Strep-tag II fusion technology for the modification and immobilization of lipase B
from Candida antarctica (CALB). J Genet Eng Biotechnol. 2017;15:359–67. doi:10.1016/j.jgeb.2017.06.011. | en |
dcterms.references | Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Shahverdi AR, Faramarzi MA, Setayesh N.
Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
Enzyme Microb Technol. 2016;93–94:18–28. doi:10.1016/j.enzmictec.2016.07.006. | en |
dcterms.references | Mohammad SF, Feng Y, Yang G. Optimization of cell culture and cell disruption processes to enhance
the production of thermophilic cellulase FnCel5A in E.coli using response surface methodology. PLoS One.
2019;14. | en |
dcterms.references | Gutiérrez M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, et al. Optimization of culture
90
conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep. 2019;9:1–11 | en |
dcterms.references | Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of
Escherichia coli. Microb Cell Fact. 2005;4 Figure 1:1–8. | en |
dcterms.references | Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: Effects of process
conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol.
2012;123:135–43. doi:10.1016/j.biortech.2012.07.011 | eng |
dcterms.references | Vasina JA, Baneyx F. Recombinant protein expression at low temperatures under the transcriptional
control of the major Eschenchia coli cold shock promoter cspA. Appl Environ Microbiol. 1996;62:1444–7. | en |
dcterms.references | San-Miguel T, Pérez-Bermúdez P, Gavidia I. Production of soluble eukaryotic recombinant proteins in
E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus. 2013;2:1–4.
28. Al-samarrai TH, Jones WT, Harvey D, Kirk CA, Templtone M. Effect of 4 % glycerol and low aeration on
result of expression in Escherichia coli of Cin3 and three Venturia inaequalis EST ’ s recombinant proteins.
2013;2013 January:1–9 | en |
dcterms.references | Wang Y, Wang Z, Xu Q, Du G, Hua Z, Liu L, et al. Lowering induction temperature for enhanced
production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem. 2009;44:949–54.
30. Ukkonen K. Improvement of recombinant protein production in shaken cultures : focus on aeration and
enzyme-controlled glucose feeding. 2014 | en |
dcterms.references | Ernst R, Ejsing CS, Antonny B. Homeoviscous Adaptation and the Regulation of Membrane Lipids. J
Mol Biol. 2016;428:4776–91. doi:10.1016/j.jmb.2016.08.013. | en |
dcterms.references | Poger D, Mark AE. A ring to rule them all: The effect of cyclopropane fatty acids on the fluidity of lipid
bilayers. J Phys Chem B. 2015;119:5487–95. | en |
dcterms.references | Arneborg N, Salskov-iversen AS, Mathiasen TE. Arneborg 1993.pdf. 1993;:353–7. | en |
dcterms.references | Chakrabarti AC. Permeability of membranes to amino acids and modified amino acids: Mechanisms
involved in translocation. Amino Acids. 1994;6:213–29 | en |
dcterms.references | Prasad S, Khadatare P, Ipsita R. Effect of chemical chaperones in improving the solubility of recombinant
proteins in Escherichia coli. Appl Environ Microbiol. 2011;77:4603–9. | en |
dcterms.references | Rashid N, Thapliyal C, Chattopadhyay PC. Osmolyte induced enhancement of expression and solubility
of human Dihydrofolate reductase : an in vivo study. Int J Biol Macromol. 2017;103:1044–53.
doi:10.1016/j.ijbiomac.2017.05.143. | en |
dcterms.references | Wang Y, Li YZ. Cultivation to improve in vivo solubility of overexpressed arginine deiminases in
Escherichia coli and the enzyme characteristics. BMC Biotechnol. 2014;14:1–10 | en |
dcterms.references | Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv I. Development an effective system to expression
recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of
Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact. 2018;17:1–12 | en |
dcterms.references | Auton M, Rösgenb J, Sinevb M, Holthauzenc L, Wayne D. Osmolyte effects on protein stability and
solubility: a balancing act between backbone and side-chains. Biophys Chem. 2011;159:90–9. | en |
dcterms.references | Baumer K. Determining the effects of methanol , ethanol , isopropanol , and glycerol on both thermal
stability and catalytic activity of Rv0045c , an enzyme from M . tuberculosis. 2017 | en |
dcterms.references | Hong H, Zhao X, Wu Z. A two-stage glycine supplementation strategy enhances the extracellular
expression of sortase A in Escherichia coli. Process Biochem. 2019;76 October 2018:11–7.
doi:10.1016/j.procbio.2018.09.022. | en |
dcterms.references | Yang X, Zhang Y. Effect of temperature and sorbitol in improving the solubility of carboxylesterases
protein CpCE-1 from Cydia pomonella and biochemical characterization. J Appl Microbiol Biotechnol.
2013;97:10423–33 | en |
dcterms.references | Papaneophytou C. Design of Experiments As a Tool for Optimization in Recombinant Protein
Biotechnology: From Constructs to Crystals. Mol Biotechnol. 2019;61:873–91. doi:10.1007/s12033-019-
00218-x. | en |
dcterms.references | Wang Y, Luo D, Zhao Y, Tian S, Deng W, Li C, et al. High-level expression and characterization of
solvent-tolerant lipase. J Biosci Bioeng. 2018;125:23–9. | en |
dcterms.references | Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids
Res. 2001;29:2003–7. | en |
dcterms.references | Gerritse G, Hommes R, Quax W. Development of a lipase fermentation process that uses a recombinant
Pseudomonas alcaligenes strain. Appl Environ Microbiol. 1998;64:2644–2451. | en |
dcterms.references | Zhao W, Wang J, Riqiang D, Wang X. Scale-up fermentation of recombinant Candida rugosa lipase
91
expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol. 2008;35:189–95 | en |
dcterms.references | Li Z, Kessler W, Van Den Heuvel J, Rinas U. Simple defined autoinduction medium for high-level
recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol
Biotechnol. 2011;91:1203–13 | en |
dcterms.references | Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, et al. Recent advances on
sources and industrial applications of lipases. Biotechnol Prog. 2018;34:5–28 | en |
dcterms.references | Kourist R, Hollmann F, Nguyen GS. Lipases as sustainable biocatalysts for the sustainable industrial
production of fine chemicals and cosmetics. JSM Biotechnol Biomed Eng. 2014;2:1–12. | en |
dcterms.references | Verma N, Thakur S, Bhatt AK. Microbial Lipases: Industrial Applications and Properties (A Review). Int
Res J Biol Sci Int Res J Biol Sci. 2012;1:2278–3202 | en |
dcterms.references | Wei Fenga, Xiao-Qiang Wangb , Wei Zhouc, Guang-Ying Liud and Y-JW. Isolation and characterization
of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J
Insect Sci. 2011;11:135. | en |
dcterms.references | Borkar PS, Bodade RG, Rao SR, Khobragade CN. Purification and Characterization of Extracellular
Lipase From a New Strain − Pseudomonas Aeruginosa Srt 9. 2009;10 June:358–66 | en |
dcterms.references | Boonmahome P, Mongkolthanaruk W. Lipase-Producing Bacterium and its Enzyme Characterization. J
Life Sci Technol. 2013;1:196–200. | en |
dcterms.references | Mazhar H, Abbas N, Ali S, Sohail A, Hussain Z, Ali SS. African Journal of Biotechnology Optimized
production of lipase from Bacillus subtilis PCSIRNL-39. AFRICAN J Biotechnol. 2017;16:1106–15 | en |
dcterms.references | Wu X, You P, Su E, Xu J, Gao B, Wei D. In vivo functional expression of a screened P. aeruginosa
chaperone-dependent lipase in E. coli. BMC Biotechnol. 2012;12:1 | en |
dcterms.references | Nardini M, Lang DA, Liebeton K, Jaeger K, Bauke W. Crystal structure of Pseudomonas aeruginosa
lipase in the open conformation : the prototype for family I . 1 of bacterial lipases *. 2000. | en |
dcterms.references | Noriko O, Kazuhiro Y, Takaaki N, Jun’ichi O. Lipase from Pseudomonas aeruginosa Production in
Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem.
1993;246:239–46 | en |
dcterms.references | Wilhelm S, Tommassen J, Jaeger KE. A novel lipolytic enzyme located in the outer membrane of
Pseudomonas aeruginosa. J Bacteriol. 1999;181:6977–86. | en |
dcterms.references | Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, et al. Role of recombinant DNA technology
to improve life. International Journal of Genomics. 2016;:1–14 | en |
dcterms.references | Pazernik C and. Recombinant proteins. In: Biotechnology. 2016. p. 225 | en |
dcterms.references | Liu L, Li T, Cheng XJ, Peng CT, Li CC, He LH, et al. Structural and functional studies on Pseudomonas
aeruginosa DspI: Implications for its role in DSF biosynthesis. Sci Rep. 2018;8:1–11. | en |
dcterms.references | Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: An old
friend with new tidings. FEMS Microbiol Rev. 2016;40:437–63 | en |
dcterms.references | Gheibi S, Najmeh F, Behrouz G, Sahebkar A. Recombinant Protein Expression in Escherichia coli
(E.coli): What We Need to Know. Curr Pharm Des. 2018;24:718–25.
doi:10.2174/1381612824666180131121940. | en |
dcterms.references | Ratelade J, Miot MC, Johnson E, Betton JM, Mazodier P, Benaroudj N. Production of recombinant
proteins in the lon-deficient BL21(DE3) strain of Escherichia coli in the absence of the DnaK chaperone.
Appl Environ Microbiol. 2009;75:3803–7 | en |
dcterms.references | Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and
challenges. Front Microbiol. 2014;5 APR:1–17 | en |
dcterms.references | Quyen DT, Schmidt-Dannert C, Schmid R. High-Level Formation of Active Pseudomonas cepacia
Lipase after Heterologous Expression of the Encoding Gene and Its Modified Chaperone in Escherichia coli
and Rapid In Vitro Refolding. Appl Environ Microbiol. 1999;65:787–94. | en |
dcterms.references | Saeed HM, Zagloul TI, I. KA, Abdelbaeth MT. Molecular cloning and expression in Escherichia coli of
Pseudomonas aeruginosa lipase gene. Biotechnology. 2006;5:62–8. doi:10.3923/biotech.2006.111.117 | en |
dcterms.references | Salwoom L, Rahman RNZRA, Salleh AB, Shariff FM, Convey P, Ali MSM. New recombinant coldadapted and organic solvent tolerant lipase from psychrophilic pseudomonas sp. Lsk25, isolated from signy
island antarctica. Int J Mol Sci. 2019;20:1–21 | en |
dcterms.references | Kraussa U, Jägera VD, Dienera M, Pohlb M., Jaeger K-E. Catalytically-active inclusion bodies—Carrierfree protein immobilizates for application in biotechnology and biomedicine. J Biotechnol. 2017;258
February:136–47. doi:10.1016/j.jbiotec.2017.04.033. | en |
dcterms.references | Fahnert B, Lilie H, Neubauer P. Inclusion Bodies: Formation and Utilisation. Adv Biochem Engin.
2004;89:93–142 | en |
dcterms.references | Wallberg F, Sundstro H, Ledung E, Hewitt CJ, Enfors S-O. Monitoring and quantification of inclusion
body formation in Escherichia coli by multi-parameter flow cytometry. Biotechnol Lett. 2005;27:919–26. | en |
dcterms.references | Gross-Selbeck S, Margreiter G, Obinger C, Bayer K. Fast quantification of recombinant protein inclusion
bodies within intact cells by FT-IR spectroscopy. Biotechnol Prog. 2007;23:762–6 | en |
dcterms.references | Akbari N, Khajeh K, Ghaemi N, Salemi Z. Efficient refolding of recombinant lipase from Escherichia coli
inclusion bodies by response surface methodology. Protein Expr Purif. 2010;70:254–9.
doi:10.1016/j.pep.2009.10.009 | en |
dcterms.references | Freydell EJ, van der Wielen LAM, Eppink MHM, Ottens M. Techno-economic evaluation of an inclusion
body solubilization and recombinant protein refolding process. Biotechnol Prog. 2011;27:1315–28 | en |
dcterms.references | Santos CA, Beloti LL, Toledo MAS, Crucello A, Favaro MTP, Mendes JS, et al. A novel protein refolding
protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from
Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif. 2012;82:284–9.
doi:10.1016/j.pep.2012.01.010 | en |
dcterms.references | Wang Y, Van Oosterwijk N, Ali AM, Adawy A, Anindya AL, Dömling ASS, et al. A Systematic Protein
Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential
Variables. Sci Rep. 2017;7:1–10 | en |
dcterms.references | Park AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC. Efficient recovery of recombinant CRM197
expressed as inclusion bodies in E.coli. PLoS One. 2018;13:1–16. doi:10.1371/journal.pone.0201060. | en |
dcterms.references | Govarthanan M, Park SH, Kim JW, Lee KJ, Cho M, Kamala-Kannan S, et al. Statistical optimization of
alkaline protease production from brackish environment Bacillus sp. SKK11 by SSF using horse gram husk.
Prep Biochem Biotechnol. 2014;44:119–31 | en |
dcterms.references | Wang Y, Wang Q, Wang Y, Han H, Hou Y, Shi Y. Statistical optimization for the production of
recombinant cold-adapted superoxide dismutase in E. coli using response surface methodology.
Bioengineered. 2017;8:693–9. doi:10.1080/21655979.2017.1303589 | en |
dcterms.references | Zare H, Mir Mohammad Sadeghi H, Akbari V. Optimization of Fermentation Conditions for Reteplase
Expression by Escherichia coli Using Response Surface Methodology. Avicenna J Med Biotechnol.
2019;11:162–8 | en |
dcterms.references | Quiroga AL. Optimización del cultivo de Escherichia coli para la producción de cutinasas recombinantes.
Universidad de Chile; 2010. | en |
dcterms.references | Vasina JA, Baneyx F. Expression of aggregation-prone recombinant proteins at low temperatures: A
comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif. 1997;9:211–
8 | en |
dcterms.references | Vera A, Gonzalez-Montalban N, Arıís A, Villaverde A. The Conformational Quality of Insoluble
Recombinant Proteins Is Enhanced at Low Growth Temperatures. Biotechnol Bioeng. 2006;96:1101–6. | en |
dcterms.references | Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli.
J Bacteriol. 1998;180:4704–10 | en |
dcterms.references | Marco A, Laszlo V, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins
in Escherichia coliby osmolytes, plasmid- or benzyl alcohol over-expressed molecular chaperones. Cell
Stress Chaperones. 2005;10:329–39 | en |
dcterms.references | Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, van Voorhis WC. Stabilizing Additives Added
during Cell Lysis Aid in the Solubilization of Recombinant Proteins. PLoS One. 2012;7:1–13. | en |
dcterms.references | Gekko K, Timasheff SN. Mechanism of Protein Stabilization by Glycerol: Preferential Hydration in
Glycerol-Water Mixtures. Biochemistry. 1981;20:4667–76. | en |
dcterms.references | Cardoso AS, Büchs J b., Santos JL. Optimisation of Culture Conditions in P450 Monooxygenase
Expression. 2006 | en |
dcterms.references | Vagenende V, Yap MGS, Trout BL. Mechanisms of protein stabilization and prevention of protein
aggregation by glycerol. Biochemistry. 2009;48:11084–96 | en |
dcterms.references | Kopp J, Slouka C, Ulonska S, Kager J, Fricke J, Spadiut O, et al. Impact of Glycerol as Carbon Source
onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3).
Bioengineering. 2017;5:1 | en |
dcterms.references | Rezaei M, Zarkesh-Esfahani SH, Gharagozloo M. The effect of different media composition and
temperatures on the production of recombinant human growth hormone by CHO cells. Res Pharm Sci.
2013;8:211–7 | en |
dcterms.references | Kaderbhai NN. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in
Escherichia coli. Biotechnol Appl Biochem. 1997; January:53–7 | en |
dcterms.references | Al-Samarrai1 T, Jones WT, Harvey D, Christopher AK, Templtone M. Effect of 4% glycerol and low
aeration on result of expression in Escherichia coli of Cin3 and three Venturia inaequalis EST’s recombinant
proteins. Am J Mol Biol. 2013;03:1–9. | en |
dcterms.references | Zafar A, Aftab MN, Iqbal I, Din Z ud, Saleem MA. Pilot-scale production of a highly thermostable αamylase enzyme from Thermotoga petrophila cloned into E. coli and its application as a desizer in textile
industry. RSC Adv. 2019;9:984–92 | en |
dcterms.references | Razak AR, Satrimafitrah P, Hardi J, Khoridah EN, Asmarni, Gita M, et al. Production of chitosanase from
termophylic bacteria isolated from Bora Hotspring. J Phys Conf Ser. 2019;1242:1–6 | en |
dcterms.references | Zapata LA. Escalamiento y optmizacion de la produccion de enzimas alginato liasas recombinantes.
Universidad de chile; 2017. | en |
dcterms.references | Marques MPC, Cabral JMS, Fernandes P. Bioprocess scale-up: Quest for the parameters to be used
as criterion to move from microreactors to lab-scale. J Chem Technol Biotechnol. 2010;85:1184–98. | en |
dcterms.references | Gamboa RA, Marín LD, López L, Córdova NS, Valdez N., Trujillo MA. PARAMETER FOR SCALE-UP.
Rev Mex Ing Química. 2019;18:1085–99. | en |
dcterms.references | Dorceus BYM. Cell Culture Scale-Up in Stirred-Tank Single-Use Bioreactors. 2018 | en |
dcterms.references | Büchs J, Maier U, Milbradt C, Zoels B. Power consumption in shaking flasks on rotary shaking
machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled
flasks at elevated liquid viscosity. Biotechnol Bioeng. 2000;68:594–601 | en |
dcterms.references | Wei Zhao, Jinwen Wang, Riqiang Deng XW. Scale-up fermentation of recombinant Candida rugosa
lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol. 2008;35:189–95.
104. Campani G, Gonc G, Teresa S, Zangirolami C, Perencin M, Ribeiro DA. Recombinant Escherichia coli
cultivation in a pressurized airlift bioreactor : assessment of the influence of temperature on oxygen transfer
and uptake rates. 2017; cm | en |
dcterms.references | Gamboa-Suasnavart RA, Marín-Palacio LD, Martínez-Sotelo JA, Espitia C, Servín-González L,
Valdez-Cruz NA, et al. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces
lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium
tuberculosis. World J Microbiol Biotechnol. 2013;29:1421–9. | en |
dcterms.references | Pulido IY, Prieto E, Pieffet GP, Méndez L, Jiménez-Junca CA. Functional heterologous expression of
mature lipase lipa from Pseudomonas aeruginosa psa01 in escherichia coli shuffle and bl21 (De3): Effect
of the expression host on thermal stability and solvent tolerance of the enzyme produced. Int J Mol Sci.
2020;21:1–19 | spa |
dcterms.references | Pulido IY, Prieto E, Pieffet GP, Méndez L, Jiménez-Junca CA. Functional heterologous expression of
mature lipase lipa from Pseudomonas aeruginosa psa01 in escherichia coli shuffle and bl21 (De3): Effect
of the expression host on thermal stability and solvent tolerance of the enzyme produced. Int J Mol Sci.
2020;21:1–19 | en |
dcterms.references | Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif.
2005;41:207–34. | en |
dcterms.references | Carrió M, Cubarsi R, Villaverde A. Fine architecture of bacterial inclusion bodies. FEBS Lett.
2000;471:7–11. | en |
dcterms.references | Cantu-bustos JE, Cano KD, Vargas-cortez T, Morones-ramirez JR, Balderas-renteria I, Zarate X.
Recombinant protein production data after expression in the bacterium Escherichia coli. Data Br.
2016;7:502–8. doi:10.1016/j.dib.2016.02.074 | en |
dcterms.references | Khurana J, Pratibha, Cameotra S, Kaur J. Studies on Recombinant Lipase Production by E. Coli: Effect
of Media And Bacterial Expression System Optimization. Int J Mol Biol. 2017;2:17–23. | en |
dcterms.references | Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: Theoretical and
experimental studies. Anal Biochem. 1996;236:302–8 | en |
dcterms.references | Gurr S. PCR PROTOCOL REFERENCE GUIDE. In: Biochemical and Molecular Biology. 1991. p. 45 | en |
dcterms.references | Gheshlaghi R. Optimization of Recombinant Protein Production by a Fungal Host. University of
Waterloo; 2007 | en |
dcterms.references | Papaneophytou C, Kontopidis G. A comparison of statistical approaches used for the optimization of
soluble protein expression in Escherichia coli. Protein Expr Purif. 2016;120:126–37.
doi:10.1016/j.pep.2015.12.014 | en |
dcterms.references | Shida T, Mitsugi K, Komagata K. Reduction of lag time in bacterial growth. J Appl Microbiol. | en |
dcterms.references | Larentis AL, Nicolau JFMQ, Esteves GDS, Vareschini DT, De Almeida FVR, Dos Reis MG, et al.
Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression
of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res Notes. 2014;7:1–13. | en |
dcterms.references | Hu J, Cai W, Wang C, Du X, Lin J, Cai J. Purification and characterization of alkaline lipase production
by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment.
Biotechnol Biotechnol Equip. 2018;32:583–90. | en |
dcterms.references | Gilbert EJ, Cornish A, Jones CW. Purification and properties of extracellular lipase from Pseudomonas
aeruginosa EF2. J Gen Microbiol. 1991;137:2223–9 | en |
dcterms.references | Liu FF, Ji L, Zhang L, Dong XY, Sun Y. Molecular basis for polyol-induced protein stability revealed by
molecular dynamics simulations. J Chem Phys. 2010;132 | en |
dcterms.references | Ghrist AC, Stauffer G V. Effects of glycine supplement on protein production and release in
recombinant Escherichia coli. Microbiology. 1995;141:133–40 | en |
dcterms.references | Tsuru D. Inhibitory effect of glycine on the production of amylase and proteinase by Bacillus subtilis.
Agric Biol Chem. 1962;26:288–308 | en |
dcterms.references | Ikura Y. Effect of Glycine and Its Derivatives on Production and Release of Galactosidase by
Escherichia coli. J Agric Biol Chem. 1987;50:2747–53. | en |
dcterms.references | Andersen KB, Meyenburg KVON. Are Growth Rates of Escherichia coli in Batch Cultures Limited by
Respiration ? J Bacteriol. 1980;144:114–23 | en |
dcterms.references | Kanno AI, Leite LC de C, Pereira LR, de Jesus MJR, Andreata-Santos R, Alves RP dos S, et al.
Optimization and scale-up production of Zika virus ΔNS1 in Escherichia coli: application of Response
Surface Methodology. AMB Express. 2020;10:1–13. doi:10.1186/s13568-019-0926-y | en |
dcterms.references | Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. Efficient E. coli Expression
Strategies for Production of Soluble Human Crystallin ALDH3A1. PLoS One. 2013;8:15–7 | en |
dcterms.references | Guerra ÁP, Calvo EP, Wasserman M, Chaparro-Olaya J. Production of recombinant proteins from
Plasmodium falciparum in Escherichia coli. Biomedica. 2016;36:97–108. | en |
dcterms.references | Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic
laboratory: Pluses, perils, and pitfalls. J Clin Microbiol. 2007;45:2761–4. | en |
dcterms.references | Anderlei T, Mrotzek C, Bartsch S, Amoabediny G, Peter CP, Büchs J. New method to determine the
mass transfer resistance of sterile closures for shaken bioreactors. Biotechnol Bioeng. 2007;98:999–1007 | en |
dcterms.references | SCHULTZ JS. Cotton Closure As an Aeration Barrier in Shaken Flask Fermentations. Appl Microbiol.
1964;12:305–10. | en |
dcterms.references | Gomez E, Santos VE, Alcon A, Garcia-Ochoa F. Oxygen transport rate on Rhodococcus erythropolis
cultures: Effect on growth and BDS capability. Chem Eng Sci. 2006;61:4595–604 | en |
dcterms.references | Meier K, Klöckner W, Bonhage B, Antonov E, Regestein L, Büchs J. Correlation for the maximum
oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture
media. Elsevier B.V.; 2016 | en |
dcterms.references | Lange H, Taillandier P, Riba JP. Effect of high shear stress on microbial viability. J Chem Technol
Biotechnol. 2001;76:501–5 | en |
dcterms.references | Zheng JL, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR. Effects of increased impeller
power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog. 2002;18:437–44. | en |
dcterms.references | Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, et al. Oxygen mass transfer
in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran J Environ
Heal Sci Eng. 2013;10:1 | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |