dc.contributor.advisor | Sotaquirá Gutiérrez, Ricardo | |
dc.contributor.author | Escobar Tapia, Erik Daniel | |
dc.date.accessioned | 2020-11-03T14:39:02Z | |
dc.date.available | 2020-11-03T14:39:02Z | |
dc.date.issued | 2020-10-09 | |
dc.identifier.uri | http://hdl.handle.net/10818/43960 | |
dc.description | 70 páginas | es_CO |
dc.description.abstract | El sector tecnológico en la actualidad presenta grandes desafíos relacionados con el servicio post venta debido a la masificación de los mismos, con la obligación de dar respuesta a gran cantidad de requerimientos con altos estándares de cumplimiento. Estos desafíos se ven influenciados de forma dinámica por variables endógenas y exógenas, las cuales se caracterizan por ser volátiles, inciertas, complejas y ambiguas (VUCA) (Dhillon, 2006). Dichas características generan a su vez un reto en la gestión operativa de los recursos para brindar atención a las necesidades de los clientes, punto en el cual se puede generar satisfacción en el cliente o por el contrario un efecto negativo en las futuras ventas del producto. Por esta razón, es de vital importancia conocer: el efecto que puede tener el comportamiento de una variable, su interrelación con las demás variables en el sistema y cuáles de esas variables pueden ser controladas y cuáles no. En este proyecto se modelará la estructura del centro de servicio regional para una compañía del sector de diagnóstico in vitro, la cual comercializa productos que son usados en analizadores automatizados, los cuales requieren servicios de mantenimiento para soportar su operación. Teniendo en cuenta lo anterior, la compañía ha dispuesto centros de servicios a nivel mundial con el fin de brindar asesoría telefónica (primer nivel) para usuarios finales y asistencia telefónica o presencial para las filiales dentro de la región asignada. Este modelo actuará como herramienta para la toma de decisiones en el centro de servicio, permitiendo evaluar la condición actual, y crear políticas de gestión que den cumplimiento a los acuerdos de servicio. | spa |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.title | Análisis de la capacidad de servicio para un centro de atención en una compañía del diagnóstico invitro bajo el enfoque de dinámica de sistemas | es_CO |
dc.type | masterThesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Servicio al cliente | spa |
dc.subject.armarc | Mercadeo -- Administración | |
dc.subject.armarc | Fecundación in vitro | spa |
dc.subject.armarc | Toma de decisiones | spa |
dc.subject.armarc | Compañías | spa |
dc.subject.armarc | Política comercial | spa |
dcterms.references | Al‐ Najjar, B., & Jacobsson, M. (2013). A computerised model to enhance the
cost‐ effectiveness of production and maintenance dynamic decisions. Journal
of Quality in Maintenance Engineering, 19(2), 114–127.
https://doi.org/10.1108/13552511311315931 | eng |
dcterms.references | Becerra Fernandez, M., Castro, J. O., Quiroga, O. R., & Ramirez, M. H. (2013).
Model for Calculating Operational Capacities in Service Providers Using
System Dynamics. Proceedings of the 31st International Conference of the
System Dynamics Society, July, 1–26. | eng |
dcterms.references | Bradl, P. (2003). System Dynamics (SD) — An Approach within Corporate
Planning. In Operations Research Proceedings 2002 (pp. 431–436). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55537-4_70 | eng |
dcterms.references | Braun, W. (2002). The system archetypes. System, 1–26.
http://www.myewb.ca/site_media/static/attachments/group_topics_grouptopic/
86984/systemarchetypes.pdf.pdf | eng |
dcterms.references | Chung, S. H., Jung, D. C., Yoon, S. N., & Lee, D. H. (2010). A dynamic forecasting
model for nursing manpower requirements in the medical service industry.
Service Business, 4(3–4), 225–236. https://doi.org/10.1007/s11628-009-0092-
4 | eng |
dcterms.references | Church, D. L., & Hall, P. (1999). Centralization of a regional clinical microbiology
service: The Calgary experience. Canadian Journal of Infectious Diseases,
10(6), 393–402. https://doi.org/10.1155/1999/372382 | eng |
dcterms.references | Dhillon, B. S. (2006). Maintainability, maintenance, and reliability for engineers /
B.S. Dhillon.
http://search.ebscohost.com/login.aspx?direct=true&db=cat06493a&AN=sab.0
00062130&site=eds-live | eng |
dcterms.references | Fang, L., & Zhaodong, H. (2015). System Dynamics Based Simulation Approach
on Corrective Maintenance Cost of Aviation Equipments. Procedia
Engineering, 99, 150–155. https://doi.org/10.1016/j.proeng.2014.12.519 | eng |
dcterms.references | Fei, M., Ma, S., Li, X., Sun, X., Jia, L., & Su, Z. (Eds.). (2017). Advanced
Computational Methods in Life System Modeling and Simulation (Vol. 761).
Springer Singapore. https://doi.org/10.1007/978-981-10-6370-1 | eng |
dcterms.references | Flichman, G. (Ed.). (2011). Bio-Economic Models applied to Agricultural Systems.
Springer Netherlands. https://doi.org/10.1007/978-94-007-1902-6 | eng |
dcterms.references | Garg, A., & Deshmukh, S. G. (2006). Maintenance management: literature review
and directions. Journal of Quality in Maintenance Engineering, 12(3), 205–
238. https://doi.org/10.1108/13552510610685075 | eng |
dcterms.references | Haroun, A. E. (2015). Maintenance cost estimation: application of activity-based
costing as a fair estimate method. Journal of Quality in Maintenance
Engineering, 21(3), 258–270. https://doi.org/10.1108/JQME-04-2015-0015 | eng |
dcterms.references | Himmelblau, D. M., & Bischoff, K. B. (1976). Análisis y simulación de procesos.
Reverté. | spa |
dcterms.references | John A. Laczin. (2013). The Shift to a Centralized Lab Approach.
http://www.appliedclinicaltrialsonline.com/shift-centralized-lab-approach | eng |
dcterms.references | Li, K., Xue, Y., Cui, S., Niu, Q., Yang, Z., & Luk, P. (Eds.). (2017). Advanced
Computational Methods in Energy, Power, Electric Vehicles, and Their
Integration (Vol. 763). Springer Singapore. https://doi.org/10.1007/978-981-10-
6364-0 | eng |
dcterms.references | Mahfoud, H., El Barkany, A., El Biyaali, A., Mahfoud, H., El Barkany, A., & El
Biyaali, A. (2016). Preventive Maintenance Optimization in Healthcare
Domain: Status of Research and Perspective. Journal of Quality and Reliability
Engineering, 2016, 1–10. https://doi.org/10.1155/2016/5314312 | eng |
dcterms.references | Maletič, D., Al-Najjar, B., Maletič, M., & Gomišček, B. (2014). The role of
maintenance in improving company’s competitiveness and profitability. Journal
of Manufacturing Technology Management, 25(4), 441–456.
https://doi.org/10.1108/JMTM-04-2013-0033 | eng |
dcterms.references | Malone, B. (2013). The Rise of Mobile Health Devices - AACC.org.
https://www.aacc.org/cln/articles/2013/may/mobile | eng |
dcterms.references | Mutingi, M., Mbohwa, C., & Kommula, V. P. (2017). System dynamics approaches
to energy policy modelling and simulation. Energy Procedia, 141, 532–539.
https://doi.org/10.1016/j.egypro.2017.11.071 | eng |
dcterms.references | O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. J. (2015). An industrial
big data pipeline for data-driven analytics maintenance applications in largescale smart manufacturing facilities. Journal of Big Data, 2(1), 1–26.
https://doi.org/10.1186/s40537-015-0034-z | eng |
dcterms.references | Papert, S. (1980). Children , Computers , and Powerful Ideas and Powerful Ideas.
230. https://dl.acm.org/citation.cfm?id=1095592 | eng |
dcterms.references | Rafele, C. (2007). System Dinamics Simulation : an Application to Regional
Logistics Policy Making. International Journal of Mathematical Models and
Methods in Applied Sciences, 1, 253–260.
http://www.naun.org/main/NAUN/computers/ijcomputers-42.pdf | eng |
dcterms.references | Ramírez Nava, D. M., Ramírez Nava, M. D., González Carbonell, R. A., Romo
Ángel, J. L., Sánchez Sierra, A., & Lemus Arellano, M. (2017). Retos de la
dirección. In Retos de la Dirección (Vol. 11, Issue 1). Univ.
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2306-
91552017000100006&lng=en&tlng=en | spa |
dcterms.references | Riaño M; Gomez J;Echevarria L; Rangel L; Sanchez J. (2018). Revista cubana de
investigaciones biomédicas. Revista Cubana de Investigaciones Biomédicas,
37(3), 195–201. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-
03002016000300001&lng=en&tlng=en#? | spa |
dcterms.references | Roche. (2015). Roche Diagnostics. Www.Roche.Com.
https://www.roche.com/about/business/diagnostics/about-diagnostics.htm | eng |
dcterms.references | Rossetti, M. D. (Manuel D. (2010). Simulation modeling and Arena. John Wiley. | eng |
dcterms.references | Sharma, A., Yadava, G. S., & Deshmukh, S. G. (2011). A literature review and
future perspectives on maintenance optimization. Journal of Quality in
Maintenance Engineering, 17(1), 5–25.
https://doi.org/10.1108/13552511111116222 | eng |
dcterms.references | Simons, C. S. (2019). The Pros and Cons of Centralizing Microbiology Services |
AACC.org. https://www.aacc.org/cln/articles/2019/julyaug/the-pros-and-consof-centralizing-microbiology-services | eng |
dcterms.references | Špicar, R. (2014). System dynamics archetypes in capacity planning. Procedia
Engineering, 69, 1350–1355. https://doi.org/10.1016/j.proeng.2014.03.128 | eng |
dcterms.references | Sterman, J. (2000). Business dynamics—systems thinking and modeling for a
complex world. In Irwin/McGraw-Hill, 2000. | eng |
dcterms.references | Suryani, E., Chou, S. Y., & Chen, C. H. (2012). Dynamic simulation model of air
cargo demand forecast and terminal capacity planning. Simulation Modelling
Practice and Theory, 28, 27–41. https://doi.org/10.1016/j.simpat.2012.05.012 | eng |
dcterms.references | Tsang, A. H. C. (2002a). Strategic dimensions of maintenance management.
Journal of Quality in Maintenance Engineering, 8(1), 7–39.
https://doi.org/10.1108/13552510210420577 | eng |
dcterms.references | Tsang, A. H. C. (2002b). Strategic dimensions of maintenance management. In
Journal of Quality in Maintenance Engineering (Vol. 8, Issue 1, pp. 7–39).
https://doi.org/10.1108/13552510210420577 | eng |
dcterms.references | van Ackere, A., Haxholdt, C., & Larsen, E. R. (2013). Dynamic capacity
adjustments with reactive customers. Omega (United Kingdom), 41(4), 689–
705. https://doi.org/10.1016/j.omega.2012.09.007 | eng |
dcterms.references | Wang, W. (2013). Strategic Human Resource Management, Enterprise
Competence and Competitive Advantage – A System Dynamics Model. In
International Conference on Information Technology & Management Science
(ICITMS 2012) Proceedings 2012. https://doi.org/10.1007/978-3-642-34910-
2_33 | eng |
dcterms.references | Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., & Han, Q. (Eds.). (2017).
Intelligent Computing, Networked Control, and Their Engineering Applications
(Vol. 762). Springer Singapore. https://doi.org/10.1007/978-981-10-6373-2 | eng |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Gerencia de Ingeniería | es_CO |
thesis.degree.name | Magíster en Gerencia de Ingeniería | es_CO |