dc.contributor.advisor | Guerrero, William J. | |
dc.contributor.author | Espejo Díaz, Julián Alberto | |
dc.date.accessioned | 2020-09-28T19:51:39Z | |
dc.date.available | 2020-09-28T19:51:39Z | |
dc.date.issued | 2020-08-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/43370 | |
dc.description | 80 páginas | es_CO |
dc.description.abstract | In the immediate aftermath of any disaster event, operational decisions are made to relieve
the affected population and minimize casualties and human suffering. To do so, humanitarian
logistics planners should be supported by strong decision-making tools to better respond to
disaster events. One of the most important decisions is the delivery of the correct amount
of humanitarian aid in the right moment to the right place. This decision should be made
considering the dynamism of the disaster response operations where the information is not
known beforehand and vary over time. For instance, the effect of the Word-of-Mouth and
shortages in distribution points’ demand can impact the operational decisions. Therefore,
the inventory and transportation decisions should be made constantly to better serve the
affected people. This work presents a simulation-optimization approach to make disaster
relief distribution decisions dynamically. An agent-based simulation model solves the inventory
routing problem dynamically, considering changes in the humanitarian supply chain
over the planning horizon. Additionally, the inventory routing schemes are made using a
proposed mathematical model that aims to minimize the level of shortage and inventory
at risk (associated to the risk of losing it). The computational proposal is implemented
in the ANYLOGIC and CPLEX software. Finally, a case study motivated by the 2017
Mocoa-Colombia landslide is developed using real data and is presented to be used in conjunction
with the proposed framework. Computational experimentations show the impact of
the word-of-mouth and the frequency in decision making in distribution points’ shortages
and service levels. Therefore, considering changes in demand over the planning horizon
contributes to lowering the shortages and contributes to making better distributions plans in
the response phase of a disaster. | eng |
dc.description.abstract | Después de la ocurrencia de cualquier desastre se deben tomar decisiones para aliviar
a la población afectada minimizando las pérdidas humanas y el sufrimiento. Para ello,
los responsables de la logística humanitaria deben contar con robustas herramientas para
tomar decisiones acertadas que respondan adecuadamente ante esos eventos. Una de las
decisiones más importantes es la entrega de ayuda humanitaria en el lugar, las cantidades y en
el momento correcto. La anterior decisión debe ser tomada teniendo en cuenta el dinamismo
de las operaciones de respuesta humanitaria en donde la información no es conocida de
antemano y varía en el tiempo. Por ejemplo, el efecto del Voz a Voz y la escasez en los
puntos de distribución de ayuda humanitaira pueden impactar las decisiones operacionales.
Es por lo anterior, que las decisiones de transporte de ayuda humanitaria deben ser realizadas
constantemente para servir de una mejor forma a la población afectada. Este trabajo presenta
una propuesta de simulación-optimización para tomar las decisiones de ruteo de inventario
de ayuda humanitaria de forma dinámica. A través de un modelo de simulación basado en
agentes se resuelve dinámicamente el problema de ruteo de inventario considerando cambios
en la cadena de suministro humanitaria. Adicionalmente, las decisiones de ruteo de inventario
son tomadas mediante un modelo matemático propuesto que busca minimizar el nivel de
inventario en riesgo y el nivel de escases simultáneamente. La propuesta computacional
es implementada en los programas ANYLOGIC y CPLEX. Finalmente mediante un caso
de estudio basado en la catastrofe de Mocoa-Colombia en 2017 se evaluará la propuesta.
Experimentos computacionales muestran el impacto del voz-a-voz y frecuencia de toma
de decisiones en la escasez y el nivel de servicio en los puntos de distribución. Por lo
tanto, considerar cambios en la demanda contribuye a disminuir la escasez y hacer mejores
esquemas de distribución de ayuda humanitaria. | spa |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.title | On the dynamic inventory routing problem in humanitarian logistics: a simulation optimization approach using agent-based modeling | es_CO |
dc.type | masterThesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Auxilio en desastres | |
dc.subject.armarc | Desastres -- Toma de decisiones | spa |
dc.subject.armarc | Trabajo social | spa |
dc.subject.armarc | Logística | spa |
dc.subject.armarc | Ayuda humanitaria | spa |
dcterms.references | S. Tofighi, S. Torabi, and S. Mansouri, “Humanitarian logistics network design under
mixed uncertainty,” European Journal of Operational Research, vol. 250, no. 1,
pp. 239–250, Apr. 2016, ISSN: 03772217. DOI: 10.1016/j.ejor.2015.08.059. | eng |
dcterms.references | S. R. A. da Costa, V. B. G. Campos, and R. A. d. M. Bandeira, “Supply Chains in
Humanitarian Operations: Cases and Analysis,” Procedia - Social and Behavioral
Sciences, vol. 54, pp. 598–607, Oct. 2012, ISSN: 18770428. DOI: 10.1016/j.sbspro.
2012.09.777. | eng |
dcterms.references | S. R. A. da Costa, V. B. G. Campos, and R. A. d. M. Bandeira, “Supply Chains in
Humanitarian Operations: Cases and Analysis,” Procedia - Social and Behavioral
Sciences, vol. 54, pp. 598–607, Oct. 2012, ISSN: 18770428. DOI: 10.1016/j.sbspro.
2012.09.777. | eng |
dcterms.references | M. Besiou, A. J. Pedraza-Martinez, and L. N. Van Wassenhove, “OR applied to
humanitarian operations,” European Journal of Operational Research, vol. 269, no. 2,
pp. 397–405, Sep. 2018, ISSN: 03772217. DOI: 10.1016/j.ejor.2018.02.046. | eng |
dcterms.references | R. Shapiro and J. Heskett, Logistics strategy: cases and concepts. West Pub. Co., 1985,
ISBN: 9780314852977. | eng |
dcterms.references | R. H. Ballou, Business Logistics/supply Chain Management: Planning, Organizing,
and Controlling the Supply Chain. Pearson/Prentice Hall, 2004, ISBN: 9780130661845. | eng |
dcterms.references | N. Kunz, L. N. Van Wassenhove, M. Besiou, C. Hambye, and G. Kovács, “Relevance
of humanitarian logistics research: best practices and way forward,” International
Journal of Operations & Production Management, vol. 37, no. 11, pp. 1585–1599,
Nov. 2017, ISSN: 0144-3577. DOI: 10.1108/IJOPM-04-2016-0202. | eng |
dcterms.references | G. Kovács and K. M. Spens, “Humanitarian logistics in disaster relief operations,”
International Journal of Physical Distribution & Logistics Management, vol. 37,
no. 2, M. Jahre, Ed., pp. 99–114, Mar. 2007, ISSN: 0960-0035. DOI: 10 . 1108 /
09600030710734820. | eng |
dcterms.references | A. S. Thomas and L. R. Kopczak, “From logistics to supply chain management: the
path forward in the humanitarian sector,” Tech. Rep., 2005, pp. 1–15. | eng |
dcterms.references | N. Altay and W. G. Green, “OR/MS research in disaster operations management,”
European Journal of Operational Research, vol. 175, no. 1, pp. 475–493, Nov. 2006,
ISSN: 03772217. DOI: 10.1016/j.ejor.2005.05.016. | eng |
dcterms.references | S. J. Rennemo, K. F. Rø, L. M. Hvattum, and G. Tirado, “A three-stage stochastic
facility routing model for disaster response planning,” Transportation Research Part E:
Logistics and Transportation Review, vol. 62, pp. 116–135, Feb. 2014, ISSN: 13665545.
DOI: 10.1016/j.tre.2013.12.006. | eng |
dcterms.references | A. Ben-Tal, B. D. Chung, S. R. Mandala, and T. Yao, “Robust optimization for
emergency logistics planning: Risk mitigation in humanitarian relief supply chains,”
Transportation Research Part B: Methodological, vol. 45, no. 8, pp. 1177–1189, Sep.
2011, ISSN: 01912615. DOI: 10.1016/j.trb.2010.09.002. | eng |
dcterms.references | M. Ahmadi, A. Seifi, and B. Tootooni, “A humanitarian logistics model for disaster
relief operation considering network failure and standard relief time: A case study on
San Francisco district,” Transportation Research Part E: Logistics and Transportation
Review, vol. 75, pp. 145–163, Mar. 2015, ISSN: 13665545. DOI: 10.1016/j.tre.2015.01.
008. | eng |
dcterms.references | L. En-nahli, H. Allaoui, and I. Nouaouri, “A Multi-objective Modelling to Human
Resource Assignment and Routing Problem for Home Health Care Services,” IFACPapersOnLine, vol. 48, no. 3, pp. 698–703, 2015, ISSN: 24058963. DOI: 10.1016/j.
ifacol.2015.06.164. | eng |
dcterms.references | F. Wex, G. Schryen, S. Feuerriegel, and D. Neumann, “Emergency response in natural
disaster management: Allocation and scheduling of rescue units,” European Journal
of Operational Research, vol. 235, no. 3, pp. 697–708, Jun. 2014, ISSN: 03772217.
DOI: 10.1016/j.ejor.2013.10.029. | eng |
dcterms.references | H. Sahin, B. Y. Kara, and O. E. Karasan, “Debris removal during disaster response: A
case for Turkey,” Socio-Economic Planning Sciences, vol. 53, pp. 49–59, Mar. 2016,
ISSN: 00380121. DOI: 10.1016/j.seps.2015.10.003. | eng |
dcterms.references | A. Chandra, J. Acosta, S. Howard, L. Uscher-Pines, M. Williams, D. Yeung, J. Garnett,
and L. S. Meredith, “Building Community Resilience to Disasters: A Way Forward to
Enhance National Health Security.,” Rand health quarterly, vol. 1, no. 1, p. 6, 2011,
ISSN: 2162-8254 | eng |
dcterms.references | L. C. Coelho and G. Laporte, “A branch-and-cut algorithm for the multi-product multivehicle inventory-routing problem,” International Journal of Production Research,
vol. 51, no. 23-24, pp. 7156–7169, Nov. 2013, ISSN: 0020-7543. DOI: 10 . 1080 /
00207543.2012.757668. | eng |
dcterms.references | L. C. Coelho, J.-F. Cordeau, and G. Laporte, “Thirty Years of Inventory Routing,”
Transportation Science, vol. 48, no. 1, pp. 1–19, Feb. 2014, ISSN: 0041-1655. DOI:
10.1287/trsc.2013.0472. | eng |
dcterms.references | N. H. Moin and S. Salhi, “Inventory routing problems: a logistical overview,” Journal
of the Operational Research Society, vol. 58, no. 9, pp. 1185–1194, Sep. 2007, ISSN:
0160-5682. DOI: 10.1057/palgrave.jors.2602264. | eng |
dcterms.references | H. Andersson, A. Hoff, M. Christiansen, G. Hasle, and A. Løkketangen, “Industrial
aspects and literature survey: Combined inventory management and routing,” Computers & Operations Research, vol. 37, no. 9, pp. 1515–1536, Sep. 2010, ISSN: 03050548.
DOI: 10.1016/j.cor.2009.11.009. | eng |
dcterms.references | C. Macal and M. North, “Introductory tutorial: Agent-based modeling and simulation,”
in Proceedings of the Winter Simulation Conference 2014, IEEE, Dec. 2014, pp. 6–20,
ISBN: 978-1-4799-7486-3. DOI: 10.1109/WSC.2014.7019874. | eng |
dcterms.references | C. M. Macal, “Everything you need to know about agent-based modelling and simulation,” Journal of Simulation, vol. 10, no. 2, pp. 144–156, May 2016, ISSN: 1747-7778.
DOI: 10.1057/jos.2016.7. | eng |
dcterms.references | E. R. López-Santana, J. A. Espejo-Díaz, and G. A. Méndez-Giraldo, “Multi-agent
Approach for Solving the Dynamic Home Health Care Routing Problem,” in Communications in Computer and Information Science, vol. 657, 2016, pp. 188–200, ISBN:
9783319508795. DOI: 10.1007/978-3-319-50880-1_17. | eng |
dcterms.references | C. M. Macal and M. J. North, “Toward teaching agent-based simulation,” in Proceedings of the 2010 Winter Simulation Conference, IEEE, Dec. 2010, pp. 268–277, ISBN:
978-1-4244-9866-6. DOI: 10.1109/WSC.2010.5679158. | eng |
dcterms.references | K. Kravari and N. Bassiliades, “A Survey of Agent Platforms,” Journal of Artificial
Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015, ISSN: 1460-7425. DOI:
10.18564/jasss.2661. | eng |
dcterms.references | M. Besiou and L. N. Van Wassenhove, “Humanitarian Operations: A World of Opportunity for Relevant and Impactful Research,” Manufacturing & Service Operations
Management, msom.2019.0799, Nov. 2019, ISSN: 1523-4614. DOI: 10.1287/msom.
2019.0799. | eng |
dcterms.references | C. Fikar, P. Hirsch, and P. C. Nolz, “Agent-based simulation optimization for dynamic
disaster relief distribution,” Central European Journal of Operations Research, vol. 26,
no. 2, pp. 423–442, Jun. 2018, ISSN: 1435-246X. DOI: 10.1007/s10100-017-0518-3. | eng |
dcterms.references | C. Fikar, M. Gronalt, and P. Hirsch, “A decision support system for coordinated
disaster relief distribution,” Expert Systems with Applications, vol. 57, pp. 104–116,
Sep. 2016, ISSN: 09574174. DOI: 10.1016/j.eswa.2016.03.039. | eng |
dcterms.references | M. Zhang, J. Huang, and J.-m. Zhu, “Reliable facility location problem considering
facility failure scenarios,” Kybernetes, vol. 41, no. 10, D. Dash Wu, Ed., pp. 1440–
1461, Oct. 2012, ISSN: 0368-492X. DOI: 10.1108/03684921211276666. | eng |
dcterms.references | M. Minoux, Mathematical programming: theory and algorithms, ser. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1986, ISBN: 9780471901709. | eng |
dcterms.references | Unidad Nacional para la Gestión del Riesgo de Desastres - COLOMBIA, Avance plan
de acción específico Mocoa - reconstrucción Mocoa, 2018. | eng |
dcterms.references | A. Behl and P. Dutta, “Humanitarian supply chain management: a thematic literature
review and future directions of research,” Annals of Operations Research, pp. 1–44,
2018, ISSN: 15729338. DOI: 10.1007/s10479-018-2806-2. | eng |
dcterms.references | G. Kovács and K. M. Spens, “Humanitarian logistics and supply chain management:
the start of a new journal,” Journal of Humanitarian Logistics and Supply Chain
Management, vol. 1, no. 1, pp. 5–14, May 2011, ISSN: 2042-6747. DOI: 10.1108/
20426741111123041. | eng |
dcterms.references | M. S. Habib, Y. H. Lee, and M. S. Memon, “Mathematical Models in Humanitarian
Supply Chain Management: A Systematic Literature Review,” Mathematical Problems
in Engineering, vol. 2016, pp. 1–20, 2016, ISSN: 1024-123X. DOI: 10.1155/2016/
3212095. | eng |
dcterms.references | A. Moreno, D. Alem, D. Ferreira, and A. Clark, “An effective two-stage stochastic
multi-trip location-transportation model with social concerns in relief supply chains,”
European Journal of Operational Research, vol. 269, no. 3, pp. 1050–1071, Sep. 2018,
ISSN: 03772217. DOI: 10.1016/j.ejor.2018.02.022. | eng |
dcterms.references | S. Rath and W. J. Gutjahr, “A math-heuristic for the warehouse location–routing
problem in disaster relief,” Computers & Operations Research, vol. 42, pp. 25–39,
Feb. 2014, ISSN: 03050548. DOI: 10.1016/j.cor.2011.07.016. | eng |
dcterms.references | L. L. Putong and M. M. De Leon, “A Modified Balcik Last Mile Distribution Model
for Relief Operations Using Open Road Networks,” Procedia Engineering, vol. 212,
pp. 133–140, 2018, ISSN: 18777058. DOI: 10.1016/j.proeng.2018.01.018. | eng |
dcterms.references | M. Najafi, K. Eshghi, and W. Dullaert, “A multi-objective robust optimization model
for logistics planning in the earthquake response phase,” Transportation Research Part
E: Logistics and Transportation Review, vol. 49, no. 1, pp. 217–249, Jan. 2013, ISSN:
13665545. DOI: 10.1016/j.tre.2012.09.001. | eng |
dcterms.references | A. Moreno, D. Alem, and D. Ferreira, “Heuristic approaches for the multiperiod
location-transportation problem with reuse of vehicles in emergency logistics,” Computers & Operations Research, vol. 69, pp. 79–96, May 2016, ISSN: 03050548. DOI:
10.1016/j.cor.2015.12.002. | eng |
dcterms.references | A. Nedjati, G. Izbirak, and J. Arkat, “Bi-objective covering tour location routing problem with replenishment at intermediate depots: Formulation and meta-heuristics,” Computers & Industrial Engineering, vol. 110, pp. 191–206, Aug. 2017, ISSN: 03608352.
DOI: 10.1016/j.cie.2017.06.004. | eng |
dcterms.references | B. Rabta, C. Wankmüller, and G. Reiner, “A drone fleet model for last-mile distribution
in disaster relief operations,” International Journal of Disaster Risk Reduction, vol. 28,
no. February, pp. 107–112, Jun. 2018, ISSN: 22124209. DOI: 10.1016/j.ijdrr.2018.02.
020. | eng |
dcterms.references | W. Chen, G. Zhai, C. Ren, Y. Shi, and J. Zhang, “Urban Resources Selection and
Allocation for Emergency Shelters: In a Multi-Hazard Environment,” International
Journal of Environmental Research and Public Health, vol. 15, no. 6, p. 1261, Jun.
2018, ISSN: 1660-4601. DOI: 10.3390/ijerph15061261. | eng |
dcterms.references | Organización Panamericana de la Salud, “EDAN - Evaluación de daños y necesidades
en salud en situaciones de desastre,” UNGRD, Tech. Rep., 2010. | eng |
dcterms.references | C. Archetti, L. Bertazzi, G. Laporte, and M. G. Speranza, “A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem,” Transportation Science,
vol. 41, no. 3, pp. 382–391, Aug. 2007, ISSN: 0041-1655. DOI: 10.1287/trsc.1060.0188. | eng |
dcterms.references | N. Pérez-Rodríguez and J. Holguín-Veras, “Inventory-Allocation Distribution Models
for Postdisaster Humanitarian Logistics with Explicit Consideration of Deprivation
Costs,” Transportation Science, vol. 50, no. 4, pp. 1261–1285, Jun. 2016, ISSN: 0041-
1655. DOI: 10.1287/trsc.2014.0565. | eng |
dcterms.references | J. Holguín-Veras, J. Amaya-Leal, V. Cantillo, L. N. Van Wassenhove, F. Aros-Vera,
and M. Jaller, “Econometric estimation of deprivation cost functions: A contingent
valuation experiment,” Journal of Operations Management, vol. 45, no. 1, pp. 44–56,
Jul. 2016, ISSN: 02726963. DOI: 10.1016/j.jom.2016.05.008. | eng |
dcterms.references | G. Mavrotas, “Effective implementation of the ε-constraint method in Multi-Objective
Mathematical Programming problems,” Applied Mathematics and Computation, vol. 213,
no. 2, pp. 455–465, Jul. 2009, ISSN: 00963003. DOI: 10.1016/j.amc.2009.03.037. | eng |
dcterms.references | ] J. A. Espejo-Díaz and W. J. Guerrero, “A Bi-objective Model for the Humanitarian
Aid Distribution Problem: Analyzing the Trade-off Between Shortage and Inventory
at Risk,” in, 2019, pp. 752–763. DOI: 10.1007/978-3-030-31019-6_63. | eng |
dcterms.references | C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer Programming Formulation of
Traveling Salesman Problems,” Journal of the ACM (JACM), vol. 7, no. 4, pp. 326–
329, Oct. 1960, ISSN: 0004-5411. DOI: 10.1145/321043.321046. [Online]. Available:
http://dl.acm.org/doi/10.1145/321043.321046. | eng |
dcterms.references | The Anylogic Company, Multimethod modeling environment. [Online]. Available:
https://www.anylogic.com/features/. | eng |
dcterms.references | Reliefweb, “Colombia – Inundaciones en Mocoa, Putumayo - Reporte de Situación
No. 03 (al 11.04.2017),” Tech. Rep., 2017. [Online]. Available: https://reliefweb.int/
report/colombia/colombia-inundaciones-en-mocoa-putumayo-reporte-de-situaci-nno-03-al-11042017. | eng |
dcterms.references | D. Cheng, Y. Cui, F. Su, Y. Jia, and C. E. Choi, “The characteristics of the Mocoa
compound disaster event, Colombia,” Landslides, vol. 15, no. 6, pp. 1223–1232, 2018,
ISSN: 16125118. DOI: 10.1007/s10346-018-0969-1. | eng |
dcterms.references | Cruz Roja Colombiana, Reportes de Situación Emergencia Mocoa, 2017. [Online].
Available: http://www.cruzrojacolombiana.org/noticias- y- prensa/reportes- desituaci%7B%5C’%7Bo%7D%7Dn-emergencia-mocoa. | eng |
dcterms.references | Departamento Administrativo Nacional de Estadística (DANE), “Censo Nacional de
Población y Vivienda 2018,” Tech. Rep., 2018. [Online]. Available: https://www.dane.
gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-depoblacion-y-vivenda-2018/como-vivimos. | eng |
dcterms.references | UN Office for the Coordination of Humanitarian Affairs (OCHA), Colombia: Putumayo - Mocoa Zonas de afectación, 2017. [Online]. Available: https : / / www.
humanitarianresponse.info/es/operations/colombia/infographic/colombia-municipiode-mocoa-putumayo-afectaci%7B%5C’%7Bo%7D%7Dn-por-avalancha | eng |
dcterms.references | K. Sankaranarayanan, J. A. Castañeda, and S. Villa, “Future Research in Humanitarian
Operations: A Behavioral Operations Perspective,” in The Palgrave Handbook of
Humanitarian Logistics and Supply Chain Management, G. Kovács, K. Spens, and
M. Moshtari, Eds., London: Palgrave Macmillan UK, 2018, pp. 71–117, ISBN: 978-1-
137-59098-5. DOI: 10.1057/978-1-137-59099-2_3. | eng |
dcterms.references | EL TIEMPO Casa Editorial, La vida en los albergues después de la avalancha en
Mocoa, Putumayo, Apr. 2017. [Online]. Available: https : / / www. eltiempo . com /
colombia/otras- ciudades/asi- viven- en- los- albergues- los- damnificados- de- laavalancha-en-mocoa-74456. | eng |
dcterms.references | T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling.
London: Springer London, 2011, ISBN: 978-0-85729-138-7. DOI: 10.1007/978-0-
85729-139-4. [Online]. Available: http://link.springer.com/10.1007/978-0-85729-139-
4 | eng |
dcterms.references | ] Minitab 18 Statistical Software, 2018. [Online]. Available: www.minitab.com. | eng |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |