Mostrar el registro sencillo del ítem
On the dynamic inventory routing problem in humanitarian logistics: a simulation optimization approach using agent-based modeling
dc.contributor.advisor | Guerrero, William J. | |
dc.contributor.author | Espejo Díaz, Julián Alberto | |
dc.date.accessioned | 2020-09-28T19:51:39Z | |
dc.date.available | 2020-09-28T19:51:39Z | |
dc.date.issued | 2020-08-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/43370 | |
dc.description | 80 páginas | es_CO |
dc.description.abstract | In the immediate aftermath of any disaster event, operational decisions are made to relieve the affected population and minimize casualties and human suffering. To do so, humanitarian logistics planners should be supported by strong decision-making tools to better respond to disaster events. One of the most important decisions is the delivery of the correct amount of humanitarian aid in the right moment to the right place. This decision should be made considering the dynamism of the disaster response operations where the information is not known beforehand and vary over time. For instance, the effect of the Word-of-Mouth and shortages in distribution points’ demand can impact the operational decisions. Therefore, the inventory and transportation decisions should be made constantly to better serve the affected people. This work presents a simulation-optimization approach to make disaster relief distribution decisions dynamically. An agent-based simulation model solves the inventory routing problem dynamically, considering changes in the humanitarian supply chain over the planning horizon. Additionally, the inventory routing schemes are made using a proposed mathematical model that aims to minimize the level of shortage and inventory at risk (associated to the risk of losing it). The computational proposal is implemented in the ANYLOGIC and CPLEX software. Finally, a case study motivated by the 2017 Mocoa-Colombia landslide is developed using real data and is presented to be used in conjunction with the proposed framework. Computational experimentations show the impact of the word-of-mouth and the frequency in decision making in distribution points’ shortages and service levels. Therefore, considering changes in demand over the planning horizon contributes to lowering the shortages and contributes to making better distributions plans in the response phase of a disaster. | eng |
dc.description.abstract | Después de la ocurrencia de cualquier desastre se deben tomar decisiones para aliviar a la población afectada minimizando las pérdidas humanas y el sufrimiento. Para ello, los responsables de la logística humanitaria deben contar con robustas herramientas para tomar decisiones acertadas que respondan adecuadamente ante esos eventos. Una de las decisiones más importantes es la entrega de ayuda humanitaria en el lugar, las cantidades y en el momento correcto. La anterior decisión debe ser tomada teniendo en cuenta el dinamismo de las operaciones de respuesta humanitaria en donde la información no es conocida de antemano y varía en el tiempo. Por ejemplo, el efecto del Voz a Voz y la escasez en los puntos de distribución de ayuda humanitaira pueden impactar las decisiones operacionales. Es por lo anterior, que las decisiones de transporte de ayuda humanitaria deben ser realizadas constantemente para servir de una mejor forma a la población afectada. Este trabajo presenta una propuesta de simulación-optimización para tomar las decisiones de ruteo de inventario de ayuda humanitaria de forma dinámica. A través de un modelo de simulación basado en agentes se resuelve dinámicamente el problema de ruteo de inventario considerando cambios en la cadena de suministro humanitaria. Adicionalmente, las decisiones de ruteo de inventario son tomadas mediante un modelo matemático propuesto que busca minimizar el nivel de inventario en riesgo y el nivel de escases simultáneamente. La propuesta computacional es implementada en los programas ANYLOGIC y CPLEX. Finalmente mediante un caso de estudio basado en la catastrofe de Mocoa-Colombia en 2017 se evaluará la propuesta. Experimentos computacionales muestran el impacto del voz-a-voz y frecuencia de toma de decisiones en la escasez y el nivel de servicio en los puntos de distribución. Por lo tanto, considerar cambios en la demanda contribuye a disminuir la escasez y hacer mejores esquemas de distribución de ayuda humanitaria. | spa |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.title | On the dynamic inventory routing problem in humanitarian logistics: a simulation optimization approach using agent-based modeling | es_CO |
dc.type | masterThesis | es_CO |
dc.identifier.local | 278449 | |
dc.identifier.local | TE10861 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Auxilio en desastres | |
dc.subject.armarc | Desastres -- Toma de decisiones | spa |
dc.subject.armarc | Trabajo social | spa |
dc.subject.armarc | Logística | spa |
dc.subject.armarc | Ayuda humanitaria | spa |
dcterms.references | S. Tofighi, S. Torabi, and S. Mansouri, “Humanitarian logistics network design under mixed uncertainty,” European Journal of Operational Research, vol. 250, no. 1, pp. 239–250, Apr. 2016, ISSN: 03772217. DOI: 10.1016/j.ejor.2015.08.059. | eng |
dcterms.references | S. R. A. da Costa, V. B. G. Campos, and R. A. d. M. Bandeira, “Supply Chains in Humanitarian Operations: Cases and Analysis,” Procedia - Social and Behavioral Sciences, vol. 54, pp. 598–607, Oct. 2012, ISSN: 18770428. DOI: 10.1016/j.sbspro. 2012.09.777. | eng |
dcterms.references | S. R. A. da Costa, V. B. G. Campos, and R. A. d. M. Bandeira, “Supply Chains in Humanitarian Operations: Cases and Analysis,” Procedia - Social and Behavioral Sciences, vol. 54, pp. 598–607, Oct. 2012, ISSN: 18770428. DOI: 10.1016/j.sbspro. 2012.09.777. | eng |
dcterms.references | M. Besiou, A. J. Pedraza-Martinez, and L. N. Van Wassenhove, “OR applied to humanitarian operations,” European Journal of Operational Research, vol. 269, no. 2, pp. 397–405, Sep. 2018, ISSN: 03772217. DOI: 10.1016/j.ejor.2018.02.046. | eng |
dcterms.references | R. Shapiro and J. Heskett, Logistics strategy: cases and concepts. West Pub. Co., 1985, ISBN: 9780314852977. | eng |
dcterms.references | R. H. Ballou, Business Logistics/supply Chain Management: Planning, Organizing, and Controlling the Supply Chain. Pearson/Prentice Hall, 2004, ISBN: 9780130661845. | eng |
dcterms.references | N. Kunz, L. N. Van Wassenhove, M. Besiou, C. Hambye, and G. Kovács, “Relevance of humanitarian logistics research: best practices and way forward,” International Journal of Operations & Production Management, vol. 37, no. 11, pp. 1585–1599, Nov. 2017, ISSN: 0144-3577. DOI: 10.1108/IJOPM-04-2016-0202. | eng |
dcterms.references | G. Kovács and K. M. Spens, “Humanitarian logistics in disaster relief operations,” International Journal of Physical Distribution & Logistics Management, vol. 37, no. 2, M. Jahre, Ed., pp. 99–114, Mar. 2007, ISSN: 0960-0035. DOI: 10 . 1108 / 09600030710734820. | eng |
dcterms.references | A. S. Thomas and L. R. Kopczak, “From logistics to supply chain management: the path forward in the humanitarian sector,” Tech. Rep., 2005, pp. 1–15. | eng |
dcterms.references | N. Altay and W. G. Green, “OR/MS research in disaster operations management,” European Journal of Operational Research, vol. 175, no. 1, pp. 475–493, Nov. 2006, ISSN: 03772217. DOI: 10.1016/j.ejor.2005.05.016. | eng |
dcterms.references | S. J. Rennemo, K. F. Rø, L. M. Hvattum, and G. Tirado, “A three-stage stochastic facility routing model for disaster response planning,” Transportation Research Part E: Logistics and Transportation Review, vol. 62, pp. 116–135, Feb. 2014, ISSN: 13665545. DOI: 10.1016/j.tre.2013.12.006. | eng |
dcterms.references | A. Ben-Tal, B. D. Chung, S. R. Mandala, and T. Yao, “Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains,” Transportation Research Part B: Methodological, vol. 45, no. 8, pp. 1177–1189, Sep. 2011, ISSN: 01912615. DOI: 10.1016/j.trb.2010.09.002. | eng |
dcterms.references | M. Ahmadi, A. Seifi, and B. Tootooni, “A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district,” Transportation Research Part E: Logistics and Transportation Review, vol. 75, pp. 145–163, Mar. 2015, ISSN: 13665545. DOI: 10.1016/j.tre.2015.01. 008. | eng |
dcterms.references | L. En-nahli, H. Allaoui, and I. Nouaouri, “A Multi-objective Modelling to Human Resource Assignment and Routing Problem for Home Health Care Services,” IFACPapersOnLine, vol. 48, no. 3, pp. 698–703, 2015, ISSN: 24058963. DOI: 10.1016/j. ifacol.2015.06.164. | eng |
dcterms.references | F. Wex, G. Schryen, S. Feuerriegel, and D. Neumann, “Emergency response in natural disaster management: Allocation and scheduling of rescue units,” European Journal of Operational Research, vol. 235, no. 3, pp. 697–708, Jun. 2014, ISSN: 03772217. DOI: 10.1016/j.ejor.2013.10.029. | eng |
dcterms.references | H. Sahin, B. Y. Kara, and O. E. Karasan, “Debris removal during disaster response: A case for Turkey,” Socio-Economic Planning Sciences, vol. 53, pp. 49–59, Mar. 2016, ISSN: 00380121. DOI: 10.1016/j.seps.2015.10.003. | eng |
dcterms.references | A. Chandra, J. Acosta, S. Howard, L. Uscher-Pines, M. Williams, D. Yeung, J. Garnett, and L. S. Meredith, “Building Community Resilience to Disasters: A Way Forward to Enhance National Health Security.,” Rand health quarterly, vol. 1, no. 1, p. 6, 2011, ISSN: 2162-8254 | eng |
dcterms.references | L. C. Coelho and G. Laporte, “A branch-and-cut algorithm for the multi-product multivehicle inventory-routing problem,” International Journal of Production Research, vol. 51, no. 23-24, pp. 7156–7169, Nov. 2013, ISSN: 0020-7543. DOI: 10 . 1080 / 00207543.2012.757668. | eng |
dcterms.references | L. C. Coelho, J.-F. Cordeau, and G. Laporte, “Thirty Years of Inventory Routing,” Transportation Science, vol. 48, no. 1, pp. 1–19, Feb. 2014, ISSN: 0041-1655. DOI: 10.1287/trsc.2013.0472. | eng |
dcterms.references | N. H. Moin and S. Salhi, “Inventory routing problems: a logistical overview,” Journal of the Operational Research Society, vol. 58, no. 9, pp. 1185–1194, Sep. 2007, ISSN: 0160-5682. DOI: 10.1057/palgrave.jors.2602264. | eng |
dcterms.references | H. Andersson, A. Hoff, M. Christiansen, G. Hasle, and A. Løkketangen, “Industrial aspects and literature survey: Combined inventory management and routing,” Computers & Operations Research, vol. 37, no. 9, pp. 1515–1536, Sep. 2010, ISSN: 03050548. DOI: 10.1016/j.cor.2009.11.009. | eng |
dcterms.references | C. Macal and M. North, “Introductory tutorial: Agent-based modeling and simulation,” in Proceedings of the Winter Simulation Conference 2014, IEEE, Dec. 2014, pp. 6–20, ISBN: 978-1-4799-7486-3. DOI: 10.1109/WSC.2014.7019874. | eng |
dcterms.references | C. M. Macal, “Everything you need to know about agent-based modelling and simulation,” Journal of Simulation, vol. 10, no. 2, pp. 144–156, May 2016, ISSN: 1747-7778. DOI: 10.1057/jos.2016.7. | eng |
dcterms.references | E. R. López-Santana, J. A. Espejo-Díaz, and G. A. Méndez-Giraldo, “Multi-agent Approach for Solving the Dynamic Home Health Care Routing Problem,” in Communications in Computer and Information Science, vol. 657, 2016, pp. 188–200, ISBN: 9783319508795. DOI: 10.1007/978-3-319-50880-1_17. | eng |
dcterms.references | C. M. Macal and M. J. North, “Toward teaching agent-based simulation,” in Proceedings of the 2010 Winter Simulation Conference, IEEE, Dec. 2010, pp. 268–277, ISBN: 978-1-4244-9866-6. DOI: 10.1109/WSC.2010.5679158. | eng |
dcterms.references | K. Kravari and N. Bassiliades, “A Survey of Agent Platforms,” Journal of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015, ISSN: 1460-7425. DOI: 10.18564/jasss.2661. | eng |
dcterms.references | M. Besiou and L. N. Van Wassenhove, “Humanitarian Operations: A World of Opportunity for Relevant and Impactful Research,” Manufacturing & Service Operations Management, msom.2019.0799, Nov. 2019, ISSN: 1523-4614. DOI: 10.1287/msom. 2019.0799. | eng |
dcterms.references | C. Fikar, P. Hirsch, and P. C. Nolz, “Agent-based simulation optimization for dynamic disaster relief distribution,” Central European Journal of Operations Research, vol. 26, no. 2, pp. 423–442, Jun. 2018, ISSN: 1435-246X. DOI: 10.1007/s10100-017-0518-3. | eng |
dcterms.references | C. Fikar, M. Gronalt, and P. Hirsch, “A decision support system for coordinated disaster relief distribution,” Expert Systems with Applications, vol. 57, pp. 104–116, Sep. 2016, ISSN: 09574174. DOI: 10.1016/j.eswa.2016.03.039. | eng |
dcterms.references | M. Zhang, J. Huang, and J.-m. Zhu, “Reliable facility location problem considering facility failure scenarios,” Kybernetes, vol. 41, no. 10, D. Dash Wu, Ed., pp. 1440– 1461, Oct. 2012, ISSN: 0368-492X. DOI: 10.1108/03684921211276666. | eng |
dcterms.references | M. Minoux, Mathematical programming: theory and algorithms, ser. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 1986, ISBN: 9780471901709. | eng |
dcterms.references | Unidad Nacional para la Gestión del Riesgo de Desastres - COLOMBIA, Avance plan de acción específico Mocoa - reconstrucción Mocoa, 2018. | eng |
dcterms.references | A. Behl and P. Dutta, “Humanitarian supply chain management: a thematic literature review and future directions of research,” Annals of Operations Research, pp. 1–44, 2018, ISSN: 15729338. DOI: 10.1007/s10479-018-2806-2. | eng |
dcterms.references | G. Kovács and K. M. Spens, “Humanitarian logistics and supply chain management: the start of a new journal,” Journal of Humanitarian Logistics and Supply Chain Management, vol. 1, no. 1, pp. 5–14, May 2011, ISSN: 2042-6747. DOI: 10.1108/ 20426741111123041. | eng |
dcterms.references | M. S. Habib, Y. H. Lee, and M. S. Memon, “Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review,” Mathematical Problems in Engineering, vol. 2016, pp. 1–20, 2016, ISSN: 1024-123X. DOI: 10.1155/2016/ 3212095. | eng |
dcterms.references | A. Moreno, D. Alem, D. Ferreira, and A. Clark, “An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains,” European Journal of Operational Research, vol. 269, no. 3, pp. 1050–1071, Sep. 2018, ISSN: 03772217. DOI: 10.1016/j.ejor.2018.02.022. | eng |
dcterms.references | S. Rath and W. J. Gutjahr, “A math-heuristic for the warehouse location–routing problem in disaster relief,” Computers & Operations Research, vol. 42, pp. 25–39, Feb. 2014, ISSN: 03050548. DOI: 10.1016/j.cor.2011.07.016. | eng |
dcterms.references | L. L. Putong and M. M. De Leon, “A Modified Balcik Last Mile Distribution Model for Relief Operations Using Open Road Networks,” Procedia Engineering, vol. 212, pp. 133–140, 2018, ISSN: 18777058. DOI: 10.1016/j.proeng.2018.01.018. | eng |
dcterms.references | M. Najafi, K. Eshghi, and W. Dullaert, “A multi-objective robust optimization model for logistics planning in the earthquake response phase,” Transportation Research Part E: Logistics and Transportation Review, vol. 49, no. 1, pp. 217–249, Jan. 2013, ISSN: 13665545. DOI: 10.1016/j.tre.2012.09.001. | eng |
dcterms.references | A. Moreno, D. Alem, and D. Ferreira, “Heuristic approaches for the multiperiod location-transportation problem with reuse of vehicles in emergency logistics,” Computers & Operations Research, vol. 69, pp. 79–96, May 2016, ISSN: 03050548. DOI: 10.1016/j.cor.2015.12.002. | eng |
dcterms.references | A. Nedjati, G. Izbirak, and J. Arkat, “Bi-objective covering tour location routing problem with replenishment at intermediate depots: Formulation and meta-heuristics,” Computers & Industrial Engineering, vol. 110, pp. 191–206, Aug. 2017, ISSN: 03608352. DOI: 10.1016/j.cie.2017.06.004. | eng |
dcterms.references | B. Rabta, C. Wankmüller, and G. Reiner, “A drone fleet model for last-mile distribution in disaster relief operations,” International Journal of Disaster Risk Reduction, vol. 28, no. February, pp. 107–112, Jun. 2018, ISSN: 22124209. DOI: 10.1016/j.ijdrr.2018.02. 020. | eng |
dcterms.references | W. Chen, G. Zhai, C. Ren, Y. Shi, and J. Zhang, “Urban Resources Selection and Allocation for Emergency Shelters: In a Multi-Hazard Environment,” International Journal of Environmental Research and Public Health, vol. 15, no. 6, p. 1261, Jun. 2018, ISSN: 1660-4601. DOI: 10.3390/ijerph15061261. | eng |
dcterms.references | Organización Panamericana de la Salud, “EDAN - Evaluación de daños y necesidades en salud en situaciones de desastre,” UNGRD, Tech. Rep., 2010. | eng |
dcterms.references | C. Archetti, L. Bertazzi, G. Laporte, and M. G. Speranza, “A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem,” Transportation Science, vol. 41, no. 3, pp. 382–391, Aug. 2007, ISSN: 0041-1655. DOI: 10.1287/trsc.1060.0188. | eng |
dcterms.references | N. Pérez-Rodríguez and J. Holguín-Veras, “Inventory-Allocation Distribution Models for Postdisaster Humanitarian Logistics with Explicit Consideration of Deprivation Costs,” Transportation Science, vol. 50, no. 4, pp. 1261–1285, Jun. 2016, ISSN: 0041- 1655. DOI: 10.1287/trsc.2014.0565. | eng |
dcterms.references | J. Holguín-Veras, J. Amaya-Leal, V. Cantillo, L. N. Van Wassenhove, F. Aros-Vera, and M. Jaller, “Econometric estimation of deprivation cost functions: A contingent valuation experiment,” Journal of Operations Management, vol. 45, no. 1, pp. 44–56, Jul. 2016, ISSN: 02726963. DOI: 10.1016/j.jom.2016.05.008. | eng |
dcterms.references | G. Mavrotas, “Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 455–465, Jul. 2009, ISSN: 00963003. DOI: 10.1016/j.amc.2009.03.037. | eng |
dcterms.references | ] J. A. Espejo-Díaz and W. J. Guerrero, “A Bi-objective Model for the Humanitarian Aid Distribution Problem: Analyzing the Trade-off Between Shortage and Inventory at Risk,” in, 2019, pp. 752–763. DOI: 10.1007/978-3-030-31019-6_63. | eng |
dcterms.references | C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer Programming Formulation of Traveling Salesman Problems,” Journal of the ACM (JACM), vol. 7, no. 4, pp. 326– 329, Oct. 1960, ISSN: 0004-5411. DOI: 10.1145/321043.321046. [Online]. Available: http://dl.acm.org/doi/10.1145/321043.321046. | eng |
dcterms.references | The Anylogic Company, Multimethod modeling environment. [Online]. Available: https://www.anylogic.com/features/. | eng |
dcterms.references | Reliefweb, “Colombia – Inundaciones en Mocoa, Putumayo - Reporte de Situación No. 03 (al 11.04.2017),” Tech. Rep., 2017. [Online]. Available: https://reliefweb.int/ report/colombia/colombia-inundaciones-en-mocoa-putumayo-reporte-de-situaci-nno-03-al-11042017. | eng |
dcterms.references | D. Cheng, Y. Cui, F. Su, Y. Jia, and C. E. Choi, “The characteristics of the Mocoa compound disaster event, Colombia,” Landslides, vol. 15, no. 6, pp. 1223–1232, 2018, ISSN: 16125118. DOI: 10.1007/s10346-018-0969-1. | eng |
dcterms.references | Cruz Roja Colombiana, Reportes de Situación Emergencia Mocoa, 2017. [Online]. Available: http://www.cruzrojacolombiana.org/noticias- y- prensa/reportes- desituaci%7B%5C’%7Bo%7D%7Dn-emergencia-mocoa. | eng |
dcterms.references | Departamento Administrativo Nacional de Estadística (DANE), “Censo Nacional de Población y Vivienda 2018,” Tech. Rep., 2018. [Online]. Available: https://www.dane. gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-depoblacion-y-vivenda-2018/como-vivimos. | eng |
dcterms.references | UN Office for the Coordination of Humanitarian Affairs (OCHA), Colombia: Putumayo - Mocoa Zonas de afectación, 2017. [Online]. Available: https : / / www. humanitarianresponse.info/es/operations/colombia/infographic/colombia-municipiode-mocoa-putumayo-afectaci%7B%5C’%7Bo%7D%7Dn-por-avalancha | eng |
dcterms.references | K. Sankaranarayanan, J. A. Castañeda, and S. Villa, “Future Research in Humanitarian Operations: A Behavioral Operations Perspective,” in The Palgrave Handbook of Humanitarian Logistics and Supply Chain Management, G. Kovács, K. Spens, and M. Moshtari, Eds., London: Palgrave Macmillan UK, 2018, pp. 71–117, ISBN: 978-1- 137-59098-5. DOI: 10.1057/978-1-137-59099-2_3. | eng |
dcterms.references | EL TIEMPO Casa Editorial, La vida en los albergues después de la avalancha en Mocoa, Putumayo, Apr. 2017. [Online]. Available: https : / / www. eltiempo . com / colombia/otras- ciudades/asi- viven- en- los- albergues- los- damnificados- de- laavalancha-en-mocoa-74456. | eng |
dcterms.references | T. T. Allen, Introduction to Discrete Event Simulation and Agent-based Modeling. London: Springer London, 2011, ISBN: 978-0-85729-138-7. DOI: 10.1007/978-0- 85729-139-4. [Online]. Available: http://link.springer.com/10.1007/978-0-85729-139- 4 | eng |
dcterms.references | ] Minitab 18 Statistical Software, 2018. [Online]. Available: www.minitab.com. | eng |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |