Mostrar el registro sencillo del ítem

dc.contributor.advisorGómez Galindo, María Fernanda
dc.contributor.advisorFigueredo Medina, Manuel Alfredo
dc.contributor.advisorSierra Vargas, Fabio Emiro
dc.contributor.authorBeltrán Parada, Vivian Estefanía
dc.date.accessioned2020-08-24T16:08:01Z
dc.date.available2020-08-24T16:08:01Z
dc.date.issued2020-06-12
dc.identifier.urihttp://hdl.handle.net/10818/42977
dc.description96 páginas: ilustracioneses_CO
dc.description.abstractActualmente muchas investigaciones se enfocan en la búsqueda de nuevas fuentes de energía renovable para suplir la creciente demanda energética y para disminuir el uso de combustibles fósiles, principalmente por el impacto ambiental de los gases de efecto invernadero que los mismos emiten. Una fuente de energía renovable es la biomasa lignocelulósica, producto de las podas urbanas. En Bogotá se producen cerca de 488 toneladas de madera residual al mes, fruto de las podas que se llevan a cabo en las zonas urbanas, lo cual representa un contenido energético de cerca de 86×1012 J e implica un potencial importante para la generación de energía eléctrica. Dicho potencial podría incrementarse si se suma la biomasa generada por el retamo espinoso (Ulex europaeus), una especie invasora, de difícil control, que afecta el ecosistema y que se caracteriza por su alto contenido energético. Sin embargo, en la actualidad los residuos de poda se disponen en el relleno sanitario Doña Juana y el retamo espinoso se elimina mediante incineración. De esta manera, el contenido energético de estos recursos está siendo desaprovechado. Existen diversas tecnologías de tipo químico, biológico y termoquímico para la transformación de la biomasa. Dentro de los procesos termoquímicos se encuentra la gasificación, proceso en el que se obtiene un gas de síntesis que puede utilizarse para generación eléctrica empleando un motor de combustión interna acoplado a un generador. Este proceso termoquímico se caracteriza porque la cantidad de gases efecto invernadero emitidos al ambiente son considerablemente menores a los gases emitidos por otras tecnologías, como las de combustión. Por lo anterior, en esta investigación se busca determinar el potencial técnico de los residuos de poda y retamo espinoso generados en Bogotá para la generación de energía eléctrica mediante su gasificación en un reactor de lecho fijo y flujo descendente.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectDesarrollo energéticoes_CO
dc.subjectEnergía biomásicaes_CO
dc.subjectRecursos energéticos renovableses_CO
dc.subjectConversión de residuoses_CO
dc.subjectCombustibles fósileses_CO
dc.subjectEcología humanaes_CO
dc.titleEvaluation of the technical potential of pruning and gorse (Ulex europaeus) residues for power generation through gasification in Bogotáes_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local277708
dc.identifier.localTE10736
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesEIA, “International Energy Outlook 2016,” 2016.eng
dcterms.referencesUPME, “Projection of the demand for electric energy and maximum power in Colombia- Revision Feb 2017,” 2017.eng
dcterms.referencesUpme, “Monthly report of generation variables and the Colombian electricity market - November 2016,” 2016.eng
dcterms.referencesO. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Large scale integration of renewable energy sources (RES) in the future Colombian energy system,” Energy, vol. 186, p. 115805, 2019.eng
dcterms.referencesIDEAM, PNUD, MADS, DNP, and CANCILLERÍA, National and departmental inventory of Greenhouse Gases - Colombia. Third National Climate Change Communication. 2016.eng
dcterms.referencesUnited Nation Development program, “Sustainable development goals.” 2015.eng
dcterms.referencesE. Balu and J. N. Chung, “System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock,” Bioresour. Technol., vol. 108, pp. 264–273, 2012.eng
dcterms.referencesE. G. Pereira, J. N. Da Silva, J. L. De Oliveira, and C. S. Machado, “Sustainable energy: A review of gasification technologies,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4753–4762, 2012.eng
dcterms.referencesL. Y. Vega, L. López, C. F. Valdés, and F. Chejne, “Assessment of energy potential of wood industry wastes through thermochemical conversions,” Waste Manag., vol. 87, pp. 108–118, 2019.eng
dcterms.referencesNational Congress of colombia, Law No. 1715 of May 13, 2014, no. May. 2014, p. 26.eng
dcterms.referencesH. Aldana, F. J. Lozano, J. Acevedo, and A. Mendoza, “Thermogravimetric characterization and gasification of pecan nut shells,” Bioresour. Technol., vol. 198, pp. 634–641, 2015.eng
dcterms.references(UAESP), “Technical support document for the integral solid waste management plan for Bogota D.C.,” 2016.eng
dcterms.referencesInstituto Distrital de Gestión de Riesgos y Cambio Climático (IDIGER), “La Alcaldía Mayor intensifica el control de la especie retamo espinoso,” 2017. [Online]. Available: http://bit.ly/31yLkxe.eng
dcterms.referencesY. Niño, L. T. Vega, and B. Ruiz, “Evaluation of the energy potential of the gorse (ulex europaeus) in the generation of electrical energy by gasification,” Chem. Eng. Trans., vol. 64, no. 2008, pp. 481–486, 2018.eng
dcterms.referencesJardín Botánico de Bogotá, “Descripción de las acciones realizadas en el proceso de intervención y recuperación de áreas invadidas de retamo como medida de mitigación de incendios forestales,” 2014.spa
dcterms.referencesMinistry of Environment and Sustainable Development of Colombia, Resolution 0684 / 2018. 2018.eng
dcterms.referencesP. R. Bhoi, R. L. Huhnke, A. Kumar, N. Indrawan, and S. Thapa, “Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier,” Energy, vol. 163, pp. 513–518, 2018.eng
dcterms.referencesM. Materazzi, R. Taylor, and M. Cairns-Terry, “Production of biohydrogen from gasification of waste fuels: Pilot plant results and deployment prospects,” Waste Manag., vol. 94, pp. 95–106, 2019.eng
dcterms.referencesJ. Carrasco, “Combustión Directa De La Biomasa,” 2008.spa
dcterms.referencesJ. P. Paredes-Sánchez, A. J. Gutiérrez-Trashorras, and J. Xiberta-Bernat, “Wood residue to energy from forests in the Central Metropolitan Area of Asturias (NW Spain),” Urban For. Urban Green., vol. 14, no. 2, pp. 195–199, 2015.eng
dcterms.referencesM. U. Hossain, S. Y. Leu, and C. S. Poon, “Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong,” J. Clean. Prod., vol. 113, no. 2016, pp. 400–410, 2016.eng
dcterms.referencesA. Lopez, B. Roberts, D. Heimiller, N. Blair, and G. Porro, “U . S . Renewable Energy Technical Potentials : A GIS-Based Analysis,” 2012.eng
dcterms.referencesP. Basu, Biomass Gasification and Pyrolysis: Practical Design and Theory, First Edit. Elsevier Inc., 2010.eng
dcterms.referencesL. J. R. Nunes, J. C. O. Matias, and J. P. S. Catalão, “Biomass in the generation of electricity in Portugal : A review,” Renew. Sustain. Energy Rev., vol. 71, no. December 2016, pp. 373–378, 2017.eng
dcterms.referencesY. Disco, P. Mahanta, and U. Bora, “Comprehensive characterization of lignocellulosic biomass through proximate , ultimate and compositional analysis for bioenergy production,” Renew. Energy, vol. 103, pp. 490–500, 2017.eng
dcterms.referencesP. McKendry, “Energy production from biomass (part 1): Overview of biomass,” Bioresour. Technol., vol. 83, no. 1, pp. 37–46, 2002.eng
dcterms.referencesM. Balat, M. Balat, E. Kirtay, and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems,” Energy Convers. Manag., vol. 50, no. 12, pp. 3147–3157, 2009.eng
dcterms.referencesUPME, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2006.spa
dcterms.referencesD. Camelo S., “Evaluación del estado sucesional actual de las áreas restauradas y con invasión previa de Ulex europaeus L. en los Cerros Orientales de Bogotá,” 2015. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/16677.spa
dcterms.referencesM. F. Aldana, “Experimental Analysis of the Energetic Potential of the species Ulex europaeus and its blending with waste tire rubber by Pyrolysis,” 2015. [Online]. Available: https://repositorio.uniandes.edu.co/handle/1992/18519.eng
dcterms.referencesJ. Castro and J. Cervera, “Formulación de indicadores de sostenibilidad para la erradicación de la especie retamo espinoso (Ulex europaeus) en las áreas afectadas de los cerros orientales de Bogotá,” 2014. [Online]. Available: https://repository.unilibre.edu.co/handle/10901/10650.spa
dcterms.referenceshousing and territorial development Ministry of environment, Resolution 0848/2008, no. 0848. 2008, p. 5.eng
dcterms.referencesP. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresour. Technol., vol. 83, pp. 47–54, 2002.eng
dcterms.referencesW. C. Turkenburg, “Renewable energy technologies,” Ind. Biotechnol., vol. 2, no. 4, pp. 276–295, 2006.eng
dcterms.referencesP. E. Patiño, “Vegetable Residual Biomass : Technologies of Transformation and current status,” Innovaciencia, vol. 2, no. 1, pp. 45–52, 2014.eng
dcterms.referencesP. Thomas, N. Soren, N. P. Rumjit, J. G. James, and M. P. Saravanakumar, “Biomass resources and potential of anaerobic digestion in Indian scenario,” Renew. Sustain. Energy Rev., vol. 77, no. January, pp. 718–730, 2017.eng
dcterms.referencesR. C. Neves et al., “A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production,” Renew. Sustain. Energy Rev., no. November, 2019.eng
dcterms.referencesM. B. Shemfe, S. Gu, and P. Ranganathan, “Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading,” Fuel, vol. 143, pp. 361–372, 2015.eng
dcterms.referencesJ. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, “Biomass gasification for electricity generation: Review of current technology barriers,” Renew. Sustain. Energy Rev., vol. 18, pp. 174–183, 2013.eng
dcterms.referencesP. McKendry, “Energy production from biomass (part 3): Gasification technologies,” Bioresour. Technol., vol. 83, no. 1, pp. 55–63, 2002.eng
dcterms.referencesY. A. Lenis, J. F. Pérez, and A. Melgar, “Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air,” Ind. Crops Prod., vol. 84, pp. 166–175, 2016.eng
dcterms.referencesR. Yin, R. Liu, J. Wu, X. Wu, C. Sun, and C. Wu, “Influence of particle size on performance of a pilot-scale fixed-bed gasification system,” Bioresour. Technol., vol. 119, pp. 15–21, 2012.eng
dcterms.referencesAll Power Labs, “Operation manual,” Power Pallet Operation Manual PP20. pp. 1–66, 2016.eng
dcterms.referencesM. Asadullah, “Barriers of commercial power generation using biomass gasification gas: A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 201–215, 2014.eng
dcterms.referencesJ. D. Martinez, K. Mahkamov, R. V. Andrade, and E. E. Silva Lora, “Syngas production in downdraft biomass gasifiers and its application using internal combustion engines,” Renew. Energy, vol. 38, no. 1, pp. 1–9, 2012.eng
dcterms.referencesD. Baruah and D. C. Baruah, “Modeling of biomass gasification: A review,” Renew. Sustain. Energy Rev., vol. 39, pp. 806–815, 2014.eng
dcterms.referencesA. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renew. Sustain. Energy Rev., vol. 76, no. May 2016, pp. 989–1003, 2017.eng
dcterms.referencesA. Molino, S. Chianese, and D. Musmarra, “Biomass gasification technology: The state of the art overview,” J. Energy Chem., vol. 25, no. 1, pp. 10–25, 2016.eng
dcterms.referencesJ. G. Speight, “Gasifier Types,” in Gasification of Unconventional Feedstocks, 2014, pp. 54–90.eng
dcterms.referencesN. Rakesh and S. Dasappa, “A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies,” Renew. Sustain. Energy Rev., vol. 91, no. April, pp. 1045–1064, 2018.eng
dcterms.referencesA. Zubair, M. Rao, A. Muchtar, S. Anwar, W. Ramli, and W. Daud, “Effects of temperature on the chemical composition of tars produced from the gasification of coconut and palm kernel shells using downdraft fixed-bed reactor,” Fuel, vol. 265, no. September 2019, p. 116910, 2020.eng
dcterms.referencesS. Singh Siwal, Q. Zhang, C. Sun, S. Thakur, V. Kumar Gupta, and V. Kumar Thakur, “Energy production from steam gasification processes and parameters that contemplate in biomass gasifier – A review,” Bioresour. Technol., p. 122481, 2019.eng
dcterms.referencesB. Cabuk, G. Duman, J. Yanik, and H. Olgun, “Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass,” Int. J. Hydrogen Energy, vol. 45, no. 5, pp. 3435–3443, 2019.eng
dcterms.referencesH. L. Zhu et al., “Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor,” Fuel Process. Technol., vol. 190, no. March, pp. 29–37, 2019.eng
dcterms.referencesS. A. Sulaiman, R. Roslan, M. Inayat, and M. Yasin Naz, “Effect of blending ratio and catalyst loading on co-gasification of wood chips and coconut waste,” J. Energy Inst., vol. 91, no. 5, pp. 779–785, 2018.eng
dcterms.referencesJ. Park, Y. Lee, and C. Ryu, “Reduction of primary tar vapor from biomass by hot char particles in fixed bed gasification,” Biomass and Bioenergy, vol. 90, pp. 114–121, 2016.eng
dcterms.referencesF. Guo, X. Jia, S. Liang, N. Zhou, P. Chen, and R. Ruan, “Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification,” Bioresour. Technol., vol. 298, no. October 2019, p. 122263, 2019.eng
dcterms.referencesF. Guo, K. Peng, S. Liang, X. Jia, X. Jiang, and L. Qian, “Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis,” Fuel, vol. 258, no. July, p. 116204, 2019.eng
dcterms.referencesE. Siddik, O. Yucel, and H. Sadikoglu, “Development of a semi-empirical equilibrium model for downdraft gasification systems,” Energy, vol. 130, pp. 86–98, 2017.eng
dcterms.referencesC. P. MaurÃcio Bezerra JdS, Leonardo CN, Amaro Jr. GB, “Neural network based modeling and operational optimization of biomass gasification processes,” in Gasification for practical application, Y. Y, Ed. IntechOpen.eng
dcterms.referencesT. K. Patra and P. N. Sheth, “Biomass gasification models for downdraft gasifier: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 50, pp. 583–593, 2015.eng
dcterms.referencesA. Ahmad, N. Zawawi, F. Kasim, and A. Inayat, “Assessing the gasification performance of biomass : A review on biomass gasification process conditions , optimization and economic evaluation,” Renew. Sustain. Energy Rev., vol. 53, pp. 1333–1347, 2016.eng
dcterms.referencesA. Z. Mendiburu, J. A. Carvalho, R. Zanzi, C. R. Coronado, and J. L. Silveira, “Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models,” Energy, vol. 71, pp. 624–637, 2014.eng
dcterms.referencesA. Aghababaei, M. C. Ncibi, and M. Sillanpää, “Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues,” Bioresour. Technol., vol. 239, pp. 28–36, 2017.eng
dcterms.referencesV. Spínola, E. J. Llorent-Martínez, S. Gouveia-Figueira, and P. C. Castilho, “Ulex europaeus: From noxious weed to source of valuable isoflavones and flavanones,” Ind. Crops Prod., vol. 90, pp. 9–27, 2016.eng
dcterms.referencesJ. C. Costa, J. V. Oliveira, and M. M. Alves, “Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp.,” Renew. Energy, vol. 96, pp. 1071–1077, 2016.eng
dcterms.referencesM. Mubashar, A. Munir, M. Ahmad, and A. Tanveer, “Downdraft gasifier structure and process improvement for high quality and quantity producer gas production,” J. Energy Inst., pp. 1–11, 2017.eng
dcterms.referencesC. E. Oliveros Tascón, J. R. Sanz Uribe, and N. Rodríguez Valencia, “Evaluación de un gasificador de flujo descendente utilizando astillas de madera de café,” Cenicafé Rev. del Cent. Nac. Investig. café, vol. 68, no. 2, 2017.spa
dcterms.referencesF. Pinto, C. Franco, R. N. André, M. Miranda, I. Gulyurtlu, and I. Cabrita, “Co-gasification study of biomass mixed with plastic wastes,” Fuel, vol. 81, no. 3, pp. 291–297, 2002.eng
dcterms.referencesV. R. Patel, D. Patel, N. S. Varia, and R. N. Patel, “Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier,” Energy, vol. 119, pp. 834–844, 2017.eng
dcterms.referencesA. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture,” Sustain. Energy Technol. Assessments, vol. 34, no. October 2018, pp. 27–34, 2019.eng
dcterms.referencesI. S. Antonopoulos, A. Karagiannidis, A. Gkouletsos, and G. Perkoulidis, “Modelling of a downdraft gasifier fed by agricultural residues,” Waste Manag., vol. 32, no. 4, pp. 710–718, 2012.eng
dcterms.referencesJ. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers. Manag., vol. 153, no. August, pp. 641–648, 2017.eng
dcterms.referencesR. Tavares, E. Monteiro, F. Tabet, and A. Rouboa, “Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus,” Renew. Energy, vol. 146, pp. 1309–1314, 2020.eng
dcterms.referencesA. Martínez González, R. Lesme Jaén, and E. E. Silva Lora, “Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis,” Renew. Energy, vol. 147, pp. 1151–1163, 2020.eng
dcterms.referencesL. Ding et al., “Development of an ultra-small biomass gasification and power generation system: Part 2. Gasification characteristics of carbonized pellets/briquettes in a pilot-scale updraft fixed bed gasifier,” Fuel, vol. 220, no. October 2017, pp. 210–219, 2018.eng
dcterms.referencesK. Slopiecka, P. Bartocci, and F. Fantozzi, “Thermogravimetric analysis and kinetic study of poplar wood pyrolysis,” Appl. Energy, vol. 97, pp. 491–497, 2012.eng
dcterms.referencesASTM, “Standard Test Method for Moisture Analysis of Particulate Wood Fuels,”2019.eng
dcterms.referencesW. David and H. López, “Development of an intelligent control system based on perceptron multilayer neural networks for application in a fixed bed gasifier,” 2019. [Online]. Available: http://bdigital.unal.edu.co/74867/1/Trabajo de maestría wilson hernandez.pdf.eng
dcterms.referencesW. H. Chen, C. J. Chen, C. I. Hung, C. H. Shen, and H. W. Hsu, “A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor,” Appl. Energy, vol. 112, pp. 421–430, 2013.eng
dcterms.referencesS. Sarker, F. Bimbela, J. L. Sánchez, and H. K. Nielsen, “Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets,” Energy Convers. Manag., vol. 91, pp. 451–458, 2015.eng
dcterms.referencesJ. Kalina, “Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant,” Energy, vol. 141, pp. 2499–2507, 2017.eng
dcterms.referencesL. V. Martínez Caballero, “Production of electrical energy from the gasification of white corn rachis (Zea mayz) produced at the Bogotá Supply Center - Corabastos,” 2017.eng
dcterms.referencesR. K. Mishra and K. Mohanty, “Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis,” Bioresour. Technol., vol. 251, pp. 63–74, 2018.eng
dcterms.referencesE. Dahlquist, Technologies for Converting Biomass to useful Energy: Combustion, gasification, pyrolysis, torrefaction and fermentation. 2013.eng
dcterms.referencesZ. Chen et al., “Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis,” Bioresour. Technol., vol. 192, pp. 441–450, 2015.eng
dcterms.referencesH. E. Díez and J. F. Pérez, “Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions,” Int. J. Chem. Eng., vol. 2017, 2017.eng
dcterms.referencesA. O. Aboyade et al., “Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere,” Thermochim. Acta, vol. 517, no. 1–2, pp. 81–89, 2011.eng
dcterms.referencesS. Ceylan and Y. Topçu, “Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis,” Bioresour. Technol., vol. 156, pp. 182–188, 2014.eng
dcterms.referencesS. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, “Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres,” Bioresour. Technol., vol. 100, no. 3, pp. 1413–1418, 2009.eng
dcterms.referencesC. Gai, Y. Dong, and T. Zhang, “The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions,” Bioresour. Technol., vol. 127, pp. 298–305, 2013.eng
dcterms.referencesH. Pesenti, M. Torres, P. Oliveira, W. Gacitua, and M. Leoni, “Exploring Ulex europaeus to produce nontoxic binderless fibreboard,” BioResources, vol. 12, no. 2, pp. 2660–2672, 2017.eng
dcterms.referencesR. Celis, M. Torres, P. Valenzuela, R. Ríos, W. Gacitúa, and H. Pesenti, “Characterizing cellulosic fibers from Ulex europaeus,” BioResources, vol. 9, no. 4, pp. 6968–6980, 2014.eng
dcterms.referencesI. Rodilla, M. L. Contreras, and A. Bahillo, “Thermogravimetric and mass spectrometric (TG-MS) analysis of sub-bituminous coal-energy crops blends in N2, air and CO2/O2 atmospheres,” Fuel, vol. 215, no. May 2017, pp. 506–514, 2018.eng
dcterms.referencesG. Özsin and A. E. Pütün, “TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process,” Energy Convers. Manag., vol. 182, no. September 2018, pp. 143–153, 2019.eng
dcterms.referencesT. Onsree, N. Tippayawong, A. Zheng, and H. Li, “Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer,” Case Stud. Therm. Eng., vol. 12, no. July, pp. 546–556, 2018.eng
dcterms.referencesD. Mallick, M. Kumar, P. Mahanta, and V. S. Moholkar, “Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis,” Bioresour. Technol., vol. 261, no. April, pp. 294–305, 2018.eng
dcterms.referencesSecretaria Distrital de Ambiente, “Avance en el Número de Hectáreas del Suelo de Protección Recuperadas con Procesos de Restauración, Rehabilitación y Recuperación Participativa,” 2015.spa
dcterms.referencesM. L. Valderrama Rios, A. M. González, E. E. S. Lora, and O. A. Almazán del Olmo, “Reduction of tar generated during biomass gasification: A review,” Biomass and Bioenergy, vol. 108, no. July 2017, pp. 345–370, 2018.eng
dcterms.referencesI. Narváez, A. Orío, M. P. Aznar, and J. Corella, “Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas,” Ind. Eng. Chem. Res., vol. 35, no. 7, pp. 2110–2120, 1996.eng
dcterms.referencesD. S. Upadhyay, A. K. Sakhiya, K. Panchal, A. H. Patel, and R. N. Patel, “Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach,” Energy, vol. 168, pp. 833–846, 2019.eng
dcterms.referencesA. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture,” Sustain. Energy Technol. Assessments, vol. 34, no. April, pp. 27–34, 2019.eng
dcterms.referencesP. C. Kuo, W. Wu, and W. H. Chen, “Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis,” Fuel, vol. 117, no. PARTB, pp. 1231–1241, 2014.eng
dcterms.referencesC. Oliveros, J. R. Sanz, and N. Rodriguez, “Evaluación de un gasificador de flujo descendente utilizando astillas de madera de café,” Rev. del Cent. Nac. Investig. Café, vol. 68, no. 2, pp. 61–75, 2017.eng
dcterms.referencesP. N. Sheth and B. V. Babu, “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier,” Bioresour. Technol., vol. 100, no. 12, pp. 3127–3133, 2009.eng
dcterms.referencesT. K. Patra, K. R. Nimisha, and P. N. Sheth, “A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics,” Energy, 2016.eng
dcterms.referencesS. Sarker and H. K. Nielsen, “Assessing the gasification potential of five woodchips species by employing a lab-scale fixed-bed downdraft reactor,” Energy Convers. Manag., 2015.eng
dcterms.referencesV. R. Patel, D. S. Upadhyay, and R. N. Patel, “Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier,” Energy, vol. 78, pp. 323–332, 2014.eng
dcterms.referencesV. C. Jeya Singh and S. J. Sekhar, “Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock,” Appl. Therm. Eng., vol. 97, pp. 22–27, 2016.eng
dcterms.referencesW. Lan, G. Chen, X. Zhu, X. Wang, C. Liu, and B. Xu, “Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS,” Sci. Total Environ., vol. 628–629, pp. 1278–1286, 2018.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International