Mostrar el registro sencillo del ítem

dc.contributor.advisorCobo Ángel, Martha Isabel
dc.contributor.advisorValero Valdivieso, Manuel Fernando
dc.contributor.advisorMoltó Berenguer, Julia
dc.contributor.authorQuiroga Colmenares, Eliana Marcela
dc.date.accessioned2020-08-08T12:44:16Z
dc.date.available2020-08-08T12:44:16Z
dc.date.issued2020-06-03
dc.identifier.urihttp://hdl.handle.net/10818/42735
dc.description83 páginases_CO
dc.description.abstractEl cambio climático es una de las problemáticas con más relevancia actualmente, debido a los efectos negativos generados sobre la salud humana y el ambiente, causados principalmente por el uso de los combustibles fósiles y las emisiones de gases de efecto invernadero (GEI). En consecuencia, se han impulsado diferentes iniciativas, entre ellas, la pasada conferencia de las Naciones Unidas sobre el cambio climático (COP21, Paris – 2015) [1], que llevó al planteamiento de los Objetivos de Desarrollo Sostenible (ODS), puestos en marcha desde 2016 [2]. Uno de los campos de acción frente a los ODS es la búsqueda de fuentes alternativas de energía y modelos energéticos sostenibles [3]. Asimismo, se instó a los gobiernos a promover el desarrollo de tecnologías de energías limpias a gran escala que provengan de recursos renovables [3]. Por esta razón, Colombia, uno de los 186 países que se comprometió a reducir sus emisiones contaminantes para 2030 [4], ha impulsado políticas que apoyan la producción y uso de biocombustibles. La mayor parte de estos biocombustibles proviene de cultivos como la caña de azúcar y del aceite de palma, generando innumerables debates alrededor de los impactos económicos y sociales que tienen este tipo de políticas. Por esta razón, la biomasa lignocelulósica, la cual comprende residuos agrícolas y agroindustriales [5], es considerada un recurso renovable por su bajo costo, es neutro en carbono [6] y tiene bajas emisiones de GEI [7]. La producción de biocombustibles como el hidrógeno (H2) a partir de biomasa lignocelulósica por diferentes procesos, es considerada uno de los modelos de energía no convencionales [8–10].es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectHidrógenoes_CO
dc.subjectObtención y producción de gases_CO
dc.subjectEnergía biomásicaes_CO
dc.titleProducción de hidrógeno a partir de gasificación y trireformado de residuos lignocelulósicoses_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local277578
dc.identifier.localTE10705
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster En Diseño y Gestión de Procesoses_CO
dcterms.referencesO.D.L.N. Unidas, Agenda 2030 para el Desarrollo Sostenible, 16301 (2015) 1–40. http://www.un.org/es/comun/docs/?symbol=A/69/L.85.spa
dcterms.referencesPrograma de las Naciones Unidas para el Desarrollo | UNDP, Objetivos de Desarrollo Sostenible, (n.d.). http://www.undp.org/content/undp/es/home/sustainable-developmentgoals/background.html (accessed February 26, 2018).spa
dcterms.referencesO.D.L.N. Unidas, Combatir el cambio climático - Desarrollo Sostenible, (n.d.). http://www.un.org/sustainabledevelopment/es/combatir-el-cambio-climatico/ (accessed April 11, 2017).spa
dcterms.referencesC. García, X. Barrera, R. Gómez, R. Suárez, El ABC de los compromisos de Colombia para la Cop 21, Colombia, 2015. file:///C:/Users/Personal/Documents/2017/Convocatoria interna/ABC_de_los_Compromisos_de_Colombia_para_la_COP21_VF_definitiva.pdf.spa
dcterms.referencesC.A. Cardona Alzate, O.J. Sánchez Toro, Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass, Energy. 31 (2006) 2111–2123. doi:10.1016/j.energy.2005.10.020.spa
dcterms.referencesZ. Xiang, J. Liang, H.M. Morgan, Y. Liu, H. Mao, Q. Bu, H. Marion, M. Jr, Y. Liu, Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis, Bioresour. Technol. 247 (2018) 804–811. doi:10.1016/j.biortech.2017.09.178.eng
dcterms.referencesA.C.M. Loy, D.K.W. Gan, S. Yusup, B.L.F. Chin, M.K. Lam, M. Shahbaz, P. Unrean, M.N. Acda, E. Rianawati, Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst, Bioresour. Technol. 261 (2018) 213–222. doi:10.1016/j.biortech.2018.04.020.eng
dcterms.referencesE. Shayan, V. Zare, I. Mirzaee, Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents, Energy Convers. Manag. 159 (2018) 30– 41. doi:10.1016/j.enconman.2017.12.096eng
dcterms.referencesS. Fremaux, S.-M. Beheshti, H. Ghassemi, R. Shahsavan-Markadeh, An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed, Energy Convers. Manag. 91 (2015) 427–432. doi:10.1016/j.enconman.2014.12.048eng
dcterms.referencesG. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017) 9408–9421. doi:10.1021/acs.energyfuels.7b00665.eng
dcterms.referencesH. Balat, E. Kirtay, Hydrogen from biomass - Present scenario and future prospects, Int. J. Hydrogen Energy. 35 (2010) 7416–7426. doi:10.1016/j.ijhydene.2010.04.137.eng
dcterms.referencesS. Mekhilef, R. Saidur, a. Safari, Comparative study of different fuel cell technologies, Renew. Sustain. Energy Rev. 16 (2012) 981–989. doi:10.1016/j.rser.2011.09.020.eng
dcterms.referencesU. Lucia, Overview on fuel cells, Renew. Sustain. Energy Rev. 30 (2014) 164–169. doi:10.1016/j.rser.2013.09.025.eng
dcterms.referencesM. Rokni, Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine, Energy. 76 (2014) 19–31. doi:10.1016/j.energy.2014.01.106.eng
dcterms.referencesPortafolio, “Colombia tiene potencial para producir energía con biomasa” | Infraestructura | Economía | Portafolio, (2017). https://www.portafolio.co/economia/infraestructura/colombiatiene-potencial-para-producir-energia-con-biomasa-505377 (accessed February 18, 2019).eng
dcterms.referencesH. Escalante, J. Orduz, H. Zapata, M.C. Cardona, M. Duarte, Atlas del potencial energético de la biomasa residual en Colombia, Universidad Industrial de Santander, Bucaramanga, 2011. http://bdigital.upme.gov.co/handle/001/1058 (accessed February 19, 2019).spa
dcterms.referencesR. García-torres, E. Rios-leal, Á. Martínez-toledo, F. Ramos-morales, S. Cruz-Sánchez, M. del C. Cuevas-Díaz, Uso de cachaza y bagazo de caña de azúcar en la remoción de hidrocarburos en el suelo contaminado, Rev. Int. Contam. Ambie. 27 (2011) 31–39. http://www.scielo.org.mx/pdf/rica/v27n1/v27n1a3.pdf (accessed April 18, 2017).spa
dcterms.referencesProcaña, Asociación Colombiana de productores y proveedores de caña de azucar, Sub Prod. y Deriv. La Caña Azúcar. (n.d.). http://www.procana.org/new/quienes-somos/subproductosy-derivados-de-la-caña.html (accessed March 13, 2017).spa
dcterms.referencesFAO, Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina, (2004). http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf (accessed April 30, 2017).spa
dcterms.referencesM. a. Otero-Rambla, R. García, M.C. Pérez, J. a Martínez, M.C. Vasallo, G. Saura, D. Bello, Producción de bioetanol a partir de mezclas de jugos-melazas de caña de azúcar., ICIDCA. Sobre Los Deriv. La Caña Azúcar. 43 (2009) 17–22.spa
dcterms.referencesH. Hiblot, I. Ziegler-Devin, R. Fournet, P.A. Glaude, Steam reforming of methane in a synthesis gas from biomass gasification, Int. J. Hydrogen Energy. 41 (2016) 18329–18338. doi:10.1016/j.ijhydene.2016.07.226.eng
dcterms.referencesX. Sun, H.K. Atiyeh, R.L. Huhnke, R.S. Tanner, Syngas fermentation process development for production of biofuels and chemicals: A review, Bioresour. Technol. Reports. 7 (2019) 100279. doi:10.1016/j.biteb.2019.100279.eng
dcterms.referencesJ. Xuan, M.K.H. Leung, D.Y.C. Leung, M. Ni, A review of biomass-derived fuel processors for fuel cell systems, Renew. Sustain. Energy Rev. 13 (2009) 1301–1313. doi:10.1016/J.RSER.2008.09.027.eng
dcterms.referencesV. Balasundram, N. Ibrahim, R.M. Kasmani, M.K.A. Hamid, R. Isha, H. Hasbullah, R.R. Ali, Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil, J. Clean. Prod. 167 (2017) 218–228. doi:10.1016/j.jclepro.2017.08.173.eng
dcterms.referencesM.U. Garba, A. Inalegwu, U. Musa, A.A. Aboje, A.S. Kovo, D.O. Adeniyi, Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with lowand high-density polyethylenes, Biomass Convers. Biorefinery. 8 (2018) 143–150. doi:10.1007/s13399-017-0261-y.eng
dcterms.referencesY. Shen, K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass 76 gasification or pyrolysis—A review, Renew. Sustain. Energy Rev. 21 (2013) 371–392. doi:10.1016/j.rser.2012.12.062.eng
dcterms.referencesR.K. Singha, A. Shukla, A. Yadav, S. Adak, Z. Iqbal, N. Siddiqui, R. Bal, Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni-ZrO2 catalyst, Appl. Energy. 178 (2016) 110–125. doi:10.1016/j.apenergy.2016.06.043.eng
dcterms.referencesA. Vita, C. Italiano, M.A. Ashraf, L. Pino, S. Specchia, Syngas production by steam and oxysteam reforming of biogas on monolith-supported CeO2-based catalysts, Int. J. Hydrogen Energy. 43 (2018) 11731–11744. doi:10.1016/J.IJHYDENE.2017.11.140.eng
dcterms.referencesA. Vita, L. Pino, F. Cipitì, M. Laganà, V. Recupero, Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content, Fuel Process. Technol. 127 (2014) 47–58. doi:10.1016/j.fuproc.2014.06.014.eng
dcterms.referencesS.H. Lee, W. Cho, W.S. Ju, B.H. Cho, Y.C. Lee, Y.S. Baek, Tri-reforming of CH4 using CO2 for production of synthesis gas to dimethyl ether, Catal. Today. 87 (2003) 133–137. doi:10.1016/j.cattod.2003.10.005.eng
dcterms.referencesU. Izquierdo, V.L. Barrio, K. Bizkarra, a. M. Gutierrez, J.R. Arraibi, L. Gartzia, J. Bañuelos, I. Lopez-Arbeloa, J.F. Cambra, Ni and RhNi catalysts supported on Zeolites L for hydrogen and syngas production by biogeng
dcterms.referencesU. Izquierdo, I. García-García, V.L. Barrio, J.F. Cambra, Hydrogen Production with a Microchannel Reactor by Tri-Reforming; Reaction System Comparison and Catalyst Development, Top. Catal. 0 (2017) 0. doi:10.1007/s11244-017-0798-9.eng
dcterms.referencesH. Zou, S. Chen, J. Huang, Z. Zhao, Effect of additives on the properties of nickel molybdenum carbides for the tri-reforming of methane, Int. J. Hydrogen Energy. 41 (2016) 16842–16850. doi:10.1016/j.ijhydene.2016.07.108.eng
dcterms.referencesU. Izquierdo, V.L. Barrio, J. Requies, J.F. Cambra, M.B. Güemez, P.L. Arias, Tri-reforming: A new biogas process for synthesis gas and hydrogen production, Int. J. Hydrogen Energy. 38 (2013) 7623–7631. doi:10.1016/j.ijhydene.2012.09.107.eng
dcterms.referencesR.K. Singha, S. Das, M. Pandey, S. Kumar, R. Bal, A. Bordoloi, Ni nanocluster on modified CeO2-ZrO2 nanoporous composite for tri-reforming of methane, Catal. Sci. Technol. 6 (2016) 7122–7136. doi:10.1039/C5CY01323B.eng
dcterms.referencesB. Cifuentes, M. Hernández, S. Monsalve, M. Cobo, Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance , Appl. Catal. A Gen. . 523 (2016) 283–293. doi:http://dx.doi.org/10.1016/j.apcata.2016.06.014.eng
dcterms.referencesA. Arregi, M. Amutio, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures, Energy Convers. Manag. 136 (2017) 192–201. doi:10.1016/j.enconman.2017.01.008.eng
dcterms.referencesX. Xu, E. Jiang, M. Wang, Y. Xu, Dry and steam reforming of biomass pyrolysis gas for rich hydrogen gas, Biomass and Bioenergy. 78 (2015) 6–16. doi:10.1016/j.biombioe.2015.03.015.eng
dcterms.referencesR. Yuan, S. Yu, Y. Shen, Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues, Waste Manag. 87 (2019) 86–96. doi:10.1016/j.wasman.2019.02.009.eng
dcterms.referencesM.A. Garrido, R. Font, J.A. Conesa, Kinetic study and thermal decomposition behavior of viscoelastic memory foam, Energy Convers. Manag. 119 (2016) 327–337. doi:10.1016/j.enconman.2016.04.048.eng
dcterms.referencesM. Safar, B.J. Lin, W.H. Chen, D. Langauer, J.S. Chang, H. Raclavska, A. Pétrissans, P. Rousset, M. Pétrissans, Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction, Appl. Energy. 235 (2019) 346–355. doi:10.1016/j.apenergy.2018.10.065.eng
dcterms.referencesJ.A. Conesa, A. Soler, Decomposition kinetics of materials combining biomass and electronic waste, J. Therm. Anal. Calorim. 128 (2017) 225–233. doi:10.1007/s10973-016-5900-1.eng
dcterms.referencesJ.A. Quintero, C.A. Cardona, E. Felix, J. Moncada, Ó.J. Sánchez, L.F. Gutiérrez, Technoeconomic analysis of bioethanol production in Africa: Tanzania case, Energy. 48 (2012) 442– 454. doi:10.1016/j.energy.2012.10.018.eng
dcterms.referencesA.J. Gilbert, M. Huerta, Colombia Sugar Annual, USDA Foreign Agric. Serv. (2016) 1–6. http://gain.fas.usda.gov/Recent GAIN Publications/Sugar Annual_Bogota_Colombia_4-15- 2016.pdf.eng
dcterms.referencesSuperintendencia de Industria y Comercio, Estudios de Mercado Cadena productiva de la panela en Colombia: diagnóstico de libre competencia (2010-2012), (n.d.). http://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Econo micos/Panela2012.pdf (accessed May 15, 2017).spa
dcterms.referencesR.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Thermo-chemical routes for hydrogen rich gas from biomass: A review, Renew. Sustain. Energy Rev. 12 (2008) 1909–1927. doi:10.1016/j.rser.2007.03.005.eng
dcterms.referencesS. Luo, B. Xiao, Z. Hu, S. Liu, X. Guo, M. He, Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of temperature and??steam on gasification performance, Int. J. Hydrogen Energy. 34 (2009) 2191–2194. doi:10.1016/j.ijhydene.2008.12.075.eng
dcterms.referencesB. Choi, D. Panthi, M. Nakoji, K. Tsutsumi, A. Tsutsumi, Design and performance evaluation of a novel 1 kW-class hydrogen production/power generation system, Appl. Energy. 194 (2017) 296–303. doi:10.1016/j.apenergy.2016.11.078.eng
dcterms.referencesS.K. Sansaniwal, K. Pal, M. a Rosen, S.K. Tyagi, Recent advances in the development of biomass gasification technology: A comprehensive review, 72 (2017) 363–384. doi:10.1016/j.rser.2017.01.038.eng
dcterms.referencesN. Ramzan, A. Ashraf, S. Naveed, A. Malik, Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste, Biomass and Bioenergy. 35 (2011) 3962–3969. doi:10.1016/j.biombioe.2011.06.005.eng
dcterms.referencesM. La Villetta, M. Costa, N. Massarotti, Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method, Renew. Sustain. Energy Rev. 74 (2017) 71–88. doi:10.1016/j.rser.2017.02.027.eng
dcterms.referencesX. Peng, F. Hu, F.L.-Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon., J. Colloid Interface Sci. 460 (2015) 349–60. doi:10.1016/j.jcis.2015.08.050.eng
dcterms.referencesA. Demirbaş, Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst on hydrogen yield, Energy Convers. Manag. 43 (2002) 897–909. doi:10.1016/S0196- 8904(01)00080-2.eng
dcterms.referencesG. Van Rossum, S.R. a Kersten, W.P.M. Van Swaaij, Catalytic and noncatalytic gasification of pyrolysis oil, Ind. Eng. Chem. Res. 46 (2007) 3959–3967. doi:10.1021/ie061337y.eng
dcterms.referencesC. Lin, W. Weng, Effects of different operating parameters on the syngas composition in a two-stage gasi fi cation process, Renew. Energy. 109 (2017) 135–143. doi:10.1016/j.renene.2017.03.019eng
dcterms.referencesE. Siddik Aydin, O. Yucel, H. Sadikoglu, Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier, Int. J. Hydrogen Energy. 44 (2019) 17389–17396. doi:10.1016/J.IJHYDENE.2019.02.175.eng
dcterms.referencesG. Chen, X. Guo, Z. Cheng, B. Yan, Z. Dan, W. Ma, Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier, Waste Manag. 69 (2017) 162–169. doi:10.1016/j.wasman.2017.08.001.eng
dcterms.referencesY. Ding, O.A. Ezekoye, J. Zhang, C. Wang, S. Lu, The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass, Fuel. 232 (2018) 147– 153. doi:10.1016/j.fuel.2018.05.140.eng
dcterms.referencesA.C. Minh Loy, S. Yusup, B.L. Fui Chin, D.K. Wai Gan, M. Shahbaz, M.N. Acda, P. Unrean, E. Rianawati, Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis, J. Clean. Prod. 197 (2018) 1231– 1243. doi:10.1016/j.jclepro.2018.06.245.eng
dcterms.referencesR.K. Mishra, K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol. 251 (2018) 63–74. doi:10.1016/j.biortech.2017.12.029.eng
dcterms.referencesD.K.W. Gan, A.C.M. Loy, B.L.F. Chin, S. Yusup, P. Unrean, E. Rianawati, M.N. Acda, Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour. Technol. 265 (2018) 180–190. doi:10.1016/j.biortech.2018.06.003.eng
dcterms.referencesJ. Karla, T. Pröll, Steam gasification of biomass in dual fluidized bed gasifiers: A review, Renew. Sustain. Energy Rev. 98 (2018) 64–78. doi:10.1016/J.RSER.2018.09.010.eng
dcterms.referencesR. Basanta, M.A. García Delgado, J.E. Cervantes Martínez, H. Mata Vázquez, G. Bustos Vázquez, Sostenibilidad del reciclaje de residuos de la agroindustria azucarera: una revisión, Cienc. y Tecnol. Aliment. 5 (2007) 293–305. http://www.redalyc.org/articulo.oa?id=72440508.eng
dcterms.referencesP.B. Gangavati, M.J. Safi, a. Singh, B. Prasad, I.M. Mishra, Pyrolysis and thermal oxidation kinetics of sugar mill press mud, Thermochim. Acta. 428 (2005) 63–70. doi:10.1016/j.tca.2004.09.026.eng
dcterms.referencesK.B. Ansari, V.G. Gaikar, Pressmud as an alternate resource for hydrocarbons and chemicals by thermal pyrolysis, Ind. Eng. Chem. Res. 53 (2014) 1878–1889. doi:10.1021/ie401961y.eng
dcterms.referencesA. Kumar, K. Eskridge, D.D. Jones, M.A. Hanna, Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature, Bioresour. Technol. 100 (2009) 2062–2068. doi:10.1016/j.biortech.2008.10.011.eng
dcterms.referencesJ. Gil, J. Corella, M.P. Aznar, M. a. Caballero, Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution, Biomass and Bioenergy. 17 (1999) 389–403. doi:10.1016/S0961-9534(99)00055-0.eng
dcterms.referencesE. Daouk, L. Van de Steene, F. Paviet, E. Martin, J. Valette, S. Salvador, Oxidative pyrolysis of wood chips and of wood pellets in a downdraft continuous fixed bed reactor, Fuel. 196 (2017) 408–418. doi:10.1016/j.fuel.2017.02.012.eng
dcterms.referencesM.S. Hussein, K.G. Burra, R.S. Amano, A.K. Gupta, Temperature and gasifying media effects on chicken manure pyrolysis and gasification, Fuel. 202 (2017) 36–45. doi:10.1016/j.fuel.2017.04.017.eng
dcterms.referencesK. Wiranarongkorn, S. Authayanun, S. Assabumrungrat, A. Arpornwichanop, Analysis of thermally coupling steam and tri-reforming processes for the production of hydrogen from bio-oil, Int. J. Hydrogen Energy. 41 (2016) 18370–18379. doi:10.1016/j.ijhydene.2016.08.148.eng
dcterms.referencesJ. Díez-Ramírez, F. Dorado, A. Martínez-Valiente, J.M. García-Vargas, P. Sánchez, Kinetic, energetic and exergetic approach to the methane tri-reforming process, Int. J. Hydrogen Energy. 41 (2016) 19339–19348. doi:10.1016/j.ijhydene.2016.04.229.eng
dcterms.referencesK. Świrk, T. Grzybek, M. Motak, Tri-reforming as a process of CO 2 utilization and a novel concept of energy storage in chemical products, 2038 (2017) 1–10.eng
dcterms.referencesT. Mondal, K.K. Pant, A.K. Dalai, Oxidative and non-oxidative steam reforming of crude bioethanol for hydrogen production over Rh promoted Ni/CeO 2 -ZrO 2 catalyst, "Applied Catal. A, Gen. 499 (2015) 19–31. doi:10.1016/j.apcata.2015.04.004.eng
dcterms.referencesC. Song, W. Pan, Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios, Catal. Today. 98 (2004) 463–484. doi:10.1016/j.cattod.2004.09.054.eng
dcterms.referencesC. Crisafulli, S. Scirè, S. Minicò, L. Solarino, Ni – Ru bimetallic catalysts for the CO 2 reforming of methane, Appl. Catal. 225 (2002) 1–9. doi:10.1016/S0926-860X(01)00585-3.eng
dcterms.referencesT.-J. Huang, K.-C. Lee, H.-W. Yang, W.-P. Dow, Effect of chromium addition on supported copper catalysts for carbon monoxide oxidation, (n.d.). http://ac.elscdn.com/S0926860X98001938/1-s2.0-S0926860X98001938-main.pdf?_tid=e321f3d2-21de11e7-bd3d-00000aacb35e&acdnat=1492262863_e7d3d4701bb7241d982dc3409af472c7 (accessed April 15, 2017).eng
dcterms.referencesL. Sun, Y. Tan, Q. Zhang, H. Xie, Y. Han, Tri-reforming of coal bed methane to syngas over the Ni-Mg-ZrO2 catalyst, J. Fuel Chem. Technol. 40 (2012) 831–837. doi:http://dx.doi.org/10.1016/S1872-5813(12)60032-2.eng
dcterms.referencesJ.S. Kang, D.H. Kim, S.D. Lee, S.I. Hong, D.J. Moon, Nickel-based tri-reforming catalyst for the production of synthesis gas, Appl. Catal. A Gen. 332 (2007) 153–158. doi:10.1016/j.apcata.2007.08.017.eng
dcterms.referencesD. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet, Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming of the Pyrolysis Oil or Its Fractions, Abstr. Pap. Am. Chem. Soc. 36 (1997) 1507–1518. doi:10.1021/ie960396geng
dcterms.referencesB. Cifuentes, M.F. Valero, J. a. J. Conesa, M. Cobo, Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports, Catalysts. 5 (2015) 1872–1896. doi:10.3390/catal5041872.eng
dcterms.referencesR. García, C. Pizarro, A.G. Lavín, J.L. Bueno, Biomass proximate analysis using thermogravimetry, Bioresour. Technol. 139 (2013) 1–4. doi:10.1016/j.biortech.2013.03.197.eng
dcterms.referencesC.N. Arenas, M.V. Navarro, J.D. Martínez, Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model, Bioresour. Technol. 288 (2019) 121485. doi:10.1016/j.biortech.2019.121485.eng
dcterms.referencesS. Naik, V. V. Goud, P.K. Rout, K. Jacobson, A.K. Dalai, Characterization of Canadian biomass for alternative renewable biofuel, Renew. Energy. 35 (2010) 1624–1631. doi:10.1016/j.renene.2009.08.033.eng
dcterms.referencesM. Gogoi, K. Konwar, N. Bhuyan, R.C. Borah, A.C. Kalita, H.P. Nath, N. Saikia, Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry, Bioresour. Technol. Reports. 4 (2018) 40–49. doi:10.1016/j.biteb.2018.08.016.eng
dcterms.referencesD. Parra, L. Valverde, F.J. Pino, M.K. Patel, A review on the role , cost and value of hydrogen energy systems for deep decarbonisation, Renew. Sustain. Energy Rev. 101 (2019) 279–294. doi:10.1016/j.rser.2018.11.010.eng
dcterms.referencesMinisterio de Minas y Energía de Colombia, El carbón Colombiano. Fuente de energía para el mundo, 2016. http://www.upme.gov.co/docs/cadena_carbon.pdf (accessed May 20, 2018).spa
dcterms.referencesK. Wang, J. Zhang, B.H. Shanks, R.C. Brown, The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation, Appl. Energy. 148 (2015) 115–120. doi:10.1016/j.apenergy.2015.03.034.eng
dcterms.referencesH. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel. 86 (2007) 1781–1788. doi:10.1016/j.fuel.2006.12.013.eng
dcterms.referencesR.B. Carpio, Y. Zhang, C.T. Kuo, W.T. Chen, L.C. Schideman, R.L. de Leon, L. Charles, R.L. De Leon, Characterization and thermal decomposition of demineralized wastewater algae biomass, Algal Res. 38 (2019) 101399. doi:10.1016/j.algal.2018.101399.eng
dcterms.referencesM. Prestipino, V. Chiodo, S. Maisano, G. Zafarana, F. Urbani, A. Galvagno, Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities, Int. J. Hydrogen Energy. 42 (2017) 26816–26827. doi:10.1016/j.ijhydene.2017.05.173.eng
dcterms.referencesN. Gupta, S. Tripathi, C. Balomajumder, Characterization of pressmud: A sugar industry waste, Fuel. 90 (2011) 389–394. doi:10.1016/j.fuel.2010.08.021.eng
dcterms.referencesY.Y. Loy, X.L. Lee, G.P. Rangaiah, Optimization and Economic Evaluation of Bioethanol Recovery and Purification Processes involving Extractive Distillation and Pressure Swing Adsorption, Comput. Aided Chem. Eng. 37 (2015) 413–418. doi:10.1016/B978-0-444-63578- 5.50064-5.eng
dcterms.referencesY. Long, L. Ruan, X. Lv, Y. Lv, J. Su, Y. Wen, TG-FTIR analysis of pyrolusite reduction by major biomass components, Chinese J. Chem. Eng. 23 (2015) 1691–1697. doi:10.1016/j.cjche.2015.08.028.eng
dcterms.referencesD. Chen, Y. Wang, Y. Liu, K. Cen, X. Cao, Z. Ma, Y. Li, Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS, Fuel. 252 (2019) 1–9. doi:10.1016/j.fuel.2019.04.086.eng
dcterms.referencesX. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li, Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS, J. Anal. Appl. Pyrolysis. 102 (2013) 16–23. doi:10.1016/J.JAAP.2013.04.009.eng
dcterms.referencesM.A. Mehmood, M.S. Ahmad, Q. Liu, C.G. Liu, M.H. Tahir, A.A. Aloqbi, N.I. Tarbiah, H.M. Alsufiani, M. Gull, Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study, Energy Convers. Manag. 194 (2019) 37–45. doi:10.1016/j.enconman.2019.04.076.eng
dcterms.referencesS. Ceylan, J.L. Goldfarb, Green tide to green fuels: TG-FTIR analysis and kinetic study of Ulva prolifera pyrolysis, Energy Convers. Manag. 101 (2015) 263–270. doi:10.1016/j.enconman.2015.05.029.eng
dcterms.referencesH. Wu, Y. Zhao, Y. Long, Y. Zhu, H. Wang, W. Lu, Evaluation of the biological stability of waste during landfill stabilization by thermogravimetric analysis and Fourier transform infrared spectroscopy, Bioresour. Technol. 102 (2011) 9403–9408. doi:10.1016/j.biortech.2011.07.029.eng
dcterms.referencesX. Zhang, H. Deng, X. Hou, R. Qiu, Z. Chen, Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions, Renew. Energy. 142 (2019) 284–294. doi:10.1016/j.renene.2019.04.115.eng
dcterms.referencesZ. Sebestyén, E. Barta-Rajnai, J. Bozi, M. Blazsó, E. Jakab, N. Miskolczi, Z. Czégény, Thermo-catalytic Pyrolysis of biomass and plastic mixtures using HZSM-5, Appl. Energy. 207 (2017) 114–122. doi:10.1016/j.egypro.2017.03.381.eng
dcterms.referencesC. Wang, L. Li, Z. Zeng, X. Xu, X. Ma, R. Chen, C. Su, Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model, Bioresour. Technol. 281 (2019) 412–420. doi:10.1016/j.biortech.2019.02.118.eng
dcterms.referencesM.J.B. Fong, A.C.M. Loy, B.L.F. Chin, M.K. Lam, S. Yusup, Z.A. Jawad, Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis, Bioresour. Technol. 289 (2019) 121689. doi:10.1016/j.biortech.2019.121689.eng
dcterms.referencesC.A. García, Á. Peña, R. Betancourt, C.A. Cardona, Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case, J. Environ. Manage. 216 (2018) 160–168. doi:10.1016/j.jenvman.2017.04.029.eng
dcterms.referencesG. Cavusoglu, D. Miao, H. Lichtenberg, H.W.P. Carvalho, H. Xu, A. Goldbach, J.-D. Grunwaldt, Structure and activity of flame made ceria supported Rh and Pt water gas shift catalysts, Appl. Catal. A Gen. 504 (2015) 381–390. doi:10.1016/J.APCATA.2015.01.047.eng
dcterms.referencesC. Di Blasi, C. Branca, F. Masotta, E. De Biase, Experimental analysis of reaction heat effects during beech wood pyrolysis, Energy and Fuels. 27 (2013) 2665–2674. doi:10.1021/ef4001709.eng
dcterms.referencesJ. Ábrego, M. Atienza-Martínez, F. Plou, J. Arauzo, Heat requirement for fixed bed pyrolysis of beechwood chips, Energy. 178 (2019) 145–157. doi:10.1016/J.ENERGY.2019.04.078.eng
dcterms.referencesJ. Wu, Q. Liu, R. Wang, W. He, L. Shi, X. Guo, Z. Chen, L. Ji, Z. Liu, Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal, Fuel Process. Technol. 155 (2017) 68–73. doi:10.1016/j.fuproc.2016.03.022.eng
dcterms.referencesZ. Xiong, S.S.A. Syed-Hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, S. Su, S. Hu, Y. Wang, J. Xiang, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: Characterization of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019) 981–990. doi:10.1016/j.apenergy.2019.01.253.eng
dcterms.referencesK. Crombie, O. Mašek, Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions, Bioresour. Technol. 162 (2014) 148–156. https://www.sciencedirect.com/science/article/pii/S0960852414004398.eng
dcterms.referencesA. Domínguez, J.A. Menéndez, J.J. Pis, Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature, J. Anal. Appl. Pyrolysis. 77 (2006) 127–132. doi:10.1016/j.jaap.2006.02.003.eng
dcterms.referencesP. Prasertcharoensuk, S.J. Bull, A.N. Phan, Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters, Renew. Energy. 143 (2019) 112–120. doi:10.1016/j.renene.2019.05.009.eng
dcterms.referencesL. Peng, Y. Wang, Z. Lei, G. Cheng, Co-gasification of wet sewage sludge and forestry waste in situ steam agent, Bioresour. Technol. 114 (2012) 698–702. doi:10.1016/j.biortech.2012.03.079.eng
dcterms.referencesX. Liu, K. Wang, Y. Zhou, X. Zhang, X. Tang, P. Ren, X. Jiang, B. Liu, In-situ fabrication of Ce-rich CeO 2 nanocatalyst for efficient CO oxidation, J. Alloys Compd. 792 (2019) 644– 651. doi:10.1016/j.jallcom.2019.04.057.eng
dcterms.referencesC. Papadopoulos, K. Kappis, J. Papavasiliou, J. Vakros, M. Kuśmierz, W. Gac, Y. Georgiou, Y. Deligiannakis, G. Avgouropoulos, Copper-promoted ceria catalysts for CO oxidation reaction, Catal. Today. (2019). doi:10.1016/J.CATTOD.2019.06.078.eng
dcterms.referencesD.J. Deka, S. Gunduz, T. Fitzgerald, J.T. Miller, A.C. Co, U.S. Ozkan, Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co- doped lanthanum strontium ferrite perovskite cathodes, Appl. Catal. B Environ. 248 (2019) 487–503. doi:10.1016/J.APCATB.2019.02.045.eng
dcterms.referencesY. Devrim, A. Albostan, H. Devrim, Experimental investigation of CO tolerance in high temperature PEM fuel cells, Int. J. Hydrogen Energy. 43 (2018) 18672–18681. doi:10.1016/J.IJHYDENE.2018.05.085.eng
dcterms.referencesX. Chen, E. Yik, J. Butler, J.W. Schwank, Gasification characteristics of carbon species derived from model reforming compound over Ni/Ce-Zr-O catalysts, Catal. Today. 233 (2014) 14–20. doi:10.1016/j.cattod.2014.03.058.eng
dcterms.referencesM. Hervy, R. Olcese, M.M. Bettahar, M. Mallet, A. Renard, L. Maldonado, D. Remy, G. Mauviel, A. Dufour, Evolution of dolomite composition and reactivity during biomass gasification, Appl. Catal. A Gen. 572 (2019) 97–106. doi:10.1016/j.apcata.2018.12.014.eng
dcterms.referencesM.M. Hossain, Promotional effects of Ce on Ni–Ce/ΓAl2O3 for enhancement of H2 in hydrothermal gasification of biomass, Int. J. Hydrogen Energy. 43 (2018) 6088–6095. doi:10.1016/j.ijhydene.2018.01.182.eng
dcterms.referencesJ. Zou, J. Oladipo, S. Fu, A. Al-Rahbi, H. Yang, C. Wu, N. Cai, P. Williams, H. Chen, Hydrogen production from cellulose catalytic gasification on CeO2/Fe2O3 catalyst, Energy Convers. Manag. 171 (2018) 241–248. doi:10.1016/J.ENCONMAN.2018.05.104.eng


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International