dc.contributor.advisor | Cobo Ángel, Martha Isabel | |
dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.advisor | Moltó Berenguer, Julia | |
dc.contributor.author | Quiroga Colmenares, Eliana Marcela | |
dc.date.accessioned | 2020-08-08T12:44:16Z | |
dc.date.available | 2020-08-08T12:44:16Z | |
dc.date.issued | 2020-06-03 | |
dc.identifier.uri | http://hdl.handle.net/10818/42735 | |
dc.description | 83 páginas | es_CO |
dc.description.abstract | El cambio climático es una de las problemáticas con más relevancia actualmente, debido a los efectos negativos generados sobre la salud humana y el ambiente, causados principalmente por el uso de los combustibles fósiles y las emisiones de gases de efecto invernadero (GEI). En consecuencia, se han impulsado diferentes iniciativas, entre ellas, la pasada conferencia de las Naciones Unidas sobre el cambio climático (COP21, Paris – 2015) [1], que llevó al planteamiento de los Objetivos de Desarrollo Sostenible (ODS), puestos en marcha desde 2016 [2]. Uno de los campos de acción frente a los ODS es la búsqueda de fuentes alternativas de energía y modelos energéticos sostenibles [3]. Asimismo, se instó a los gobiernos a promover el desarrollo de tecnologías de energías limpias a gran escala que provengan de recursos renovables [3]. Por esta razón, Colombia, uno de los 186 países que se comprometió a reducir sus emisiones contaminantes para 2030 [4], ha impulsado políticas que apoyan la producción y uso de biocombustibles. La mayor parte de estos biocombustibles proviene de cultivos como la caña de azúcar y del aceite de palma, generando innumerables debates alrededor de los impactos económicos y sociales que tienen este tipo de políticas. Por esta razón, la biomasa lignocelulósica, la cual comprende residuos agrícolas y agroindustriales [5], es considerada un recurso renovable por su bajo costo, es neutro en carbono [6] y tiene bajas emisiones de GEI [7]. La producción de biocombustibles como el hidrógeno (H2) a partir de biomasa lignocelulósica por diferentes procesos, es considerada uno de los modelos de energía no convencionales [8–10]. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject | Hidrógeno | es_CO |
dc.subject | Obtención y producción de gas | es_CO |
dc.subject | Energía biomásica | es_CO |
dc.title | Producción de hidrógeno a partir de gasificación y trireformado de residuos lignocelulósicos | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 277578 | |
dc.identifier.local | TE10705 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster En Diseño y Gestión de Procesos | es_CO |
dcterms.references | O.D.L.N. Unidas, Agenda 2030 para el Desarrollo Sostenible, 16301 (2015) 1–40.
http://www.un.org/es/comun/docs/?symbol=A/69/L.85. | spa |
dcterms.references | Programa de las Naciones Unidas para el Desarrollo | UNDP, Objetivos de Desarrollo
Sostenible, (n.d.). http://www.undp.org/content/undp/es/home/sustainable-developmentgoals/background.html (accessed February 26, 2018). | spa |
dcterms.references | O.D.L.N. Unidas, Combatir el cambio climático - Desarrollo Sostenible, (n.d.).
http://www.un.org/sustainabledevelopment/es/combatir-el-cambio-climatico/ (accessed April
11, 2017). | spa |
dcterms.references | C. García, X. Barrera, R. Gómez, R. Suárez, El ABC de los compromisos de Colombia para
la Cop 21, Colombia, 2015. file:///C:/Users/Personal/Documents/2017/Convocatoria
interna/ABC_de_los_Compromisos_de_Colombia_para_la_COP21_VF_definitiva.pdf. | spa |
dcterms.references | C.A. Cardona Alzate, O.J. Sánchez Toro, Energy consumption analysis of integrated
flowsheets for production of fuel ethanol from lignocellulosic biomass, Energy. 31 (2006)
2111–2123. doi:10.1016/j.energy.2005.10.020. | spa |
dcterms.references | Z. Xiang, J. Liang, H.M. Morgan, Y. Liu, H. Mao, Q. Bu, H. Marion, M. Jr, Y. Liu, Thermal
behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over
Cobalt modified ZSM-5 catalyst by thermogravimetric analysis, Bioresour. Technol. 247
(2018) 804–811. doi:10.1016/j.biortech.2017.09.178. | eng |
dcterms.references | A.C.M. Loy, D.K.W. Gan, S. Yusup, B.L.F. Chin, M.K. Lam, M. Shahbaz, P. Unrean, M.N.
Acda, E. Rianawati, Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic
conversion of rice husk to bioenergy using rice hull ash catalyst, Bioresour. Technol. 261
(2018) 213–222. doi:10.1016/j.biortech.2018.04.020. | eng |
dcterms.references | E. Shayan, V. Zare, I. Mirzaee, Hydrogen production from biomass gasification; a theoretical
comparison of using different gasification agents, Energy Convers. Manag. 159 (2018) 30–
41. doi:10.1016/j.enconman.2017.12.096 | eng |
dcterms.references | S. Fremaux, S.-M. Beheshti, H. Ghassemi, R. Shahsavan-Markadeh, An experimental study
on hydrogen-rich gas production via steam gasification of biomass in a research-scale
fluidized bed, Energy Convers. Manag. 91 (2015) 427–432.
doi:10.1016/j.enconman.2014.12.048 | eng |
dcterms.references | G. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on
Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017)
9408–9421. doi:10.1021/acs.energyfuels.7b00665. | eng |
dcterms.references | H. Balat, E. Kirtay, Hydrogen from biomass - Present scenario and future prospects, Int. J.
Hydrogen Energy. 35 (2010) 7416–7426. doi:10.1016/j.ijhydene.2010.04.137. | eng |
dcterms.references | S. Mekhilef, R. Saidur, a. Safari, Comparative study of different fuel cell technologies,
Renew. Sustain. Energy Rev. 16 (2012) 981–989. doi:10.1016/j.rser.2011.09.020. | eng |
dcterms.references | U. Lucia, Overview on fuel cells, Renew. Sustain. Energy Rev. 30 (2014) 164–169.
doi:10.1016/j.rser.2013.09.025. | eng |
dcterms.references | M. Rokni, Thermodynamic and thermoeconomic analysis of a system with biomass
gasification, solid oxide fuel cell (SOFC) and Stirling engine, Energy. 76 (2014) 19–31.
doi:10.1016/j.energy.2014.01.106. | eng |
dcterms.references | Portafolio, “Colombia tiene potencial para producir energía con biomasa” | Infraestructura |
Economía | Portafolio, (2017). https://www.portafolio.co/economia/infraestructura/colombiatiene-potencial-para-producir-energia-con-biomasa-505377 (accessed February 18, 2019). | eng |
dcterms.references | H. Escalante, J. Orduz, H. Zapata, M.C. Cardona, M. Duarte, Atlas del potencial energético
de la biomasa residual en Colombia, Universidad Industrial de Santander, Bucaramanga,
2011. http://bdigital.upme.gov.co/handle/001/1058 (accessed February 19, 2019). | spa |
dcterms.references | R. García-torres, E. Rios-leal, Á. Martínez-toledo, F. Ramos-morales, S. Cruz-Sánchez, M.
del C. Cuevas-Díaz, Uso de cachaza y bagazo de caña de azúcar en la remoción de
hidrocarburos en el suelo contaminado, Rev. Int. Contam. Ambie. 27 (2011) 31–39.
http://www.scielo.org.mx/pdf/rica/v27n1/v27n1a3.pdf (accessed April 18, 2017). | spa |
dcterms.references | Procaña, Asociación Colombiana de productores y proveedores de caña de azucar, Sub Prod.
y Deriv. La Caña Azúcar. (n.d.). http://www.procana.org/new/quienes-somos/subproductosy-derivados-de-la-caña.html (accessed March 13, 2017). | spa |
dcterms.references | FAO, Producción de panela como estrategia de diversificación en la generación de ingresos
en áreas rurales de América Latina, (2004).
http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf (accessed
April 30, 2017). | spa |
dcterms.references | M. a. Otero-Rambla, R. García, M.C. Pérez, J. a Martínez, M.C. Vasallo, G. Saura, D. Bello,
Producción de bioetanol a partir de mezclas de jugos-melazas de caña de azúcar., ICIDCA.
Sobre Los Deriv. La Caña Azúcar. 43 (2009) 17–22. | spa |
dcterms.references | H. Hiblot, I. Ziegler-Devin, R. Fournet, P.A. Glaude, Steam reforming of methane in a
synthesis gas from biomass gasification, Int. J. Hydrogen Energy. 41 (2016) 18329–18338.
doi:10.1016/j.ijhydene.2016.07.226. | eng |
dcterms.references | X. Sun, H.K. Atiyeh, R.L. Huhnke, R.S. Tanner, Syngas fermentation process development
for production of biofuels and chemicals: A review, Bioresour. Technol. Reports. 7 (2019)
100279. doi:10.1016/j.biteb.2019.100279. | eng |
dcterms.references | J. Xuan, M.K.H. Leung, D.Y.C. Leung, M. Ni, A review of biomass-derived fuel processors
for fuel cell systems, Renew. Sustain. Energy Rev. 13 (2009) 1301–1313.
doi:10.1016/J.RSER.2008.09.027. | eng |
dcterms.references | V. Balasundram, N. Ibrahim, R.M. Kasmani, M.K.A. Hamid, R. Isha, H. Hasbullah, R.R. Ali,
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for
possible maximum production of pyrolysis oil, J. Clean. Prod. 167 (2017) 218–228.
doi:10.1016/j.jclepro.2017.08.173. | eng |
dcterms.references | M.U. Garba, A. Inalegwu, U. Musa, A.A. Aboje, A.S. Kovo, D.O. Adeniyi,
Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with lowand high-density polyethylenes, Biomass Convers. Biorefinery. 8 (2018) 143–150.
doi:10.1007/s13399-017-0261-y. | eng |
dcterms.references | Y. Shen, K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass
76
gasification or pyrolysis—A review, Renew. Sustain. Energy Rev. 21 (2013) 371–392.
doi:10.1016/j.rser.2012.12.062. | eng |
dcterms.references | R.K. Singha, A. Shukla, A. Yadav, S. Adak, Z. Iqbal, N. Siddiqui, R. Bal, Energy efficient
methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline
Ni-ZrO2 catalyst, Appl. Energy. 178 (2016) 110–125. doi:10.1016/j.apenergy.2016.06.043. | eng |
dcterms.references | A. Vita, C. Italiano, M.A. Ashraf, L. Pino, S. Specchia, Syngas production by steam and oxysteam reforming of biogas on monolith-supported CeO2-based catalysts, Int. J. Hydrogen
Energy. 43 (2018) 11731–11744. doi:10.1016/J.IJHYDENE.2017.11.140. | eng |
dcterms.references | A. Vita, L. Pino, F. Cipitì, M. Laganà, V. Recupero, Biogas as renewable raw material for
syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative
condition and effect of nickel content, Fuel Process. Technol. 127 (2014) 47–58.
doi:10.1016/j.fuproc.2014.06.014. | eng |
dcterms.references | S.H. Lee, W. Cho, W.S. Ju, B.H. Cho, Y.C. Lee, Y.S. Baek, Tri-reforming of CH4 using CO2
for production of synthesis gas to dimethyl ether, Catal. Today. 87 (2003) 133–137.
doi:10.1016/j.cattod.2003.10.005. | eng |
dcterms.references | U. Izquierdo, V.L. Barrio, K. Bizkarra, a. M. Gutierrez, J.R. Arraibi, L. Gartzia, J. Bañuelos,
I. Lopez-Arbeloa, J.F. Cambra, Ni and RhNi catalysts supported on Zeolites L for hydrogen
and syngas production by biog | eng |
dcterms.references | U. Izquierdo, I. García-García, V.L. Barrio, J.F. Cambra, Hydrogen Production with a
Microchannel Reactor by Tri-Reforming; Reaction System Comparison and Catalyst
Development, Top. Catal. 0 (2017) 0. doi:10.1007/s11244-017-0798-9. | eng |
dcterms.references | H. Zou, S. Chen, J. Huang, Z. Zhao, Effect of additives on the properties of nickel
molybdenum carbides for the tri-reforming of methane, Int. J. Hydrogen Energy. 41 (2016)
16842–16850. doi:10.1016/j.ijhydene.2016.07.108. | eng |
dcterms.references | U. Izquierdo, V.L. Barrio, J. Requies, J.F. Cambra, M.B. Güemez, P.L. Arias, Tri-reforming:
A new biogas process for synthesis gas and hydrogen production, Int. J. Hydrogen Energy. 38
(2013) 7623–7631. doi:10.1016/j.ijhydene.2012.09.107. | eng |
dcterms.references | R.K. Singha, S. Das, M. Pandey, S. Kumar, R. Bal, A. Bordoloi, Ni nanocluster on modified
CeO2-ZrO2 nanoporous composite for tri-reforming of methane, Catal. Sci. Technol. 6 (2016)
7122–7136. doi:10.1039/C5CY01323B. | eng |
dcterms.references | B. Cifuentes, M. Hernández, S. Monsalve, M. Cobo, Hydrogen production by steam reforming
of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst
performance , Appl. Catal. A Gen. . 523 (2016) 283–293.
doi:http://dx.doi.org/10.1016/j.apcata.2016.06.014. | eng |
dcterms.references | A. Arregi, M. Amutio, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Hydrogen-rich
gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste
and HDPE mixtures, Energy Convers. Manag. 136 (2017) 192–201.
doi:10.1016/j.enconman.2017.01.008. | eng |
dcterms.references | X. Xu, E. Jiang, M. Wang, Y. Xu, Dry and steam reforming of biomass pyrolysis gas for rich
hydrogen gas, Biomass and Bioenergy. 78 (2015) 6–16. doi:10.1016/j.biombioe.2015.03.015. | eng |
dcterms.references | R. Yuan, S. Yu, Y. Shen, Pyrolysis and combustion kinetics of lignocellulosic biomass pellets
with calcium-rich wastes from agro-forestry residues, Waste Manag. 87 (2019) 86–96.
doi:10.1016/j.wasman.2019.02.009. | eng |
dcterms.references | M.A. Garrido, R. Font, J.A. Conesa, Kinetic study and thermal decomposition behavior of
viscoelastic memory foam, Energy Convers. Manag. 119 (2016) 327–337.
doi:10.1016/j.enconman.2016.04.048. | eng |
dcterms.references | M. Safar, B.J. Lin, W.H. Chen, D. Langauer, J.S. Chang, H. Raclavska, A. Pétrissans, P.
Rousset, M. Pétrissans, Catalytic effects of potassium on biomass pyrolysis, combustion and
torrefaction, Appl. Energy. 235 (2019) 346–355. doi:10.1016/j.apenergy.2018.10.065. | eng |
dcterms.references | J.A. Conesa, A. Soler, Decomposition kinetics of materials combining biomass and electronic
waste, J. Therm. Anal. Calorim. 128 (2017) 225–233. doi:10.1007/s10973-016-5900-1. | eng |
dcterms.references | J.A. Quintero, C.A. Cardona, E. Felix, J. Moncada, Ó.J. Sánchez, L.F. Gutiérrez, Technoeconomic analysis of bioethanol production in Africa: Tanzania case, Energy. 48 (2012) 442–
454. doi:10.1016/j.energy.2012.10.018. | eng |
dcterms.references | A.J. Gilbert, M. Huerta, Colombia Sugar Annual, USDA Foreign Agric. Serv. (2016) 1–6.
http://gain.fas.usda.gov/Recent GAIN Publications/Sugar Annual_Bogota_Colombia_4-15-
2016.pdf. | eng |
dcterms.references | Superintendencia de Industria y Comercio, Estudios de Mercado Cadena productiva de la
panela en Colombia: diagnóstico de libre competencia (2010-2012), (n.d.).
http://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Econo
micos/Panela2012.pdf (accessed May 15, 2017). | spa |
dcterms.references | R.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Thermo-chemical routes for hydrogen rich gas
from biomass: A review, Renew. Sustain. Energy Rev. 12 (2008) 1909–1927.
doi:10.1016/j.rser.2007.03.005. | eng |
dcterms.references | S. Luo, B. Xiao, Z. Hu, S. Liu, X. Guo, M. He, Hydrogen-rich gas from catalytic steam
gasification of biomass in a fixed bed reactor: Influence of temperature and??steam on
gasification performance, Int. J. Hydrogen Energy. 34 (2009) 2191–2194.
doi:10.1016/j.ijhydene.2008.12.075. | eng |
dcterms.references | B. Choi, D. Panthi, M. Nakoji, K. Tsutsumi, A. Tsutsumi, Design and performance evaluation
of a novel 1 kW-class hydrogen production/power generation system, Appl. Energy. 194
(2017) 296–303. doi:10.1016/j.apenergy.2016.11.078. | eng |
dcterms.references | S.K. Sansaniwal, K. Pal, M. a Rosen, S.K. Tyagi, Recent advances in the development of
biomass gasification technology: A comprehensive review, 72 (2017) 363–384.
doi:10.1016/j.rser.2017.01.038. | eng |
dcterms.references | N. Ramzan, A. Ashraf, S. Naveed, A. Malik, Simulation of hybrid biomass gasification using
Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste,
Biomass and Bioenergy. 35 (2011) 3962–3969. doi:10.1016/j.biombioe.2011.06.005. | eng |
dcterms.references | M. La Villetta, M. Costa, N. Massarotti, Modelling approaches to biomass gasification: A
review with emphasis on the stoichiometric method, Renew. Sustain. Energy Rev. 74 (2017)
71–88. doi:10.1016/j.rser.2017.02.027. | eng |
dcterms.references | X. Peng, F. Hu, F.L.-Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms
of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based
carbon., J. Colloid Interface Sci. 460 (2015) 349–60. doi:10.1016/j.jcis.2015.08.050. | eng |
dcterms.references | A. Demirbaş, Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst
on hydrogen yield, Energy Convers. Manag. 43 (2002) 897–909. doi:10.1016/S0196-
8904(01)00080-2. | eng |
dcterms.references | G. Van Rossum, S.R. a Kersten, W.P.M. Van Swaaij, Catalytic and noncatalytic gasification
of pyrolysis oil, Ind. Eng. Chem. Res. 46 (2007) 3959–3967. doi:10.1021/ie061337y. | eng |
dcterms.references | C. Lin, W. Weng, Effects of different operating parameters on the syngas composition in a
two-stage gasi fi cation process, Renew. Energy. 109 (2017) 135–143.
doi:10.1016/j.renene.2017.03.019 | eng |
dcterms.references | E. Siddik Aydin, O. Yucel, H. Sadikoglu, Experimental study on hydrogen-rich syngas
production via gasification of pine cone particles and wood pellets in a fixed bed downdraft
gasifier, Int. J. Hydrogen Energy. 44 (2019) 17389–17396.
doi:10.1016/J.IJHYDENE.2019.02.175. | eng |
dcterms.references | G. Chen, X. Guo, Z. Cheng, B. Yan, Z. Dan, W. Ma, Air gasification of biogas-derived
digestate in a downdraft fixed bed gasifier, Waste Manag. 69 (2017) 162–169.
doi:10.1016/j.wasman.2017.08.001. | eng |
dcterms.references | Y. Ding, O.A. Ezekoye, J. Zhang, C. Wang, S. Lu, The effect of chemical reaction kinetic
parameters on the bench-scale pyrolysis of lignocellulosic biomass, Fuel. 232 (2018) 147–
153. doi:10.1016/j.fuel.2018.05.140. | eng |
dcterms.references | A.C. Minh Loy, S. Yusup, B.L. Fui Chin, D.K. Wai Gan, M. Shahbaz, M.N. Acda, P. Unrean,
E. Rianawati, Comparative study of in-situ catalytic pyrolysis of rice husk for syngas
production: Kinetics modelling and product gas analysis, J. Clean. Prod. 197 (2018) 1231–
1243. doi:10.1016/j.jclepro.2018.06.245. | eng |
dcterms.references | R.K. Mishra, K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass
using thermogravimetric analysis, Bioresour. Technol. 251 (2018) 63–74.
doi:10.1016/j.biortech.2017.12.029. | eng |
dcterms.references | D.K.W. Gan, A.C.M. Loy, B.L.F. Chin, S. Yusup, P. Unrean, E. Rianawati, M.N. Acda,
Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable
calcium oxide based catalysts, Bioresour. Technol. 265 (2018) 180–190.
doi:10.1016/j.biortech.2018.06.003. | eng |
dcterms.references | J. Karla, T. Pröll, Steam gasification of biomass in dual fluidized bed gasifiers: A review,
Renew. Sustain. Energy Rev. 98 (2018) 64–78. doi:10.1016/J.RSER.2018.09.010. | eng |
dcterms.references | R. Basanta, M.A. García Delgado, J.E. Cervantes Martínez, H. Mata Vázquez, G. Bustos
Vázquez, Sostenibilidad del reciclaje de residuos de la agroindustria azucarera: una revisión,
Cienc. y Tecnol. Aliment. 5 (2007) 293–305.
http://www.redalyc.org/articulo.oa?id=72440508. | eng |
dcterms.references | P.B. Gangavati, M.J. Safi, a. Singh, B. Prasad, I.M. Mishra, Pyrolysis and thermal oxidation
kinetics of sugar mill press mud, Thermochim. Acta. 428 (2005) 63–70.
doi:10.1016/j.tca.2004.09.026. | eng |
dcterms.references | K.B. Ansari, V.G. Gaikar, Pressmud as an alternate resource for hydrocarbons and chemicals
by thermal pyrolysis, Ind. Eng. Chem. Res. 53 (2014) 1878–1889. doi:10.1021/ie401961y. | eng |
dcterms.references | A. Kumar, K. Eskridge, D.D. Jones, M.A. Hanna, Steam-air fluidized bed gasification of
distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification
temperature, Bioresour. Technol. 100 (2009) 2062–2068. doi:10.1016/j.biortech.2008.10.011. | eng |
dcterms.references | J. Gil, J. Corella, M.P. Aznar, M. a. Caballero, Biomass gasification in atmospheric and
bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution,
Biomass and Bioenergy. 17 (1999) 389–403. doi:10.1016/S0961-9534(99)00055-0. | eng |
dcterms.references | E. Daouk, L. Van de Steene, F. Paviet, E. Martin, J. Valette, S. Salvador, Oxidative pyrolysis
of wood chips and of wood pellets in a downdraft continuous fixed bed reactor, Fuel. 196
(2017) 408–418. doi:10.1016/j.fuel.2017.02.012. | eng |
dcterms.references | M.S. Hussein, K.G. Burra, R.S. Amano, A.K. Gupta, Temperature and gasifying media effects
on chicken manure pyrolysis and gasification, Fuel. 202 (2017) 36–45.
doi:10.1016/j.fuel.2017.04.017. | eng |
dcterms.references | K. Wiranarongkorn, S. Authayanun, S. Assabumrungrat, A. Arpornwichanop, Analysis of
thermally coupling steam and tri-reforming processes for the production of hydrogen from
bio-oil, Int. J. Hydrogen Energy. 41 (2016) 18370–18379.
doi:10.1016/j.ijhydene.2016.08.148. | eng |
dcterms.references | J. Díez-Ramírez, F. Dorado, A. Martínez-Valiente, J.M. García-Vargas, P. Sánchez, Kinetic,
energetic and exergetic approach to the methane tri-reforming process, Int. J. Hydrogen
Energy. 41 (2016) 19339–19348. doi:10.1016/j.ijhydene.2016.04.229. | eng |
dcterms.references | K. Świrk, T. Grzybek, M. Motak, Tri-reforming as a process of CO 2 utilization and a novel
concept of energy storage in chemical products, 2038 (2017) 1–10. | eng |
dcterms.references | T. Mondal, K.K. Pant, A.K. Dalai, Oxidative and non-oxidative steam reforming of crude bioethanol for hydrogen production over Rh promoted Ni/CeO 2 -ZrO 2 catalyst, "Applied Catal.
A, Gen. 499 (2015) 19–31. doi:10.1016/j.apcata.2015.04.004. | eng |
dcterms.references | C. Song, W. Pan, Tri-reforming of methane: a novel concept for catalytic production of
industrially useful synthesis gas with desired H2/CO ratios, Catal. Today. 98 (2004) 463–484.
doi:10.1016/j.cattod.2004.09.054. | eng |
dcterms.references | C. Crisafulli, S. Scirè, S. Minicò, L. Solarino, Ni – Ru bimetallic catalysts for the CO 2
reforming of methane, Appl. Catal. 225 (2002) 1–9. doi:10.1016/S0926-860X(01)00585-3. | eng |
dcterms.references | T.-J. Huang, K.-C. Lee, H.-W. Yang, W.-P. Dow, Effect of chromium addition on supported
copper catalysts for carbon monoxide oxidation, (n.d.). http://ac.elscdn.com/S0926860X98001938/1-s2.0-S0926860X98001938-main.pdf?_tid=e321f3d2-21de11e7-bd3d-00000aacb35e&acdnat=1492262863_e7d3d4701bb7241d982dc3409af472c7
(accessed April 15, 2017). | eng |
dcterms.references | L. Sun, Y. Tan, Q. Zhang, H. Xie, Y. Han, Tri-reforming of coal bed methane to syngas over
the Ni-Mg-ZrO2 catalyst, J. Fuel Chem. Technol. 40 (2012) 831–837.
doi:http://dx.doi.org/10.1016/S1872-5813(12)60032-2. | eng |
dcterms.references | J.S. Kang, D.H. Kim, S.D. Lee, S.I. Hong, D.J. Moon, Nickel-based tri-reforming catalyst for
the production of synthesis gas, Appl. Catal. A Gen. 332 (2007) 153–158.
doi:10.1016/j.apcata.2007.08.017. | eng |
dcterms.references | D. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet, Biomass to Hydrogen via Fast
Pyrolysis and Catalytic Steam Reforming of the Pyrolysis Oil or Its Fractions, Abstr. Pap. Am.
Chem. Soc. 36 (1997) 1507–1518. doi:10.1021/ie960396g | eng |
dcterms.references | B. Cifuentes, M.F. Valero, J. a. J. Conesa, M. Cobo, Hydrogen Production by Steam
Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports,
Catalysts. 5 (2015) 1872–1896. doi:10.3390/catal5041872. | eng |
dcterms.references | R. García, C. Pizarro, A.G. Lavín, J.L. Bueno, Biomass proximate analysis using
thermogravimetry, Bioresour. Technol. 139 (2013) 1–4. doi:10.1016/j.biortech.2013.03.197. | eng |
dcterms.references | C.N. Arenas, M.V. Navarro, J.D. Martínez, Pyrolysis kinetics of biomass wastes using
isoconversional methods and the distributed activation energy model, Bioresour. Technol. 288
(2019) 121485. doi:10.1016/j.biortech.2019.121485. | eng |
dcterms.references | S. Naik, V. V. Goud, P.K. Rout, K. Jacobson, A.K. Dalai, Characterization of Canadian
biomass for alternative renewable biofuel, Renew. Energy. 35 (2010) 1624–1631.
doi:10.1016/j.renene.2009.08.033. | eng |
dcterms.references | M. Gogoi, K. Konwar, N. Bhuyan, R.C. Borah, A.C. Kalita, H.P. Nath, N. Saikia, Assessments
of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry, Bioresour.
Technol. Reports. 4 (2018) 40–49. doi:10.1016/j.biteb.2018.08.016. | eng |
dcterms.references | D. Parra, L. Valverde, F.J. Pino, M.K. Patel, A review on the role , cost and value of hydrogen
energy systems for deep decarbonisation, Renew. Sustain. Energy Rev. 101 (2019) 279–294.
doi:10.1016/j.rser.2018.11.010. | eng |
dcterms.references | Ministerio de Minas y Energía de Colombia, El carbón Colombiano. Fuente de energía para
el mundo, 2016. http://www.upme.gov.co/docs/cadena_carbon.pdf (accessed May 20, 2018). | spa |
dcterms.references | K. Wang, J. Zhang, B.H. Shanks, R.C. Brown, The deleterious effect of inorganic salts on
hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation,
Appl. Energy. 148 (2015) 115–120. doi:10.1016/j.apenergy.2015.03.034. | eng |
dcterms.references | H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose
and lignin pyrolysis, Fuel. 86 (2007) 1781–1788. doi:10.1016/j.fuel.2006.12.013. | eng |
dcterms.references | R.B. Carpio, Y. Zhang, C.T. Kuo, W.T. Chen, L.C. Schideman, R.L. de Leon, L. Charles, R.L.
De Leon, Characterization and thermal decomposition of demineralized wastewater algae
biomass, Algal Res. 38 (2019) 101399. doi:10.1016/j.algal.2018.101399. | eng |
dcterms.references | M. Prestipino, V. Chiodo, S. Maisano, G. Zafarana, F. Urbani, A. Galvagno, Hydrogen rich
syngas production by air-steam gasification of citrus peel residues from citrus juice
manufacturing: Experimental and simulation activities, Int. J. Hydrogen Energy. 42 (2017)
26816–26827. doi:10.1016/j.ijhydene.2017.05.173. | eng |
dcterms.references | N. Gupta, S. Tripathi, C. Balomajumder, Characterization of pressmud: A sugar industry
waste, Fuel. 90 (2011) 389–394. doi:10.1016/j.fuel.2010.08.021. | eng |
dcterms.references | Y.Y. Loy, X.L. Lee, G.P. Rangaiah, Optimization and Economic Evaluation of Bioethanol
Recovery and Purification Processes involving Extractive Distillation and Pressure Swing
Adsorption, Comput. Aided Chem. Eng. 37 (2015) 413–418. doi:10.1016/B978-0-444-63578-
5.50064-5. | eng |
dcterms.references | Y. Long, L. Ruan, X. Lv, Y. Lv, J. Su, Y. Wen, TG-FTIR analysis of pyrolusite reduction by
major biomass components, Chinese J. Chem. Eng. 23 (2015) 1691–1697.
doi:10.1016/j.cjche.2015.08.028. | eng |
dcterms.references | D. Chen, Y. Wang, Y. Liu, K. Cen, X. Cao, Z. Ma, Y. Li, Comparative study on the pyrolysis
behaviors of rice straw under different washing pretreatments of water, acid solution, and
aqueous phase bio-oil by using TG-FTIR and Py-GC/MS, Fuel. 252 (2019) 1–9.
doi:10.1016/j.fuel.2019.04.086. | eng |
dcterms.references | X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li, Pyrolysis of poplar wood sawdust by TG-FTIR
and Py–GC/MS, J. Anal. Appl. Pyrolysis. 102 (2013) 16–23.
doi:10.1016/J.JAAP.2013.04.009. | eng |
dcterms.references | M.A. Mehmood, M.S. Ahmad, Q. Liu, C.G. Liu, M.H. Tahir, A.A. Aloqbi, N.I. Tarbiah, H.M.
Alsufiani, M. Gull, Helianthus tuberosus as a promising feedstock for bioenergy and
chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study, Energy
Convers. Manag. 194 (2019) 37–45. doi:10.1016/j.enconman.2019.04.076. | eng |
dcterms.references | S. Ceylan, J.L. Goldfarb, Green tide to green fuels: TG-FTIR analysis and kinetic study of
Ulva prolifera pyrolysis, Energy Convers. Manag. 101 (2015) 263–270.
doi:10.1016/j.enconman.2015.05.029. | eng |
dcterms.references | H. Wu, Y. Zhao, Y. Long, Y. Zhu, H. Wang, W. Lu, Evaluation of the biological stability of
waste during landfill stabilization by thermogravimetric analysis and Fourier transform
infrared spectroscopy, Bioresour. Technol. 102 (2011) 9403–9408.
doi:10.1016/j.biortech.2011.07.029. | eng |
dcterms.references | X. Zhang, H. Deng, X. Hou, R. Qiu, Z. Chen, Pyrolytic behavior and kinetic of wood sawdust
at isothermal and non-isothermal conditions, Renew. Energy. 142 (2019) 284–294.
doi:10.1016/j.renene.2019.04.115. | eng |
dcterms.references | Z. Sebestyén, E. Barta-Rajnai, J. Bozi, M. Blazsó, E. Jakab, N. Miskolczi, Z. Czégény,
Thermo-catalytic Pyrolysis of biomass and plastic mixtures using HZSM-5, Appl. Energy.
207 (2017) 114–122. doi:10.1016/j.egypro.2017.03.381. | eng |
dcterms.references | C. Wang, L. Li, Z. Zeng, X. Xu, X. Ma, R. Chen, C. Su, Catalytic performance of potassium
in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation
energy model, Bioresour. Technol. 281 (2019) 412–420. doi:10.1016/j.biortech.2019.02.118. | eng |
dcterms.references | M.J.B. Fong, A.C.M. Loy, B.L.F. Chin, M.K. Lam, S. Yusup, Z.A. Jawad, Catalytic pyrolysis
of Chlorella vulgaris: Kinetic and thermodynamic analysis, Bioresour. Technol. 289 (2019)
121689. doi:10.1016/j.biortech.2019.121689. | eng |
dcterms.references | C.A. García, Á. Peña, R. Betancourt, C.A. Cardona, Energetic and environmental assessment
of thermochemical and biochemical ways for producing energy from agricultural solid
residues: Coffee Cut-Stems case, J. Environ. Manage. 216 (2018) 160–168.
doi:10.1016/j.jenvman.2017.04.029. | eng |
dcterms.references | G. Cavusoglu, D. Miao, H. Lichtenberg, H.W.P. Carvalho, H. Xu, A. Goldbach, J.-D.
Grunwaldt, Structure and activity of flame made ceria supported Rh and Pt water gas shift
catalysts, Appl. Catal. A Gen. 504 (2015) 381–390. doi:10.1016/J.APCATA.2015.01.047. | eng |
dcterms.references | C. Di Blasi, C. Branca, F. Masotta, E. De Biase, Experimental analysis of reaction heat effects
during beech wood pyrolysis, Energy and Fuels. 27 (2013) 2665–2674.
doi:10.1021/ef4001709. | eng |
dcterms.references | J. Ábrego, M. Atienza-Martínez, F. Plou, J. Arauzo, Heat requirement for fixed bed pyrolysis
of beechwood chips, Energy. 178 (2019) 145–157. doi:10.1016/J.ENERGY.2019.04.078. | eng |
dcterms.references | J. Wu, Q. Liu, R. Wang, W. He, L. Shi, X. Guo, Z. Chen, L. Ji, Z. Liu, Coke formation during
thermal reaction of tar from pyrolysis of a subbituminous coal, Fuel Process. Technol. 155
(2017) 68–73. doi:10.1016/j.fuproc.2016.03.022. | eng |
dcterms.references | Z. Xiong, S.S.A. Syed-Hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, S. Su, S. Hu, Y. Wang, J.
Xiang, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: Characterization
of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019)
981–990. doi:10.1016/j.apenergy.2019.01.253. | eng |
dcterms.references | K. Crombie, O. Mašek, Investigating the potential for a self-sustaining slow pyrolysis system
under varying operating conditions, Bioresour. Technol. 162 (2014) 148–156.
https://www.sciencedirect.com/science/article/pii/S0960852414004398. | eng |
dcterms.references | A. Domínguez, J.A. Menéndez, J.J. Pis, Hydrogen rich fuel gas production from the pyrolysis
of wet sewage sludge at high temperature, J. Anal. Appl. Pyrolysis. 77 (2006) 127–132.
doi:10.1016/j.jaap.2006.02.003. | eng |
dcterms.references | P. Prasertcharoensuk, S.J. Bull, A.N. Phan, Gasification of waste biomass for hydrogen
production: Effects of pyrolysis parameters, Renew. Energy. 143 (2019) 112–120.
doi:10.1016/j.renene.2019.05.009. | eng |
dcterms.references | L. Peng, Y. Wang, Z. Lei, G. Cheng, Co-gasification of wet sewage sludge and forestry waste
in situ steam agent, Bioresour. Technol. 114 (2012) 698–702.
doi:10.1016/j.biortech.2012.03.079. | eng |
dcterms.references | X. Liu, K. Wang, Y. Zhou, X. Zhang, X. Tang, P. Ren, X. Jiang, B. Liu, In-situ fabrication of
Ce-rich CeO 2 nanocatalyst for efficient CO oxidation, J. Alloys Compd. 792 (2019) 644–
651. doi:10.1016/j.jallcom.2019.04.057. | eng |
dcterms.references | C. Papadopoulos, K. Kappis, J. Papavasiliou, J. Vakros, M. Kuśmierz, W. Gac, Y. Georgiou,
Y. Deligiannakis, G. Avgouropoulos, Copper-promoted ceria catalysts for CO oxidation
reaction, Catal. Today. (2019). doi:10.1016/J.CATTOD.2019.06.078. | eng |
dcterms.references | D.J. Deka, S. Gunduz, T. Fitzgerald, J.T. Miller, A.C. Co, U.S. Ozkan, Production of syngas
with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni
and Co- doped lanthanum strontium ferrite perovskite cathodes, Appl. Catal. B Environ. 248
(2019) 487–503. doi:10.1016/J.APCATB.2019.02.045. | eng |
dcterms.references | Y. Devrim, A. Albostan, H. Devrim, Experimental investigation of CO tolerance in high
temperature PEM fuel cells, Int. J. Hydrogen Energy. 43 (2018) 18672–18681.
doi:10.1016/J.IJHYDENE.2018.05.085. | eng |
dcterms.references | X. Chen, E. Yik, J. Butler, J.W. Schwank, Gasification characteristics of carbon species
derived from model reforming compound over Ni/Ce-Zr-O catalysts, Catal. Today. 233 (2014)
14–20. doi:10.1016/j.cattod.2014.03.058. | eng |
dcterms.references | M. Hervy, R. Olcese, M.M. Bettahar, M. Mallet, A. Renard, L. Maldonado, D. Remy, G.
Mauviel, A. Dufour, Evolution of dolomite composition and reactivity during biomass
gasification, Appl. Catal. A Gen. 572 (2019) 97–106. doi:10.1016/j.apcata.2018.12.014. | eng |
dcterms.references | M.M. Hossain, Promotional effects of Ce on Ni–Ce/ΓAl2O3 for enhancement of H2 in
hydrothermal gasification of biomass, Int. J. Hydrogen Energy. 43 (2018) 6088–6095.
doi:10.1016/j.ijhydene.2018.01.182. | eng |
dcterms.references | J. Zou, J. Oladipo, S. Fu, A. Al-Rahbi, H. Yang, C. Wu, N. Cai, P. Williams, H. Chen,
Hydrogen production from cellulose catalytic gasification on CeO2/Fe2O3 catalyst, Energy
Convers. Manag. 171 (2018) 241–248. doi:10.1016/J.ENCONMAN.2018.05.104. | eng |