Mostrar el registro sencillo del ítem
Techno-economic evaluation of carbonation as CO2 capture and utilization technology in the cement industry
dc.contributor.advisor | Cobo Ángel, Martha Isabel | |
dc.contributor.author | Proano González, Laura Melisa | |
dc.date.accessioned | 2020-06-01T16:32:14Z | |
dc.date.available | 2020-06-01T16:32:14Z | |
dc.date.issued | 2020-04-22 | |
dc.identifier.uri | http://hdl.handle.net/10818/41386 | |
dc.description | 56 páginas: ilustraciones | es_CO |
dc.description.abstract | In the cement industry, CO2 emissions mainly proceed from limestone calcination and fossil fuel combustion in clinker production, which represents about 8% of the worldwide CO2 emissions. To avoid an increase of 2 °C in global temperature compare with pre-industrial global temperature proposed in the COP21 agreement in 2015, cement industry should reduce CO2 emissions 24% below current levels. Thus, the purpose of this study was to evaluate an indirect carbonation CO2 capture and utilization technology for CO2 emissions abatement in the clinker production. The indirect carbonation process was evaluated using different hydroxides (Na, Ba and Ca) as absorbent precursors. Through technical evaluation, carbonation process using Na and Ba hydroxides resulted viable between 50 to 70 °C, with CO2 capture efficiencies of 98 and 65%, respectively. Contrary, Ca-based process presented an efficiency of 0.5% due to the low solubility of Ca(OH)2 in water, which results in technical infeasibility. For Na and Ba processes, an estimated cost of CO2 capture was assessed at 65 and 140 USD/t CO2, respectively. Moreover, technical and economic evaluation was integrated through a system dynamics model; which was developed to appraise the effect of economic policies and market conditions in CO2 capture economic impact on a cement plant and CO2 emissions reduction. System dynamics results showed that the implementation of a CO2 taxing policy, with CO2 tax between 20 and 80 USD/t CO2 emitted, will encourage the implementation of CO2 capture technologies to reduce emissions by 24% in a cement plant. | eng |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject | Dinámica | es_CO |
dc.subject | Industrias del cemento | es_CO |
dc.subject | Análisis tecnoeconómico | es_CO |
dc.subject | Innovaciones tecnológicas | es_CO |
dc.title | Techno-economic evaluation of carbonation as CO2 capture and utilization technology in the cement industry | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 277052 | |
dc.identifier.local | TE10670 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review, Energy. 46 (2012) 431–441. doi:10.1016/j.energy.2012.08.006. | eng |
dcterms.references | I. International Energy Agency, World Business Council For Sustainable Development (WBCSD), Technology Roadmap - Low-Carbon Transition in the Cement Industry, 2016. www.wbcsdcement.org. (accessed November 26, 2018). | eng |
dcterms.references | A. Rolfe, Y. Huang, M. Haaf, A. Pita, S. Rezvani, A. Dave, N.J. Hewitt, Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants, Int. J. Greenh. Gas Control. 75 (2018) 85–97. doi:10.1016/J.IJGGC.2018.05.020. | eng |
dcterms.references | S. Gardarsdottir, E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. PérezCalvo, D. Berstad, C. Fu, R. Anantharaman, D. Sutter, M. Gazzani, M. Mazzotti, G. Cinti, S.O. Gardarsdottir, E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. Pérez-Calvo, D. Berstad, C. Fu, R. Anantharaman, D. Sutter, M. Gazzani, M. Mazzotti, G. Cinti, Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis, Energies. 12 (2019) 542. doi:10.3390/en12030542 | eng |
dcterms.references | M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des. 89 (2011) 1609–1624. doi:10.1016/J.CHERD.2010.11.005 | eng |
dcterms.references | J. Luis Míguez, J. Porteiro, R. Pérez-Orozco, D. Patiño, S. Rodríguez, Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity, Appl. Energy. 211 (2018) 1282–1296. doi:10.1016/J.APENERGY.2017.11.107 | eng |
dcterms.references | C.Y. Chiang, D.W. Lee, H.S. Liu, Carbon dioxide capture by sodium hydroxideglycerol aqueous solution in a rotating packed bed, J. Taiwan Inst. Chem. Eng. 72 (2017) 29–36. doi:10.1016/j.jtice.2017.01.023. | eng |
dcterms.references | S.-M. Shih, C.-S. Ho, Y.-S. Song, J.-P. Lin, Kinetics of the Reaction of Ca(OH) 2 with CO 2 at Low Temperature, Ind. Eng. Chem. Res. 38 (1999) 1316–1322. doi:10.1021/ie980508z | eng |
dcterms.references | E. Worrell, L. Price, N. Martin, C. Hendriks, L.O. Meida, CARBON DIOXIDE MISSIONS FROM THE GLOBAL CEMENT INDUSTRY, Annu. Rev. Energy Environ. 26 (2001) 303–329. doi:10.1146/annurev.energy.26.1.303. | eng |
dcterms.references | F. Schorcht, I. Kourti, B. Maria Scalet, S. Roudier, L. Delgado Sancho, Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, 2013. doi:10.2788/12850. | eng |
dcterms.references | S. Campanari, G. Cinti, S. Consonni, K. Feiger, M. Gatti, H. Hoppe, I. Martínez, M. Romano, M. Spinelli, M. Voldsund, D4.1 Design and performance of CEMCAP cement plant without CO2 capture, 2016. | eng |
dcterms.references | del P. Strother, Manufacture of Portland Cement, in: Lea’s Chem. Cem. Concr. (Fifth Ed., Butterworth-Heinemann, 2019: pp. 31–56. doi:10.1016/B978-0-08-100773- 0.00002-2. | eng |
dcterms.references | M. Voldsun, R. Anantharaman, D. Bestad, G. Cinti, E. De Lena, M. Gatti, M. Gazzani, H. Hoppe, I. Martínez, J. Garcia, S. Monteiro, M. Romano, S. Roussanaly, E. Schols, M. Spinelli, S. Stroset, P. van Os, CEMCAP preliminary framework for comparative techno- economic analysis of CO2 capture from cement plants, 2015. | eng |
dcterms.references | A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng. 109 (2013) 364–392. doi:10.1016/J.PETROL.2013.03.013. | eng |
dcterms.references | A. Sanna, L. Steel, M.M. Maroto-Valer, Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study, J. Environ. Manage. 189 (2017) 84–97. doi:10.1016/j.jenvman.2016.12.029 | eng |
dcterms.references | Y. Tavan, S.H. Hosseini, A novel rate of the reaction between NaOH with CO2 at low temperature in spray dryer, Petroleum. 3 (2017) 51–55. doi:10.1016/j.petlm.2016.11.006. | eng |
dcterms.references | S. Park, H. Jo, D. Kang, J. Park, A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry, Energy. 75 (2014) 624–629. doi:10.1016/j.energy.2014.08.036. | eng |
dcterms.references | S. Park, J. Min, M.-G. Lee, H. Jo, J. Park, Characteristics of CO2 fixation by chemical conversion to carbonate salts, Chem. Eng. J. 231 (2013) 287–293 doi:10.1016/j.cej.2013.07.032. | eng |
dcterms.references | S. Teir, Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags, 2008. | eng |
dcterms.references | S. Park, M.G. Lee, J. Park, CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods, Energy. 59 (2013) 737–742. doi:10.1016/j.energy.2013.07.057 | eng |
dcterms.references | A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev. 43 (2014) 8049– 8080. doi:10.1039/C4CS00035H | eng |
dcterms.references | W.J.J. Huijgen, R.N.J. Comans, G.-J. Witkamp, Cost evaluation of CO2 sequestration by aqueous mineral carbonation, Energy Convers. Manag. 48 (2007) 1923–1935. doi:10.1016/J.ENCONMAN.2007.01.035. | eng |
dcterms.references | P.K. Naraharisetti, T.Y. Yeo, J. Bu, New classification of CO2 mineralization processes and economic evaluation, Renew. Sustain. Energy Rev. 99 (2019) 220–233. | eng |
dcterms.references | Skyonic Corporation, Enbridge Inc., ConocoPhillips, Skyonic Secures $ 12.5M to Develop SkyCycle TM Technology, (2014) 2. https://www.marketwatch.com/pressrelease/skyonic-secures-125m-to-develop-skycycle-technology-2014-05-22 (accessed February 17, 2019). | eng |
dcterms.references | E. De Lena, M. Spinelli, M. Gatti, R. Scaccabarozzi, S. Campanari, S. Consonni, G. Cinti, M.C. Romano, Techno-economic analysis of calcium looping processes for low CO2 emission cement plants, Int. J. Greenh. Gas Control. 82 (2019) 244–260. doi:10.1016/J.IJGGC.2019.01.005. | eng |
dcterms.references | R.S. Norhasyima, T.M.I. Mahlia, Advances in CO₂ utilization technology: A patent landscape review, J. CO2 Util. 26 (2018) 323–335. doi:10.1016/J.JCOU.2018.05.022. | eng |
dcterms.references | M. Krau, R. Rzehak, Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models, Chem. Eng. Sci. 166 (2017) 193–209. doi:10.1016/j.ces.2017.03.029 | eng |
dcterms.references | C. Arenas, L. Ricaurte, M. Figueredo, M. Cobo, CO2 capture via barium carbonate formation after its absorption with ammonia in a pilot scale column, Chem. Eng. J. 254 (2014) 220–229. doi:10.1016/j.cej.2014.05.108. | eng |
dcterms.references | T. Wang, S. Garcia, H. Huang, R. Guo, X. Hu, M. Fang, Z. Luo, M.M. Maroto-Valer, Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment, J. Clean. Prod. (2018). doi:10.1016/J.JCLEPRO.2018.11.215 | eng |
dcterms.references | S. Teir, S. Eloneva, R. Zevenhoven, Production of precipitated calcium carbonate from calcium silicates and carbon dioxide, Energy Convers. Manag. 46 (2005) 2954– 2979. doi:10.1016/j.enconman.2005.02.009. | eng |
dcterms.references | F. Wang, D. Dreisinger, M. Jarvis, T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration, Miner. Eng. 131 (2019) 185–197. doi:10.1016/J.MINENG.2018.11.024. | eng |
dcterms.references | S. Teir, R. Kuusik, C.-J. Fogelholm, R. Zevenhoven, Production of magnesium carbonates from serpentinite for long-term storage of CO2, (2007). doi:10.1016/j.minpro.2007.08.007. | eng |
dcterms.references | M.C. Dichicco, S. Laurita, M. Paternoster, G. Rizzo, R. Sinisi, G. Mongelli, Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study, Energy Procedia. 76 (2015) 477–486. doi:10.1016/j.egypro.2015.07.888 | eng |
dcterms.references | S. Eloneva, A. Said, C.-J. Fogelholm, R. Zevenhoven, Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate, Appl. Energy. 90 (2012) 329–334. doi:10.1016/j.apenergy.2011.05.045 | eng |
dcterms.references | S. Eloneva, E.-M. Puheloinen, J. Kanerva, A. Ekroos, R. Zevenhoven, C.-J. Fogelholm, Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues, J. Clean. Prod. 18 (2010) 1833–1839. doi:10.1016/J.JCLEPRO.2010.07.026 | eng |
dcterms.references | S. Eloneva, S. Teir, J. Salminen, C.-J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy. 33 (2008) 1461– 1467. doi:10.1016/j.energy.2008.05.003. | eng |
dcterms.references | R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catal. Today. 115 (2006) 73–79. doi:10.1016/j.cattod.2006.02.020. | eng |
dcterms.references | J.H. Lee, J.H. Lee, I.K. Park, C.H. Lee, Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments, J. CO2 Util. 26 (2018) 522–536. doi:10.1016/J.JCOU.2018.06.007. | eng |
dcterms.references | Capitol Aggregates, Sustainability-Skyonic, (n.d.). http://www.capitolaggregates.com/s/Sustainability-Skyonic (accessed November 27, 2018). | eng |
dcterms.references | E.S. Rubin, Understanding the pitfalls of CCS cost estimates, Int. J. Greenh. Gas Control. 10 (2012) 181–190. doi:10.1016/j.ijggc.2012.06.004 | eng |
dcterms.references | National Research Council, Modeling the Economics of Greenhouse Gas Mitigation: Summary of a Workshop, 2013. papers2://publication/uuid/097BFD81-C6F0-4766- AD96-8BB63FD0E4B7. | eng |
dcterms.references | E. Committee, I.E.A.G.H.G. Programme, O. Agent, I.E. Agency, Criteria for Technical and Economic Assessment of Plants With Low CO₂ Emissions, Energy. (2009). | eng |
dcterms.references | E.S. Rubin, C. Short, G. Booras, J. Davison, C. Ekstrom, M. Matuszewski, S. McCoy, A proposed methodology for CO2 capture and storage cost estimates, Int. J. Greenh. Gas Control. 17 (2013) 488–503. doi:10.1016/j.ijggc.2013.06.004. | eng |
dcterms.references | H. Ali, N.H. Eldrup, F. Normann, R. Skagestad, L.E. Øi, Cost Estimation of CO2 Absorption Plants for CO2 Mitigation – Method and Assumptions, Int. J. Greenh. Gas Control. 88 (2019) 10–23. doi:10.1016/j.ijggc.2019.05.028. | eng |
dcterms.references | Z. Xie, B. Yan, J.H. Lee, Q. Wu, X. Li, B. Zhao, D. Su, L. Zhang, J.G. Chen, Effects of oxide supports on the CO 2 reforming of ethane over Pt-Ni bimetallic catalysts, Appl. Catal. B Environ. (2019) 376–388. doi:10.1016/j.apcatb.2018.12.070 | eng |
dcterms.references | N. Ansari, A. Seifi, A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry, Energy. 43 (2012) 334–343. doi:10.1016/j.energy.2012.04.020 | eng |
dcterms.references | A. Ford, System Dynamics Models of Environment, Energy and Climate Change, in: R.A. Meyers (Ed.), Encycl. Complex. Syst. Sci., Springer New York, New York, NY, 2009: pp. 9014–9034. doi:10.1007/978-0-387-30440-3_541 | eng |
dcterms.references | Z. Jokar, A. Mokhtar, Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach, J. Clean. Prod. 201 (2018) 142–155. doi:10.1016/J.JCLEPRO.2018.07.286. | eng |
dcterms.references | S. Anand, P. Vrat, R.P.P. Dahiya, Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry, J. Environ. Manage. 79 (2006) 383–398. doi:10.1016/j.jenvman.2005.08.007. | eng |
dcterms.references | N. Ghaffarzadegan, A.T. Tajrishi, Economic transition management in a commodity market: the case of the Iranian cement industry, Syst. Dyn. Rev. 26 (2010) 139–161. doi:10.1002/sdr.438. | eng |
dcterms.references | E. Suryani, S.Y. Chou, R. Hartono, C.H. Chen, Demand scenario analysis and planned capacity expansion: A system dynamics framework, Simul. Model. Pract. Theory. 18 (2010) 732–751. doi:10.1016/j.simpat.2010.01.013 | eng |
dcterms.references | T. He-feng, C. Yuan-sheng, Q. Wei-shuang, L. Ya, System Dynamic Scenarios Analysis of CO2 Emissions of China’s Cement Industry, China Soft Sci. 03 (2010). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGRK201003007.htm | eng |
dcterms.references | N. Ansari, A. Seifi, A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios, Energy Policy. 58 (2013) 75–89. doi:10.1016/j.enpol.2013.02.042. | eng |
dcterms.references | M. Nehdi, R. Rehan, S.P. Simonovic, System dynamics model for sustainable cement and concrete: Novel tool for policy analysis, ACI Mater. J. 101 (2004) 216–225. doi:10.14359/13117 | eng |
dcterms.references | J. Vargas, A. Halog, Effective carbon emission reductions from using upgraded fly ash in the cement industry, J. Clean. Prod. 103 (2015) 948–959. doi:10.1016/J.JCLEPRO.2015.04.136 | eng |
dcterms.references | European cement research academy, Cement Sustainability Initiative, Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead, Revision 2017, 2009 | eng |
dcterms.references | L. Hanle, P. Maldonado, O. Eiichi, M. Tichy, H. G. van oss, A. Victor, G. Edwards, M. Miller, MINERAL INDUSTRY EMISSIONS, in: 2006 IPCC Guidel. Natl. Greenh. Gas Invent., 2006. https://www.ipccnggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_2_Ch2_Mineral_Industry.pdf (accessed November 29, 2018). | eng |
dcterms.references | C. Nwaoha, M. Beaulieu, P. Tontiwachwuthikul, M.D. Gibson, Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend, Int. J. Greenh. Gas Control. 78 (2018) 400–412. doi:10.1016/J.IJGGC.2018.07.015. | eng |
dcterms.references | L. Proaño, M. Cobo, A. Sarmiento, M. Figueredo, Techno-economic analysis of indirect carbonation CO2 capture and utilization in a cement industry: Aspen Plus simulations results and System Dynamics model results, (2019). doi:10.17632/m5z5b5zdcw.1. | eng |
dcterms.references | G. Yincheng, N. Zhenqi, L. Wenyi, Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column, Energy Procedia. 4 (2011) 512–518. doi:10.1016/j.egypro.2011.01.082. | eng |
dcterms.references | S. Park, J.-H. Bang, K. Song, C.W. Jeon, J. Park, Barium carbonate precipitation as a method to fix and utilize carbon dioxide, Chem. Eng. J. 284 (2016) 1251–1258. doi:10.1016/j.cej.2015.09.059. | eng |
dcterms.references | Z. He, X. Zhu, J. Wang, M. Mu, Y. Wang, Comparison of CO2 emissions from OPC and recycled cement production, Constr. Build. Mater. 211 (2019) 965–973. doi:10.1016/j.conbuildmat.2019.03.289. | eng |
dcterms.references | T. Hosseini, N. Haque, C. Selomulya, L. Zhang, Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride - Process simulation and techno-economic analysis, Appl. Energy. 175 (2016) 54–68. doi:10.1016/j.apenergy.2016.04.093. | eng |
dcterms.references | P. Christensen, D.J. Burton, Cost Estimate Classification System – As Applied in Engineering , Procurement , and Construction for the Process Industries, Construction. (2005) 10. doi:Recommended Practice No. 18R-97 | eng |
dcterms.references | R.C. Bennett, Crystallizer selection and design, Handb. Ind. Cryst. (2002) 115–140. doi:10.1016/B978-075067012-8/50007-0. | eng |
dcterms.references | A.T. Balaban, Process Design Principles: Synthesis, Analysis, and Evaluation By Warren D. Seider, J. D. Seader, and Daniel R. Lewin. Wiley: New York. 1999. 824 pp. ISBN 0-471-24312-4. $99.95., J. Chem. Inf. Comput. Sci. 40 (2000) 882–883. doi:10.1021/ci000347l. | eng |
dcterms.references | Solid – Liquid Separation – Thickening, Miner. Process. Des. Oper. (2016) 471–506. doi:10.1016/B978-0-444-63589-1.00014-9. | eng |
dcterms.references | S.M. Glasgow, Crystallization, Ferment. Biochem. Eng. Handb. (2014) 309–318. doi:10.1016/B978-1-4557-2553-3.00015-5 | eng |
dcterms.references | ECHEMI.com, Optimize the Global Chemical Resources - Echemi.com, (n.d.). https://www.echemi.com/ (accessed March 6, 2019) | eng |
dcterms.references | M. Hitch, G.M. Dipple, Economic feasibility and sensitivity analysis of integrating industrial-scale mineral carbonation into mining operations, Miner. Eng. 39 (2012) 268–275. doi:10.1016/j.mineng.2012.07.007 | eng |
dcterms.references | DANE, Grey Cement Statistics, (n.d.). http://www.dane.gov.co/index.php/en/statistics-by-topic/construction/grey-cementstatistics (accessed November 30, 2018). | eng |
dcterms.references | The Cement Sustainability Initiative (CSI), Cement Production, (n.d.). https://www.wbcsdcement.org/index.php/about-cement/cement-production (accessed November 30, 2018). | eng |
dcterms.references | J.D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World (Book), Irwin/McGraw-Hill, Boston, 2000 | eng |
dcterms.references | Research Reports World, Global Barium Carbonate Market 2017 2021, (2017). https://www.researchreportsworld.com/global-barium-carbonate-market-2017-2021- 11459466 (accessed May 21, 2019). | eng |
dcterms.references | MarketWatch, By 2024, Sodium Bicarbonate Market to exceed $9bn, (2018). https://www.marketwatch.com/press-release/by-2024-sodium-bicarbonate-marketto-exceed-9bn-2018-09-10 (accessed May 21, 2019). | eng |
dcterms.references | MarketWatch, Global Sodium Bicarbonate Market Report 2019 Competitive Landscape Trends And Opportunities, (2019). https://www.industryresearch.co/global-sodium-bicarbonate-market-report-2019- competitive-landscape-trends-and-opportunities-14099956 (accessed May 21, 2019). | eng |
dcterms.references | M.M.F. Hasan, E.L. First, F. Boukouvala, C.A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU, Comput. Chem. Eng. 81 (2015) 2–21. doi:10.1016/j.compchemeng.2015.04.034. | eng |
dcterms.references | IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge and New York, 2005 | eng |
dcterms.references | OECD, Effective Carbon Rates 2018: Pricing Carbon Emissions Through Taxes and Emissions Trading, OECD Publishing, Paris, 2018. doi:10.1787/9789264305304-en. | eng |