Mostrar el registro sencillo del ítem
Learning analytics and personalization of learning: a review
dc.contributor.advisor | Chiappe Laverde, Andrés | |
dc.contributor.author | Gonzalez Mosquera, Nubia Andrea del Pilar | |
dc.date.accessioned | 2020-05-19T12:39:40Z | |
dc.date.available | 2020-05-19T12:39:40Z | |
dc.date.issued | 2020-03-04 | |
dc.identifier.uri | http://hdl.handle.net/10818/41096 | |
dc.description | 37 páginas | es_CO |
dc.description.abstract | Education in the 21st century is increasingly mediated by digital technologies in a context in which enormous amounts of information are daily generated. Regarding this and considering the imminent application of emerging trends such as "Internet of Things” (IoT), the study of its educational effects becomes a matter of great relevance for both educational researchers and practitioners. In this context, "Learning Analytics" takes on special importance as a perspective to approach the aforementioned issue, especially from a very relevant topic: the personalization of learning. In this sense, a systematic review of literature about learning analytics published in the last decade was carried out in order to identify its potential as a factor to strengthen the personalization of learning. The results show a set of key factors that include aspects related to assessment, the use of dashboards, social learning networks and intelligent tutoring and the importance of monitoring, feedback and support | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject | Educación | es_CO |
dc.subject | Innovaciones educativas | es_CO |
dc.subject | Tecnología educativa | es_CO |
dc.subject | Big Data | es_CO |
dc.title | Learning analytics and personalization of learning: a review | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Informática Educativa | es_CO |
dc.publisher.department | Centro de Tecnologías para la Academia | es_CO |
dc.identifier.local | 276816 | |
dc.identifier.local | TE10647 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magister en Informática Educativa | es_CO |
dcterms.references | Admiraal, W., Huisman, B., & Pilli, O. (2015). Assessment in massive open online courses. Electronic Journal of e-Learning, 13(4), 207–216 | eng |
dcterms.references | Albelbisi, N., Yusop, F. D., & Salleh, U. K. M. (2018). Mapping the Factors Influencing Success of Massive Open Online Courses (MOOC) in Higher Education. Eurasia Journal of Mathematics, Science and Technology Education, 14(7), 2995–3012. doi:10.29333/ejmste/91486 | eng |
dcterms.references | Albishi, S., Soh, B., Ullah, A., & Algarni, F. (2017). Challenges and Solutions for Applications and Technologies in the Internet of Things. Procedia Computer Science, 124, 608–614. doi:10.1016/j.procs.2017.12.196 | eng |
dcterms.references | Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13–49. doi:10.1016/j.tele.2019.01.007 | eng |
dcterms.references | Ament, V., & Edwards, R. (2018). Better teaching and more learning in mobile learning courses: Towards a model of personable learning. In Proceedings of the 14th International Conference on Mobile Learning 2018, ML 2018 (pp. 214–218). Presented at the 14th International Conference on Mobile Learning 2018, ML 2018, Lisbon, Portugal: IADIS. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85052241220&partnerID=40&md5=6ca1258e009575fc0f41ba59f5ac8718 | eng |
dcterms.references | Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12 (p. 267). Presented at the the 2nd International Conference, Vancouver, British Columbia, Canada: ACM Press. doi:10.1145/2330601.2330666 | eng |
dcterms.references | Boscardin, C., Fergus, K. B., Hellevig, B., & Hauer, K. E. (2018). Twelve tips to promote successful development of a learner performance dashboard within a medical education program. Medical Teacher, 40(8), 855–861. doi:10.1080/0142159X.2017.1396306 | eng |
dcterms.references | Bozkurt, A., Ozdamar Keskin, N., & De Waard, I. (2016). Research Trends in Massive Open Online Course (MOOC) Theses and Dissertations: Surfing the Tsunami Wave. Open Praxis, 8(3), 203–221. doi:10.5944/openpraxis.8.3.287 | eng |
dcterms.references | Bridgeman, A., & Rutledge, P. (2010). Getting Personal: feedBack for the Masses. Synergy, (30), 61–68. | eng |
dcterms.references | Buitrago, M., & Chiappe, A. (2019). Representation of knowledge in digital educational environments: A systematic review of literature. Australasian Journal of Educational Technology, 35(4), 46–62. doi:10.14742/ajet.4041 | eng |
dcterms.references | Burrows, J., & Kumar, V. (2018). The Objective Ear: Assessing the Progress of a Music Task. In M. Chang, E. Popescu, Kinshuk, N.-S. Chen, M. Jemni, R. Huang, & J. M. Spector (Eds.), Challenges and Solutions in Smart Learning (pp. 107–112). Singapore: Springer Singapore. doi:10.1007/978-981-10-8743-1_15 | eng |
dcterms.references | Chai, M., Lin, Y., & Li, Y. (2018). Machine Learning and Modern Education. In S. Liu, M. Glowatz, M. Zappatore, H. Gao, B. Jia, & A. Bucciero (Eds.), e-Learning, eEducation, and Online Training (Vol. 243, pp. 41–46). Shanghai, China: Springer International Publishing. doi:10.1007/978-3-319-93719-9_6 | eng |
dcterms.references | Chatti, M. A., & Muslim, A. (2019). The PERLA framework: Blending personalization and learning analytics. International Review of Research in Open and Distance Learning, 20(1), 244–261. | eng |
dcterms.references | Chauhan, J., & Goel, A. (2016). An analysis of quiz in MOOC. In 2016 Ninth International Conference on Contemporary Computing (IC3) (pp. 1–6). Presented at the 2016 Ninth International Conference on Contemporary Computing (IC3), Noida, India: IEEE. doi:10.1109/IC3.2016.7880245 | eng |
dcterms.references | Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695. doi:10.1080/13562517.2013.827653 | eng |
dcterms.references | Conde, M. A., Colomo-Palacios, R., García-Peñalvo, F. J., & Larrucea, X. (2018). Teamwork assessment in the educational web of data: A learning analytics approach towards ISO 10018. Telematics and Informatics, 35(3), 551–563. doi:10.1016/j.tele.2017.02.001 | eng |
dcterms.references | Doko, E., & Bexheti, L. A. (2018). A systematic mapping study of educational technologies based on educational data mining and learning analytics. In 2018 7th Mediterranean Conference on Embedded Computing (MECO) (pp. 1–4). Presented at the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro: IEEE. doi:10.1109/MECO.2018.8406052 | eng |
dcterms.references | Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Educational Technology and Society, 15(3), 58–76 | eng |
dcterms.references | Eckerson, W. W. (2006). Performance dashboards: measuring, monitoring, and managing your business. Hoboken, NJ, USA: John Wiley & Sons. http://paper.shiftit.ir/sites/default/files/book/04SPerformance%20Dashboards%2C%20measuring%2C%20monitoring%20and%20man aging%20your%20business-.pdf | eng |
dcterms.references | El Alfy, S., Marx Gómez, J., & Dani, A. (2019). Exploring the benefits and challenges of learning analytics in higher education institutions: a systematic literature review. Information Discovery and Delivery, 47(1), 25–34. doi:10.1108/IDD-06-2018-0018 | eng |
dcterms.references | Ellaway, R. H., Pusic, M. V., Galbraith, R. M., & Cameron, T. (2014). Developing the role of big data and analytics in health professional education. Medical Teacher, 36(3), 216– 222. doi:10.3109/0142159X.2014.874553 | eng |
dcterms.references | Engeness, I., & Mørch, A. (2016). Developing Writing Skills in English Using ContentSpecific Computer-Generated Feedback with EssayCritic. Nordic Journal of Digital Literacy, 10(02), 118–135. doi:10.18261/issn.1891-943x-2016-02-03 | eng |
dcterms.references | Fasihuddin, H., Skinner, G., & Athauda, R. (2015). A Framework to Personalise Open Learning Environments by Adapting to Learning Styles: In Proceedings of the 7th International Conference on Computer Supported Education (pp. 296–305). Presented at the 7th International Conference on Computer Supported Education, Lisbon, Portugal: SCITEPRESS - Science and and Technology Publications. doi:10.5220/0005443502960305 | eng |
dcterms.references | Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering education, 78(7), 674–681. | eng |
dcterms.references | Fraifer, M., Kharel, S., Hasenfuss, H., Elmangoush, A., Ryan, A., Elgenaidi, W., & Fernstrom, M. (2017). Look before you leap: Exploring the challenges of technology and user experience in the Internet of Things. In 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI) (pp. 1–6). Presented at the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry - Innovation to Shape the Future for Society and Industry (RTSI), Modena, Italy: IEEE. doi:10.1109/RTSI.2017.8065920 | eng |
dcterms.references | Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64–71. doi:10.1007/s11528-014-0822-x | eng |
dcterms.references | Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 1–4. | eng |
dcterms.references | Goyal, T., Rathi, R., Jain, V. K., Pilli, E. S., & Mazumdar, A. P. (2018). Big Data Handling Over Cloud for Internet of Things: International Journal of Information Technology and Web Engineering, 13(2), 37–47. doi:10.4018/IJITWE.2018040104 | eng |
dcterms.references | Haladyna, T. M., & Downing, S. M. (2004). Construct-irrelevant variance in high-stakes testing. Educational Measurement: Issues and Practice, 23(1), 17–27. doi:https://doi.org/10.1111/j.1745-3992.2004.tb00149.x | eng |
dcterms.references | Hart, C. (2018). Doing a literature review: Releasing the research imagination. London, UK: Sage. https://s3.amazonaws.com/academia.edu.documents/35996527/Doing_a_L_review.pdf ?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1554924577&Signatu re=41OmDV63Ah92goxikF52BkU26hg%3D&response-contentdisposition=inline%3B%20filename%3DDoing_a_Literature_Review_Releasing_the. pdf | eng |
dcterms.references | Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. The Main Idea. http://www.sst7.org/media/54c943ce56838.pdf | eng |
dcterms.references | Hersh, M. A., & Leporini, B. (2012). Accessibility and usability of educational games for disabled students. In C. Gonzalez (Ed.), Student Usability in Educational Software and Games: Improving Experiences: Improving Experiences (pp. 1–40). Hershey PA: IGI Global. https://tinyurl.com/y5gxydrb | eng |
dcterms.references | Higgins, J. P. T., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/manual_cochrane_51 0_web.pdf | eng |
dcterms.references | Holmes, M., Latham, A., Crockett, K., & OShea, J. D. (2018). Near Real-Time Comprehension Classification with Artificial Neural Networks: Decoding e-Learner Non-Verbal Behavior. IEEE Transactions on Learning Technologies, 11(1), 5–12. doi:10.1109/TLT.2017.2754497 | eng |
dcterms.references | Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37, 66– 75. doi:10.1016/j.iheduc.2018.02.001 | eng |
dcterms.references | Hwang, G.-J. (2014). Definition, framework and research issues of smart learning environments - a context-aware ubiquitous learning perspective. Smart Learning Environments, 1(1), 4. doi:10.1186/s40561-014-0004-5 | eng |
dcterms.references | Ifenthaler, D., & Schumacher, C. (2016). Student perceptions of privacy principles for learning analytics. Educational Technology Research and Development, 64(5), 923– 938. doi:10.1007/s11423-016-9477-y | eng |
dcterms.references | Jena, R. K. (2018). Predicting students’ learning style using learning analytics: a case study of business management students from India. Behaviour & Information Technology, 37(10–11), 978–992. doi:10.1080/0144929X.2018.1482369 | eng |
dcterms.references | Kato, T., Kambayashi, Y., & Kodama, Y. (2018). Using a Programming Exercise Support System as a Smart Educational Technology. In V. L. Uskov, J. P. Bakken, R. J. Howlett, & L. C. Jain (Eds.), Smart Universities (Vol. 70, pp. 295–324). Cham: Springer International Publishing. doi:10.1007/978-3-319-59454-5_10 | eng |
dcterms.references | Kucak, D., Juricic, V., & Dambic, G. (2018). Machine Learning in Education - a Survey of Current Research Trends. In B. Katalinic (Ed.), DAAAM Proceedings (1st ed., Vol. 1, pp. 406–410). Zadar, Croatia: DAAAM International Vienna. doi:10.2507/29th.daaam.proceedings.059 | eng |
dcterms.references | Kurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour & Information Technology, 38(4), 410–421. doi:10.1080/0144929X.2018.1539517 | eng |
dcterms.references | Lajoie, S., & Azevedo, R. (2012). Teaching and learning in technology-rich environments. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (Second Edition., pp. 803–823). New York, NY: Routledge. https://tinyurl.com/yy57bdgk | eng |
dcterms.references | Liu, D. Y.-T., Bartimote-Aufflick, K., Pardo, A., & Bridgeman, A. J. (2017). Data-Driven Personalization of Student Learning Support in Higher Education. In A. Peña-Ayala (Ed.), Learning Analytics: Fundaments, Applications, and Trends (Vol. 94, pp. 143– 169). Cham: Springer International Publishing. doi:10.1007/978-3-319-52977-6_5 | eng |
dcterms.references | Llopart, M., & Esteban-Guitart, M. (2018). Funds of knowledge in 21st century societies: inclusive educational practices for under-represented students. A literature review. Journal of Curriculum Studies, 50(2), 145–161. doi:10.1080/00220272.2016.1247913 | eng |
dcterms.references | Martinez-Maldonado, R., Echeverria, V., Santos, O. C., Santos, A. D. P. D., & Yacef, K. (2018). Physical learning analytics: a multimodal perspective. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge - LAK ’18 (pp. 375–379). Presented at the the 8th International Conference, Sydney, New South Wales, Australia: ACM Press. doi:10.1145/3170358.3170379 | eng |
dcterms.references | McKenna, H. P., Arnone, M. P., & Chauncey, S. A. (2013). Ambient intelligence & information interactions: Theorizing autonomies & awareness for 21st century society a technology-people balance. In 2013 IEEE International Symposium on Technology and Society (ISTAS): Social Implications of Wearable Computing and Augmediated Reality in Everyday Life (pp. 227–236). Presented at the 2013 IEEE International Symposium on Technology and Society (ISTAS), Toronto, ON, Canada: IEEE. doi:10.1109/ISTAS.2013.6613124 | eng |
dcterms.references | Miranda, J. A., Canabal, M. F., García, M. P., & Lopez-Ongil, C. (2018). Embedded emotion recognition: Autonomous multimodal affective internet of things. In CEUR Workshop Proceedings (Vol. 2208, pp. 22–29). Presented at the 2018 Cyber-Physical Systems PhD and Postdoc Workshop, CPSWS 2018, Alghero, Italy: CEUR-WS. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85053772645&partnerID=40&md5=3371b41ce73cea24f7cbb92c2f40e95d | eng |
dcterms.references | Mohd, C. K. N. C. K., & Shahbodin, F. (2015). Personalized Learning Environment (PLE) integration in the 21st century classroom. International Journal of Computer Information Systems and Industrial Management Applications, 7(1), 14–21. | eng |
dcterms.references | Mothukuri, U. K., Reddy, B. V., Reddy, P. N., Gutti, S., Mandula, K., Parupalli, R., et al. (2017). Improvisation of learning experience using learning analytics in eLearning. In 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH) (pp. 1–6). Presented at the 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), Hyderabad, India: IEEE. doi:10.1109/ELELTECH.2017.8074995 | eng |
dcterms.references | Muslim, A., Chatti, M. A., Mughal, M., & Schroeder, U. (2017). The goal-Question-Indicator approach for personalized learning analytics. In CSEDU 2017 - Proceedings of the 9th International Conference on Computer Supported Education (Vol. 1, pp. 371–378). Presented at the 9th International Conference on Computer Supported Education, CSEDU 2017, Porto, Portugal. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85023740180&partnerID=40&md5=c502f0b0510b6daacd769b919c086da0 | eng |
dcterms.references | Nandigam, D., Tirumala, S. S., & Baghaei, N. (2014). Personalized learning: Current status and potential. In 2014 IEEE Conference on e-Learning, e-Management and e-Services (IC3e) (pp. 111–116). Presented at the 2014 IEEE Conference on e-Learning, eManagement and e-Services (IC3e), Hawthorn, Australia: IEEE. doi:10.1109/IC3e.2014.7081251 | eng |
dcterms.references | Nguyen, Q., Rienties, B., Toetenel, L., Ferguson, R., & Whitelock, D. (2017). Examining the designs of computer-based assessment and its impact on student engagement, satisfaction, and pass rates. Computers in Human Behavior, 76, 703–714. doi:10.1016/j.chb.2017.03.028 | eng |
dcterms.references | Pappas, I. O., Giannakos, M. N., & Sampson, D. G. (2019). Fuzzy set analysis as a means to understand users of 21st-century learning systems: The case of mobile learning and reflections on learning analytics research. Computers in Human Behavior, 92, 646– 659. doi:10.1016/j.chb.2017.10.010 | eng |
dcterms.references | Parthiban, P., & Selvakumar, S. (2016). Big Data Analysis in the Internet of Things Platform. Indian Journal of Science and Technology, 9(41), 1–4. doi:10.17485/ijst/2016/v9i41/91747 | eng |
dcterms.references | Raposo-Rivas, M., Martínez-Figueira, E., & Sarmiento-Campos, J. A. (2015). A Study on the Pedagogical Components of Massive Online Courses. Comunicar, 22(44), 27–35. doi:10.3916/C44-2015-03 | eng |
dcterms.references | Rienties, B., Cross, S., & Zdrahal, Z. (2017). Implementing a learning analytics intervention and evaluation framework: What works? In Big data and learning analytics in Higher Education (pp. 147–166). Switzerland: Springer. | eng |
dcterms.references | Roll, I., & Wylie, R. (2016). Evolution and Revolution in Artificial Intelligence in Education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. doi:10.1007/s40593-016-0110-3 | eng |
dcterms.references | Romero, L., Saucedo, C., Caliusco, Ma. L., & Gutiérrez, M. (2019). Supporting self-regulated learning and personalization using ePortfolios: a semantic approach based on learning paths. International Journal of Educational Technology in Higher Education, 16(1), 16. doi:10.1186/s41239-019-0146-1 | eng |
dcterms.references | Rowe, E., Asbell-Clarke, J., Baker, R. S., Eagle, M., Hicks, A. G., Barnes, T. M., et al. (2017). Assessing implicit science learning in digital games. Computers in Human Behavior, 76, 617–630. doi:10.1016/j.chb.2017.03.043 | eng |
dcterms.references | Sakulkueakulsuk, B., Witoon, S., Ngarmkajornwiwat, P., Pataranutapom, P., Surareungchai, W., Pataranutaporn, P., & Subsoontorn, P. (2018). Kids making AI: Integrating Machine Learning, Gamification, and Social Context in STEM Education. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 1005–1010). Presented at the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Wollongong, NSW: IEEE. doi:10.1109/TALE.2018.8615249 | eng |
dcterms.references | San Pedro, M. O. Z., Baker, R. S., & Heffernan, N. T. (2017). An Integrated Look at Middle School Engagement and Learning in Digital Environments as Precursors to College Attendance. Technology, Knowledge and Learning, 22(3), 243–270. doi:10.1007/s10758-017-9318-z | eng |
dcterms.references | Scholes, V. (2016). The ethics of using learning analytics to categorize students on risk. Educational Technology Research and Development, 64(5), 939–955. doi:10.1007/s11423-016-9458-1 | eng |
dcterms.references | Shute, V. J., Masduki, I., Donmez, O., & Wang, C. Y. (2010). Assessing key competencies within game environments. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 281–309). Boston, MA: Springer. https://link.springer.com/book/10.1007%2F978-1-4419-5662- 0#about | eng |
dcterms.references | Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380–1400. doi:10.1177/0002764213498851 | eng |
dcterms.references | Sijing, L., & Lan, W. (2018). Artificial Intelligence Education Ethical Problems and Solutions. In 2018 13th International Conference on Computer Science & Education (ICCSE) (pp. 1–5). Presented at the 2018 13th International Conference on Computer Science & Education (ICCSE), Colombo: IEEE. doi:10.1109/ICCSE.2018.8468773 | eng |
dcterms.references | Singh, A. B., & Mørch, A. I. (2018). An Analysis of Participants’ Experiences from the First International MOOC Offered at the University of Oslo. Nordic Journal of Digital Literacy, 13(01), 40–64. doi:10.18261/issn.1891-943x-2018-01-04 | eng |
dcterms.references | Slade, S., & Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57(10), 1510–1529. doi:10.1177/0002764213479366 | eng |
dcterms.references | Sunar, A. S., Abdullah, N. A., White, S., & Davis, H. (2016). Personalisation in MOOCs: A Critical Literature Review. In S. Zvacek, M. T. Restivo, J. Uhomoibhi, & M. Helfert (Eds.), Computer Supported Education (Vol. 583, pp. 152–168). Cham: Springer International Publishing. doi:10.1007/978-3-319-29585-5_9 | eng |
dcterms.references | Tam, V., Lam, E. Y., & Huang, Y. (2014). Facilitating a personalized learning environment through learning analytics on mobile devices. In 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) (pp. 429–432). Presented at the 2014 International Conference of Teaching, Assessment and Learning (TALE), Wellington, New Zealand: IEEE. doi:10.1109/TALE.2014.7062580 | eng |
dcterms.references | Tempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408–420. doi:10.1016/j.chb.2017.08.010 | eng |
dcterms.references | Terras, M. M., Boyle, E. A., Ramsay, J., & Jarrett, D. (2018). The opportunities and challenges of serious games for people with an intellectual disability: The opportunities and challenges of serious games. British Journal of Educational Technology, 49(4), 690–700. doi:10.1111/bjet.12638 | eng |
dcterms.references | Thomas, D., & Brown, J. S. (2011). A new culture of learning: Cultivating the imagination for a world of constant change. American Journal of Play, 219(2), 121–123 | eng |
dcterms.references | Thompson, G., & Cook, I. (2017). The logic of data-sense: thinking through Learning Personalisation. Discourse: Studies in the Cultural Politics of Education, 38(5), 740– 754. doi:10.1080/01596306.2016.1148833 | eng |
dcterms.references | Vahdat, M., Ghio, A., Oneto, L., Anguita, D., Funk, M., & Rauterberg, M. (2015). Advances in Learning Analytics and Educational Data Mining. In 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015 - Proceedings (pp. 297–306). Presented at the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015, Bruges, Belgium: i6doc.com publication. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84961807010&partnerID=40&md5=bea2c40d7940bd536a62e9f571b18f72 | eng |
dcterms.references | Vekariya, V., & Kulkarni, G. R. (2012). Notice of Violation of IEEE Publication Principles - Hybrid recommender systems: Survey and experiments. In 2012 Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP) (pp. 469–473). Presented at the 2012 Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), Bangkok: IEEE. doi:10.1109/DICTAP.2012.6215409 | eng |
dcterms.references | Veletsianos, G., & Shepherdson, P. (2016). A Systematic Analysis and Synthesis of the Empirical MOOC Literature Published in 2013–2015. The International Review of Research in Open and Distributed Learning, 17(2). doi:10.19173/irrodl.v17i2.2448 | eng |
dcterms.references | Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning Analytics Dashboard Applications. American Behavioral Scientist, 57(10), 1500–1509. doi:10.1177/0002764213479363 | eng |
dcterms.references | Vives-Varela, T., Durán-Cárdenas, C., Varela-Ruíz, M., & Fortoul van der Goes, T. (2014). La autorregulación en el aprendizaje, la luz de un faro en el mar. Investigación en educación médica, 3(9), 34–39. | spa |
dcterms.references | Wang, F., & Tao, X. (2018). Visual Analysis of the Application of Artificial Intelligence in Education. In 2018 International Joint Conference on Information, Media and Engineering (ICIME) (pp. 187–191). Presented at the 2018 International Joint Conference on Information, Media and Engineering (ICIME), Osaka: IEEE. doi:10.1109/ICIME.2018.00046 | eng |
dcterms.references | Wenger, E. (2014). Artificial intelligence and tutoring systems: computational and cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann Publishers, INC. https://tinyurl.com/yxf9m93f | eng |
dcterms.references | Williams, J. J., Kim, J., & Keegan, B. (2015). Supporting Instructors in Collaborating with Researchers using MOOClets. In Proceedings of the Second (2015) ACM Conference on Learning @ Scale - L@S ’15 (pp. 413–416). Presented at the the Second (2015) ACM Conference, Vancouver, BC, Canada: ACM Press. doi:10.1145/2724660.2728705 | eng |
dcterms.references | Williams, P. (2017). Assessing collaborative learning: big data, analytics and university futures. Assessment & Evaluation in Higher Education, 42(6), 978–989. doi:10.1080/02602938.2016.1216084 | eng |
dcterms.references | Xing, W., & Du, D. (2019). Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention. Journal of Educational Computing Research, 57(3), 547– 570. doi:10.1177/0735633118757015 | eng |
dcterms.references | Yi, B., Zhang, D., Wang, Y., Liu, H., Zhang, Z., Shu, J., & Lv, Y. (2017). Research on Personalized Learning Model under Informatization Environment. In 2017 International Symposium on Educational Technology (ISET) (pp. 48–52). Presented at the 2017 International Symposium on Educational Technology (ISET), Hong Kong: IEEE. doi:10.1109/ISET.2017.19 | eng |
dcterms.references | Zhang, J.-H., Zhang, Y.-X., Zou, Q., & Huang, S. (2018). What learning analytics tells us: Group behavior analysis and individual learning diagnosis based on long-term and large-scale data. Educational Technology and Society, 21(2), 245–258. | eng |
dcterms.references | Zhang, W., & Qin, S. (2018). A brief analysis of the key technologies and applications of educational data mining on online learning platform. In 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA) (pp. 83–86). Presented at the 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Shanghai: IEEE. doi:10.1109/ICBDA.2018.8367655 | eng |
dcterms.references | Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64–70. doi:10.1207/s15430421tip4102_2 | eng |