Mostrar el registro sencillo del ítem
Development and evaluation of ponential agar substitutes for microbiological media
dc.contributor.advisor | Ruiz Pardo, Ruth Yolanda | |
dc.contributor.advisor | Acosta González, Luis Alejandro | |
dc.contributor.author | Sanchez Cardozo, John Alexander | |
dc.date.accessioned | 2020-05-18T21:28:13Z | |
dc.date.available | 2020-05-18T21:28:13Z | |
dc.date.issued | 2020-03-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/41088 | |
dc.description | 76 páginas | es_CO |
dc.description.abstract | Los agentes gelificantes son componentes que solidifican los medios de cultivo para facilitar el aislamiento de colonias en cultivos puros. Entre los agentes gelificantes, el agar es el más utilizado en el campo microbiológico debido a propiedades como su baja temperatura de gelificación (35°C) y su textura (alta firmeza y baja adhesividad). El problema actual de la producción de agar es que la previa sobreexplotación de las poblaciones de las algas Gelidium spp ha creado escasez de agar y por lo tanto aumentado su precio de mercado hasta un 300%. El objetivo de esta investigación fue caracterizar y desarrollar mezclas como sustitutos del agar en cultivos microbiológicos. Para establecer las combinaciones de los agentes gelificantes se utilizó un diseño de mezclas usando 10 componentes, seleccionando la firmeza como variable de respuesta y como criterios de optimización la firmeza más cercana a la del agar al 2%. Los geles resultantes se caracterizaron mediante las técnicas de espectrometría infrarroja por transformada de Fourier (FTIR), reología y análisis de perfil de textura (TPA). Posteriormente se validaron microbiológicamente sembrando cepas de referencia (Staphylococcus aureus, Escherichia. coli and Bacillus subtillis, Fusarium oxysporum and Saccharomyces cerevisiae) y una muestra de suelo para su pre-identificación por MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight). El diseño de mezclas dio como resultado cuatro mezclas como potenciales sustitutos del agar: GeCaGhLb, GeCaArLb, GeCaAr and GeAr. Nombradas así por sus componentes, Gellan (Ge), Carragenina (Ca), goma Ghatti (Gh), goma arábiga (Ar) y Locust bean (Lb). La mezcla GeCaAr resultó en una firmeza igual que el agar (141g), GeCaGhLb y GeCaArLb una firmeza 40% superior (200g) y una última con una firmeza 50% inferior (69g). | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject | Microbiología | es_CO |
dc.subject | Agar | es_CO |
dc.subject | Mezclas | es_CO |
dc.subject | Gelificación | es_CO |
dc.title | Development and evaluation of ponential agar substitutes for microbiological media | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en diseño y gestión de procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 276812 | |
dc.identifier.local | TE10644 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | Abbott, I. I. A., & Chapman, F. A. (1981). Evaluation of Kappa carrageenan as a substitute for agar in microbiological media, (11), 355–359. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7013726 | eng |
dcterms.references | Aderibigbe, E. Y., & Odunfa, S. A. (1990). Growth and extracellular enzyme production by strains of Bacillus species isolated from fermenting African locust bean, iru. Journal of Applied Bacteriology, 69(5), 662–671 | eng |
dcterms.references | Al-Assaf, S., Amar, V., & Philips, G. O. (2008). Characterisation of Gum Ghatti and Comparison with Gum Arabic. In P. A. Williams & G. O. Phillips (Eds.), Gums and Stabilisers for the Food Industry 14 (pp. 280–290). Cambridge: Royal Society of Chemistry | eng |
dcterms.references | Alawi, S. M. Al, Hossain, M. A., & Abusham, A. A. (2017). Antimicrobial and cytotoxic comparative study of different extracts of Omani and Sudanese Gum acacia. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 22–26. | eng |
dcterms.references | Amao, J. A., Odunfa, S. A., & Mbom, C. N. (2017). The role of Staphylococcus species in the production of iru during the fermentation of African locust beans (Parkia biglobosa). Food Research, 2(2), 187–193 | eng |
dcterms.references | Andualem, B., & Gessesse, A. (2013). Production of microbial medium from defatted brebra (Milletia ferruginea) seed flour to substitute commercial peptone agar. Asian Pacific Journal of Tropical Biomedicine, 3(10), 790–797 | eng |
dcterms.references | Apeji, Y. E., Oyi, A. R., Isah, A. B., Allagh, T. S., Modi, S. R., & Bansal, A. K. (2017). Development and Optimization of a Starch-Based Co-processed Excipient for Direct Compression Using Mixture Design. AAPS PharmSciTech, 14–17 | eng |
dcterms.references | Armisén, R., & Gaiatas, F. (2009). Agar. In Handbook of Hydrocolloids (pp. 82–107). Elsevier. | eng |
dcterms.references | Babbar, S. B., & Jain, R. (2006). Xanthan Gum : An Economical Partial Substitute for Agar in Microbial Culture Media, 52, 287–292. | eng |
dcterms.references | Banerjee, S., & Bhattacharya, S. (2012). Food Gels: Gelling Process and New Applications. Critical Reviews in Food Science and Nutrition, 52(4), 334–346. | eng |
dcterms.references | Barak, S., & Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications-A review. International Journal of Biological Macromolecules, 66, 74–80. | eng |
dcterms.references | Baviskar, S. N. (2011). A Quick & Automated Method for Measuring Cell Area Using ImageJ. The American Biology Teacher, 73(9), 554–556. | eng |
dcterms.references | Bemiller, J. N. (2011). Pasting, paste, and gel properties of starch-hydrocolloid combinations. Carbohydrate Polymers, 86(2), 386–423. | eng |
dcterms.references | Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2019). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 100622 | eng |
dcterms.references | Breznak, J. A. (2002). A need to retrieve the not-yet-cultured majority. Environmental Microbiology, 4(1), 4–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11966810 | eng |
dcterms.references | Cai, B., & Ikeda, S. (2016). Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. Journal of Dairy Science, 99(8), 6026–6035. | eng |
dcterms.references | Callaway, E. (2015). Lab staple agar hit by seaweed shortage. Nature, 528(7581), 171–172. | eng |
dcterms.references | Ceballos-Garzón, A., Cortes, G., Morio, F., Zamora-Cruz, E. L., Linares, M. Y., Ariza, B. E., … Parra-Giraldo, C. M. (2019). Comparison between MALDI-TOF MS and MicroScan in the identification of emerging and multidrug resistant yeasts in a fourth-level hospital in Bogotá, Colombia. BMC Microbiology, 19(1), 106. | eng |
dcterms.references | Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40–53 | eng |
dcterms.references | Chen, L., Li, Y., Du, Q., Wang, Z., Xia, Y., Yedinak, E., … Ci, L. (2017). High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, 155, 345–353. | eng |
dcterms.references | Chen, Q., Ma, H., Yuan, Y., Han, X., Zhu, J., & Zhang, H. (2018). Rheaological behavior of high acyl gellan gum solution at gel point. International Journal of Food Properties, 20(3), S2332–S2341 | eng |
dcterms.references | Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 94(4), 917–930 | eng |
dcterms.references | Chung, C., Degner, B., & McClements, D. J. (2013). Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT - Food Science and Technology, 54(2), 336–345. | eng |
dcterms.references | Conde-Martínez, N., Acosta-González, A., Díaz, L. E., & Tello, E. (2017). Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiology, 17(1), 230. | eng |
dcterms.references | Cornell, J. A. (2002). Experiments with mixtures : designs, models, and the analysis of mixture data. Wiley. | eng |
dcterms.references | Daoub, R. M. A., Elmubarak, A. H., Misran, M., Hassan, E. A., & Osman, M. E. (2018). Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agricultural Sciences, 17(3), 241–249. | eng |
dcterms.references | Das, N., Tripathi, N., Basu, S., Bose, C., & Maitra, S. (2015). Progress in the development of gelling agents for improved culturability of microorganisms, 6(July), 1–7. | eng |
dcterms.references | Datta, S., Mody, K., Gopalsamy, G., & Jha, B. (2011). Novel application of κ-carrageenan: As a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydrate Polymers, 85(2), 465–468. | eng |
dcterms.references | Davis, K. E. R., Joseph, S. J., Peter, H., & Janssen, P. H. (2005). Effects of Growth Medium , Inoculum Size , and Incubation Time on Culturability and Isolation of Soil Bacteria Effects of Growth Medium , Inoculum Size , and Incubation Time on Culturability and Isolation of Soil Bacteria. Applied and Environmental Microbiology, 71(2), 826–834 | eng |
dcterms.references | Distantina, S., Rochmadi, R., Fahrurrozi, M., & Wiratni, W. (2013). Preparation and Characterization of Glutaraldehyde-Crosslinked Kappa Carrageenan Hydrogel. Engineering Journal, 17(3), 57–66. | eng |
dcterms.references | Downing, D. L. (1996). A Complete Course in Canning and Related Processes, Volume 2: Microbiology, Packaging, HACCP and Ingredients. | eng |
dcterms.references | Dvorak, V., Halada, P., Hlavackova, K., Dokianakis, E., Antoniou, M., & Volf, P. (2014). Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites and Vectors, 7(1) | eng |
dcterms.references | El-Hefian, E. A., Nasef, M. M., & Yahaya, A. H. (2012). Preparation and characterization of chitosan/agar blended films: Part 1. chemical structure and morphology. E-Journal of Chemistry, 9(3), 1431–1439 | eng |
dcterms.references | Endreß, H.-U., & Christensen, S. H. (2009). Pectins. In Handbook of Hydrocolloids (Vol. 1, pp. 274–297). Elsevier. | eng |
dcterms.references | Evageliou, V. I., Ryan, P. M., & Morris, E. R. (2019). Effect of monovalent cations on calciuminduced assemblies of kappa carrageenan. Food Hydrocolloids, 86, 141–145. | eng |
dcterms.references | Evageliou, V., Papastamopoulou, K., Frantzeskaki, D., & Christodoulidou, C. C. (2015). Retention of esters by gellan and pectin solutions or their mixtures. Food Hydrocolloids, 51, 54–59. | eng |
dcterms.references | Fernandes, P. B., Gonçalves, M. P., & Doublier, J. L. (1992). Effect of galactomannan addition on the thermal behaviour of κ-carrageenan gels. Carbohydrate Polymers, 19(4), 261–269. | eng |
dcterms.references | Fernández-Ferreiro, A., Silva-Rodríguez, J., Otero-Espinar, F. J., González-Barcia, M., Lamas, M. J., Ruibal, A., … Aguiar, P. (2017). In vivo eye surface residence determination by high-resolution scintigraphy of a novel ion-sensitive hydrogel based on gellan gum and kappa-carrageenan. European Journal of Pharmaceutics and Biopharmaceutics, 114, 317–323 | eng |
dcterms.references | Ferreira, L., Sánchez-Juanes, F., García-Fraile, P., Rivas, R., Mateos, P. F., MartínezMolina, E., … Velázquez, E. (2011). MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family rhizobiaceae. PLoS ONE, 6(5) | eng |
dcterms.references | Ge, S., Liu, Q., Li, M., Liu, J., Lu, H., Li, F., … Xiong, L. (2017). Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocolloids, 75, 1–12. | eng |
dcterms.references | Giri, T. K., Pure, S., & Tripathi, D. K. (2015). Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polímeros, 25(2), 168–174. | eng |
dcterms.references | Grisel, M., Aguni, Y., Renou, F., & Malhiac, C. (2015). Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy. Food Hydrocolloids, 51, 449–458. | eng |
dcterms.references | Gulzar, M., Lechevalier, V., Bouhallab, S., & Croguennec, T. (2012). The physicochemical parameters during dry heating strongly influence the gelling properties of whey proteins. Journal of Food Engineering, 112(4), 296–303. | eng |
dcterms.references | Hamouche, L., Laalami, S., Daerr, A., Song, S., Holland, I. B., Séror, S. J., … Putzer, H. (2017). Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants. MBio, 8(1), 1–14. | eng |
dcterms.references | Hashimoto, W., Miki, H., Nankai, H., Sato, N., Kawai, S., & Murata, K. (1998). Molecular cloning of two genes for β-D-glucosidase in Bacillus sp. GL1 and identification of one as a gellan-degrading enzyme. Archives of Biochemistry and Biophysics, 360(1), 1–9. | eng |
dcterms.references | Hulst, A. C., Hens, H. J. H., Buitelaar, R. M., & Tramper, J. (1989). Determination of the effective diffusion coefficient of oxygen in gel materials in relation to gel concentration. Biotechnology Techniques, 3(3), 199–204. | eng |
dcterms.references | Ivanova, E. P. (2002). Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 52(6), 2113–2120 | eng |
dcterms.references | Jaeger, P. A., McElfresh, C., Wong, L. R., & Ideker, T. (2015). Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments. Applied and Environmental Microbiology, 81(16), 5639– 5649. | eng |
dcterms.references | Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68(5), 2391–6. | eng |
dcterms.references | Kang, J., Guo, Q., Phillips, G. O. O., & Cui, S. W. W. (2014). Understanding the structureemulsification relationship of gum ghatti - A review of recent advances. Food Hydrocolloids, 42, 187–195. | eng |
dcterms.references | Kelly, R. M., Keller, M. W., Straub, C. T., Loder, A. J., Zeldes, B. M., & Adams, M. W. W. (2015). Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6(November), 1–17. | eng |
dcterms.references | Kennedy, L., & Sutherland, I. W. (1994). Gellan lyases - Novel polysaccharide lyases. Microbiology, 140(11), 3007–3013 | eng |
dcterms.references | Khedmat, L., Izadi, A., Mofid, V., & Mojtahedi, S. Y. (2020). Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydrate Polymers, 229(October 2019). | eng |
dcterms.references | Klein, M., Aserin, A., Ishai, P. Ben, & Garti, N. (2010). Interactions between whey protein isolate and gum Arabic. Colloids and Surfaces B: Biointerfaces, 79(2), 377–383. | eng |
dcterms.references | Klimaszewska, K., Bernier-Cardou, M., Cyr, D. R., & Sutton, B. C. S. (2000). Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cellular & Developmental Biology - Plant, 36(4), 279–286. | eng |
dcterms.references | Kohli, P., & Gupta, R. (2015). Alkaline pectinases: A review. Biocatalysis and Agricultural Biotechnology, 4(3), 279–285. | eng |
dcterms.references | Kumar, S., Kaur, P., Bernela, M., Rani, R., & Thakur, R. (2016). Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. International Journal of Biological Macromolecules, 93, 988–994. | eng |
dcterms.references | Labropoulos, K. C., Rangarajan, S., Niesz, D. E., & Danforth, S. C. (2001). Dynamic Rheology of Agar Gel Based Aqueous Binders, 24, 1217–1224. | eng |
dcterms.references | Lee, S. H., Lefèvre, T., Subirade, M., & Paquin, P. (2009). Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chemistry, 113(1), 191–195. | eng |
dcterms.references | Li, K., & Zhong, Q. (2016). Aggregation and gelation properties of preheated whey protein and pectin mixtures at pH 1.0-4.0. Food Hydrocolloids, 60, 11–20. | eng |
dcterms.references | Lin, C. C., & Casida, L. E. (1984). GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Applied and Environmental Microbiology, 47(2), 427– 429. | eng |
dcterms.references | Lin, L., Regenstein, J. M., Lv, S., Lu, J., & Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science and Technology, 68, 102–112. | eng |
dcterms.references | Liu, S., Huang, S., & Li, L. (2016). Thermoreversible gelation and viscoelasticity of κcarrageenan hydrogels. Journal of Rheology, 60(2), 203–214. | eng |
dcterms.references | Liu, Y.-X., Cao, M.-J., & Liu, G.-M. (2019). Texture analyzers for food quality evaluation. Evaluation Technologies for Food Quality. Elsevier Inc. | eng |
dcterms.references | López, C. C., Mazzarrino, G., Rodríguez, A., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2015). Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America. Industrial Crops and Products, 63, 79–86. | eng |
dcterms.references | Mahdi, M. H., Diryak, R., Kontogiorgos, V., Morris, G. A., & Smith, A. M. (2016). In situ rheological measurements of the external gelation of alginate. Food Hydrocolloids, 55, 77–80 | eng |
dcterms.references | Mahesh, M., Arivizhivendhan, K. V., Maharaja, P., Boopathy, R., Hamsavathani, V., & Sekaran, G. (2016). Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, 133, 43–54. | eng |
dcterms.references | Maki, Y., & Annaka, M. (2020). Gelation of fish gelatin studied by multi-particle tracking method. Food Hydrocolloids, 101(October 2019), 105525. | eng |
dcterms.references | Martin, D., Steinhoff, B., Warren, H., & Clark, R. (2014). Enhanced gelation properties of purified gellan gum. CARBOHYDRATE RESEARCH, 388, 125–129. | eng |
dcterms.references | Martínez-Miranda, M. R., García-Martínez, V., & Gude, M. R. (2019). Gel point determination of a thermoset prepreg by means of rheology. Polymer Testing, 78(December 2018), 105950. | eng |
dcterms.references | Martins, J. T., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., & Vicente, A. A. (2012). Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 29(2), 280–289. | eng |
dcterms.references | Mateen, A., Hussain, S., Rehman, S. U., Mahmood, B., Khan, A., Rashid, A., … Shah, S. J. A. (2012). Suitability of various plant derived gelling agents as agar substitute in microbiological growth media, 11(45), 10362–10367. | eng |
dcterms.references | McCarter, L. L., & Morabe, M. L. (2019). Swimming and Swarming Motility. In Reference Module in Life Sciences (pp. 1–9). Elsevier. | eng |
dcterms.references | McClements, D. J. (2016). Food emulsions : principles, practices, and techniques (Third edit). Retrieved from https://www.crcpress.com/Food-Emulsions-Principles-Practicesand-Techniques-Third-Edition/McClements/p/book/9781498726689 | eng |
dcterms.references | Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246(June 2017), 137–149. | eng |
dcterms.references | Mikuš, Ľ., Valík, Ľ., & Dodok, L. (2011). Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LIX(5), 325–334. Retrieved from https://acta.mendelu.cz/media/pdf/actaun_2011059050325.pdf | eng |
dcterms.references | Moritaka, H., Fukuba, H., Kumeno, K., Nakahama, N., & Nishinari, K. (1991). Effect of monovalent and divalent cations on the rheological properties of gellan gels. Topics in Catalysis, 4(6), 495–507 | eng |
dcterms.references | Morris, E. R. (1977). Molecular Origin of Xanthan Solution Properties (pp. 81–89). | eng |
dcterms.references | Mosquera, L. H., Moraga, G., & Martínez-navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó ( Borojoa patinoi Cuatrec .) powder. Journal of Food Engineering, 97(1), 72–78. | eng |
dcterms.references | Muchová, M., Růžička, J., Julinová, M., Doležalová, M., Houser, J., Koutný, M., & Buňková, L. (2009). Xanthan and gellan degradation by bacteria of activated sludge. Water Science and Technology, 60(4), 965–973. | eng |
dcterms.references | Mumtaz Hamdani, A., & Ahmed Wani, I. (2017). Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. Bioactive Carbohydrates and Dietary Fibre, 11(December 2016), 53–59 | eng |
dcterms.references | Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227–239. | eng |
dcterms.references | Nishida, Y., Sato, T., Tosa, T., & Chibata, I. (1979). Immobilization of Escherichia coli cells having aspartase activity with carrageenan and locust bean gum. Enzyme and Microbial Technology, 1(2), 95–99. | eng |
dcterms.references | Nishinari, K., Kohyama, K., Kumagai, H., Funami, T., & Bourne, malcolm c. (2013). Parameters of Texture Profile Analysis. Food Science and Technology Research, 19(3), 519–521. | eng |
dcterms.references | O’Regan, J., Ennis, M. P., & Mulvihill, D. M. (2009). Milk Proteins. Handbook of Hydrocolloids. Woodhead Publishing Limited. | eng |
dcterms.references | Ozel, B., Cikrikci, S., Aydin, O., & Oztop, M. H. (2017). Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. Food Hydrocolloids, 71, 35–46. | eng |
dcterms.references | Ozgur, A., Dogan, M., & Karaman, S. (2017). Rheological interactions of the xanthan gum and carboxymethyl cellulose as alternative to pectin in organic acid–sucrose model system: simplex lattice mixture design approach. European Food Research and Technology, 243(6), 1041–1056. | eng |
dcterms.references | Pace, N. R. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science, 276(5313). Retrieved from http://science.sciencemag.org/content/276/5313/734 | eng |
dcterms.references | Palaniraj, A., & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1–12. | eng |
dcterms.references | Palumbo, F. S., Federico, S., Pitarresi, G., Fiorica, C., & Giammona, G. (2019). Gellan gumbased delivery systems of therapeutic agents and cells. Carbohydrate Polymers, (October), 115430. | eng |
dcterms.references | Parker, E. T., Bernsteinas, J. B., & Green, J. H. (1968). Increased Recovery of Psychrophilic Bacteria by the Use of a New Medium ’ With Lower Solidifying Temperature, 16(11), 1968. | eng |
dcterms.references | Petrovski, S., & Tillett, D. (2012). Back to the kitchen: Food-grade agar is a low-cost alternative to bacteriological agar. Analytical Biochemistry, 429(2), 140–141. | eng |
dcterms.references | Pickett, M. J., Greenwood, J. R., & Harvey, S. M. (1991). Tests for detecting degradation of gelatin: Comparison of five methods. Journal of Clinical Microbiology, 29(10), 2322– 2325 | eng |
dcterms.references | Pires Vilela, J. A., Cavallieri, Â. L. F., & Lopes da Cunha, R. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolategellan gum. Food Hydrocolloids, 25(7), 1710–1718 | eng |
dcterms.references | Pollitt, E. J. G., Crusz, S. A., & Diggle, S. P. (2015). Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Scientific Reports, 5(2), 1–12. | eng |
dcterms.references | Porse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29(5), 2187–2200 | eng |
dcterms.references | Prajapati, V. D., Jani, G. K., Moradiya, N. G., & Randeria, N. P. (2013). Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymers, 92(2), 1685–1699. | eng |
dcterms.references | Qin, Y. (2018). Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products. Bioactive Seaweeds for Food Applications. Elsevier Inc | eng |
dcterms.references | Raina, R. J.-, Babbar, S. B., Jain-Raina, R., & Babbar, S. B. (2011). Evaluation of blends of alternative gelling agents with agar and development of xanthagar, a gelling mix, suitable for plant tissue culture media. Asian Journal of Biotechnology, 3(2), 153–164 | eng |
dcterms.references | Ramezani, M., Sobhani-Nasab, A., & Hosseinpour-Mashkani, S. M. (2015). Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. Journal of Materials Science: Materials in Electronics, 26(7), 4848– 4853 | eng |
dcterms.references | Reeslev, M., & Kjoller, A. (1995). Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology, 61(12), 4236–4239. | eng |
dcterms.references | Regmi, S., G.C., P., Choi, Y. S. Y. H., Choi, Y. S. Y. H., Choi, J. E., Cho, S. S., & Yoo, J. C. (2016). A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Enzyme and Microbial Technology, 92, 76– 85. | eng |
dcterms.references | Rhein-Knudsen, N., Ale, M. T., Ajalloueian, F., Yu, L., & Meyer, A. S. (2017). Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids, 63, 50–58. | eng |
dcterms.references | Rioux, L.-E., & Turgeon, S. L. (2015). Seaweed Sustainability. Seaweed Sustainability. | eng |
dcterms.references | Rochín-Medina, J. J., Ramírez-Medina, H. K., Rangel-Peraza, J. G., Pineda-Hidalgo, K. V., & Iribe-Arellano, P. (2018). Use of whey as a culture medium for Bacillus clausii for the production of protein hydrolysates with antimicrobial and antioxidant activity. Food Science and Technology International, 24(1), 35–42. | eng |
dcterms.references | Rodríguez-Bernal, J. M., Tello, E., Flores-Andrade, E., de Jesús Perea-Flores, M., VallejoCardona, A. A., Gutiérrez-López, G. F., & Quintanilla-Carvajal, M. X. (2016). Effect of borojo (Borojoa patinoi Cuatrecasas) three-phase composition and gum arabic on the glass transition temperature. Journal of the Science of Food and Agriculture, 96(3), 1027–1036. | eng |
dcterms.references | Roth, J. N. (1978, December 18). Pectin culture media and method. Retrieved from https://www.google.com/patents/US4241186 | eng |
dcterms.references | Rule, P. L., & Alexander, A. D. (1986). Gellan gum as a substitute for agar in leptospiral media. Journal of Clinical Microbiology, 23(3), 500–504. | eng |
dcterms.references | Rygaard, A. Mac, Thøgersen, M. S., Nielsen, K. F., Gram, L., & Bentzon-Tilia, M. (2017). Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria. Applied and Environmental Microbiology, 83(9), e00243-17. | eng |
dcterms.references | Sait, M., Hugenholtz, P., & Janssen, P. H. (2002). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environmental Microbiology, 4(11), 654–666. | eng |
dcterms.references | Samiey, B., & Ashoori, F. (2012). Adsorptive removal of methylene blue by agar: Effects of NaCl and ethanol. Chemistry Central Journal, 6(1), 14. | eng |
dcterms.references | Sanchez Cardozo, J. A., Ruiz Pardo, R. Y., Quintanilla Carvajal, M. X., & Acosta Gonzalez, L. A. (2019). Evaluating gelling-agent mixtures as potential substitutes for bacteriological agar: an approach by mixture design. DYNA, 86(208), 171–176 | eng |
dcterms.references | Sandle, T. (2016). Microbiological culture media. In W. P. S. in Biomedicine (Ed.), Pharmaceutical Microbiology (80th ed., pp. 47–61). Cambridge: Elsevier | eng |
dcterms.references | Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2016). Applications of MALDI-TOF MS in environmental microbiology. Analyst, 141(10), 2827–2837. | eng |
dcterms.references | Santos, R., & Melo, R. A. (2018). Global shortage of technical agars: back to basics (resource management). Journal of Applied Phycology, 30(4), 2463–2473. | eng |
dcterms.references | Schiavi, A., Cuccaro, R., & Troia, A. (2016). Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 53, 119–130. | eng |
dcterms.references | Sedaghat Doost, A., Nikbakht Nasrabadi, M., Wu, J., A’yun, Q., & Van der Meeren, P. (2019). Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques. Trends in Food Science and Technology, 91(June), 1–11. | eng |
dcterms.references | Shayne, J. J., Hugenholtz, P., Sangwan, P., Osborne, C., and Janssen, H. P. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69(12), 7211–7214. | eng |
dcterms.references | Shungu, D., Valiant, M., & Tutlane, V. (1983). GELRITE as an agar substitute in bacteriological media. Applied and Environmental Microbiology, 46(4), 840–845. | eng |
dcterms.references | Smith, H. L., & Goodner, K. (1958). Detection of bacterial gelatinases by gelatin-agar plate methods. Journal of Bacteriology, 76(6), 662–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13610806 | eng |
dcterms.references | Smithers, G. W. (2008). Whey and whey proteins-From “gutter-to-gold.” International Dairy Journal, 18(7), 695–704 | eng |
dcterms.references | Sudha, P. N., Gomathi, T., Vinodhini, P. A., & Nasreen, K. (2014). Marine Carbohydrates of Wastewater Treatment. Advances in Food and Nutrition Research, 73, 103–143 | eng |
dcterms.references | Sworn, G. (2009). Gellan gum. Handbook of Hydrocolloids: Second Edition, (Atcc 31461), 204–227. | eng |
dcterms.references | Sworn, G., & Sas, D. F. (2009). Xanthan gum. In Handbook of Hydrocolloids (pp. 186–203). Elsevier. | eng |
dcterms.references | Tadros, T. F. (2010). Rheology of Dispersions. Rheology of Dispersions: Principles and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. | eng |
dcterms.references | Taintor, R. (2003, June 16). Microbial culture medium containing agar and iota carrageenan. Retrieved from https://patents.google.com/patent/US7018828 | eng |
dcterms.references | Tamaki, H., Hanada, S., Sekiguchi, Y., Tanaka, Y., & Kamagata, Y. (2009). Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. Environmental Microbiology, 11(7), 1827–1834. | eng |
dcterms.references | Tanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H., … Kamagata, Y. (2014). A Hidden Pitfall in the Preparation of Agar Media Undermines, 80(24), 7659–7666. | eng |
dcterms.references | Totosaus, A., Montejano, J. G., Salazar, J. A., & Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science and Technology, 37(6), 589–601. | eng |
dcterms.references | Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414–433 | eng |
dcterms.references | Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., Yallapu, M. M., & Sadiku, R. (2017). A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering C, 79, 958–971. | eng |
dcterms.references | Vasile, F. E., Martinez, M. J., Pizones Ruiz-Henestrosa, V. M., Judis, M. A., & Mazzobre, M. F. (2016). Physicochemical, interfacial and emulsifying properties of a nonconventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocolloids, 56, 245–253. | eng |
dcterms.references | Volery, P., Besson, R., & Schaffer-Lequart, C. (2004). Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agric. Food Chem., 52(25), 7457–63 | eng |
dcterms.references | Wielinga, W. C. (2009). Galactomannans. Handbook of Hydrocolloids, 228–251. | eng |
dcterms.references | Wüstenberg, T. (2015). Cellulose and cellulose derivatives in the food industry : fundamentals and applications. | eng |
dcterms.references | Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.-H., … RossellóMóra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635– 645. | eng |
dcterms.references | Yin, S., Sim, W., James, D., & Jun, X. (2017). Pectin as a rheology modifier : Origin , structure , commercial production and rheology. Carbohydrate Polymers, 161, 118– 139. | eng |
dcterms.references | Yousefi, M., & Jafari, S. M. (2019). Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. Trends in Food Science and Technology, 88(October 2018), 468–483 | eng |
dcterms.references | Yuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H. (2016). Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food Chemistry, 210, 600–605. | eng |
dcterms.references | Yuryev, V. P., Blumenfeld, A. L., Braudo, E. E., & Tolstoguzov, V. B. (1991). Interaction of sodium and potassium ions with κ-carrageenan. Colloid & Polymer Science, 269(8), 850–854. | eng |
dcterms.references | Zertuche González, J. A., & FAO. (1990). SITUACION ACTUAL DE LA INDUSTRIA DE MACROALGAS PRODUCTORAS DE FICOCOLOIDES EN AMERICA LATINA Y EL ARIBE. Retrieved July 6, 2017, from http://www.fao.org/docrep/field/003/AB483S/AB483S01.htm | eng |
dcterms.references | Zia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A., & Zuber, M. (2017). Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 109, 1068–1087. | eng |