Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.advisorAcosta González, Luis Alejandro
dc.contributor.authorSanchez Cardozo, John Alexander
dc.date.accessioned2020-05-18T21:28:13Z
dc.date.available2020-05-18T21:28:13Z
dc.date.issued2020-03-13
dc.identifier.urihttp://hdl.handle.net/10818/41088
dc.description76 páginases_CO
dc.description.abstractLos agentes gelificantes son componentes que solidifican los medios de cultivo para facilitar el aislamiento de colonias en cultivos puros. Entre los agentes gelificantes, el agar es el más utilizado en el campo microbiológico debido a propiedades como su baja temperatura de gelificación (35°C) y su textura (alta firmeza y baja adhesividad). El problema actual de la producción de agar es que la previa sobreexplotación de las poblaciones de las algas Gelidium spp ha creado escasez de agar y por lo tanto aumentado su precio de mercado hasta un 300%. El objetivo de esta investigación fue caracterizar y desarrollar mezclas como sustitutos del agar en cultivos microbiológicos. Para establecer las combinaciones de los agentes gelificantes se utilizó un diseño de mezclas usando 10 componentes, seleccionando la firmeza como variable de respuesta y como criterios de optimización la firmeza más cercana a la del agar al 2%. Los geles resultantes se caracterizaron mediante las técnicas de espectrometría infrarroja por transformada de Fourier (FTIR), reología y análisis de perfil de textura (TPA). Posteriormente se validaron microbiológicamente sembrando cepas de referencia (Staphylococcus aureus, Escherichia. coli and Bacillus subtillis, Fusarium oxysporum and Saccharomyces cerevisiae) y una muestra de suelo para su pre-identificación por MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight). El diseño de mezclas dio como resultado cuatro mezclas como potenciales sustitutos del agar: GeCaGhLb, GeCaArLb, GeCaAr and GeAr. Nombradas así por sus componentes, Gellan (Ge), Carragenina (Ca), goma Ghatti (Gh), goma arábiga (Ar) y Locust bean (Lb). La mezcla GeCaAr resultó en una firmeza igual que el agar (141g), GeCaGhLb y GeCaArLb una firmeza 40% superior (200g) y una última con una firmeza 50% inferior (69g).es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectMicrobiologíaes_CO
dc.subjectAgares_CO
dc.subjectMezclases_CO
dc.subjectGelificaciónes_CO
dc.titleDevelopment and evaluation of ponential agar substitutes for microbiological mediaes_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en diseño y gestión de procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local276812
dc.identifier.localTE10644
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesAbbott, I. I. A., & Chapman, F. A. (1981). Evaluation of Kappa carrageenan as a substitute for agar in microbiological media, (11), 355–359. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7013726eng
dcterms.referencesAderibigbe, E. Y., & Odunfa, S. A. (1990). Growth and extracellular enzyme production by strains of Bacillus species isolated from fermenting African locust bean, iru. Journal of Applied Bacteriology, 69(5), 662–671eng
dcterms.referencesAl-Assaf, S., Amar, V., & Philips, G. O. (2008). Characterisation of Gum Ghatti and Comparison with Gum Arabic. In P. A. Williams & G. O. Phillips (Eds.), Gums and Stabilisers for the Food Industry 14 (pp. 280–290). Cambridge: Royal Society of Chemistryeng
dcterms.referencesAlawi, S. M. Al, Hossain, M. A., & Abusham, A. A. (2017). Antimicrobial and cytotoxic comparative study of different extracts of Omani and Sudanese Gum acacia. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 22–26.eng
dcterms.referencesAmao, J. A., Odunfa, S. A., & Mbom, C. N. (2017). The role of Staphylococcus species in the production of iru during the fermentation of African locust beans (Parkia biglobosa). Food Research, 2(2), 187–193eng
dcterms.referencesAndualem, B., & Gessesse, A. (2013). Production of microbial medium from defatted brebra (Milletia ferruginea) seed flour to substitute commercial peptone agar. Asian Pacific Journal of Tropical Biomedicine, 3(10), 790–797eng
dcterms.referencesApeji, Y. E., Oyi, A. R., Isah, A. B., Allagh, T. S., Modi, S. R., & Bansal, A. K. (2017). Development and Optimization of a Starch-Based Co-processed Excipient for Direct Compression Using Mixture Design. AAPS PharmSciTech, 14–17eng
dcterms.referencesArmisén, R., & Gaiatas, F. (2009). Agar. In Handbook of Hydrocolloids (pp. 82–107). Elsevier.eng
dcterms.referencesBabbar, S. B., & Jain, R. (2006). Xanthan Gum : An Economical Partial Substitute for Agar in Microbial Culture Media, 52, 287–292.eng
dcterms.referencesBanerjee, S., & Bhattacharya, S. (2012). Food Gels: Gelling Process and New Applications. Critical Reviews in Food Science and Nutrition, 52(4), 334–346.eng
dcterms.referencesBarak, S., & Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications-A review. International Journal of Biological Macromolecules, 66, 74–80.eng
dcterms.referencesBaviskar, S. N. (2011). A Quick & Automated Method for Measuring Cell Area Using ImageJ. The American Biology Teacher, 73(9), 554–556.eng
dcterms.referencesBemiller, J. N. (2011). Pasting, paste, and gel properties of starch-hydrocolloid combinations. Carbohydrate Polymers, 86(2), 386–423.eng
dcterms.referencesBonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2019). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 100622eng
dcterms.referencesBreznak, J. A. (2002). A need to retrieve the not-yet-cultured majority. Environmental Microbiology, 4(1), 4–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11966810eng
dcterms.referencesCai, B., & Ikeda, S. (2016). Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. Journal of Dairy Science, 99(8), 6026–6035.eng
dcterms.referencesCallaway, E. (2015). Lab staple agar hit by seaweed shortage. Nature, 528(7581), 171–172.eng
dcterms.referencesCeballos-Garzón, A., Cortes, G., Morio, F., Zamora-Cruz, E. L., Linares, M. Y., Ariza, B. E., … Parra-Giraldo, C. M. (2019). Comparison between MALDI-TOF MS and MicroScan in the identification of emerging and multidrug resistant yeasts in a fourth-level hospital in Bogotá, Colombia. BMC Microbiology, 19(1), 106.eng
dcterms.referencesChang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40–53eng
dcterms.referencesChen, L., Li, Y., Du, Q., Wang, Z., Xia, Y., Yedinak, E., … Ci, L. (2017). High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, 155, 345–353.eng
dcterms.referencesChen, Q., Ma, H., Yuan, Y., Han, X., Zhu, J., & Zhang, H. (2018). Rheaological behavior of high acyl gellan gum solution at gel point. International Journal of Food Properties, 20(3), S2332–S2341eng
dcterms.referencesChi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 94(4), 917–930eng
dcterms.referencesChung, C., Degner, B., & McClements, D. J. (2013). Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT - Food Science and Technology, 54(2), 336–345.eng
dcterms.referencesConde-Martínez, N., Acosta-González, A., Díaz, L. E., & Tello, E. (2017). Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiology, 17(1), 230.eng
dcterms.referencesCornell, J. A. (2002). Experiments with mixtures : designs, models, and the analysis of mixture data. Wiley.eng
dcterms.referencesDaoub, R. M. A., Elmubarak, A. H., Misran, M., Hassan, E. A., & Osman, M. E. (2018). Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agricultural Sciences, 17(3), 241–249.eng
dcterms.referencesDas, N., Tripathi, N., Basu, S., Bose, C., & Maitra, S. (2015). Progress in the development of gelling agents for improved culturability of microorganisms, 6(July), 1–7.eng
dcterms.referencesDatta, S., Mody, K., Gopalsamy, G., & Jha, B. (2011). Novel application of κ-carrageenan: As a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydrate Polymers, 85(2), 465–468.eng
dcterms.referencesDavis, K. E. R., Joseph, S. J., Peter, H., & Janssen, P. H. (2005). Effects of Growth Medium , Inoculum Size , and Incubation Time on Culturability and Isolation of Soil Bacteria Effects of Growth Medium , Inoculum Size , and Incubation Time on Culturability and Isolation of Soil Bacteria. Applied and Environmental Microbiology, 71(2), 826–834eng
dcterms.referencesDistantina, S., Rochmadi, R., Fahrurrozi, M., & Wiratni, W. (2013). Preparation and Characterization of Glutaraldehyde-Crosslinked Kappa Carrageenan Hydrogel. Engineering Journal, 17(3), 57–66.eng
dcterms.referencesDowning, D. L. (1996). A Complete Course in Canning and Related Processes, Volume 2: Microbiology, Packaging, HACCP and Ingredients.eng
dcterms.referencesDvorak, V., Halada, P., Hlavackova, K., Dokianakis, E., Antoniou, M., & Volf, P. (2014). Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites and Vectors, 7(1)eng
dcterms.referencesEl-Hefian, E. A., Nasef, M. M., & Yahaya, A. H. (2012). Preparation and characterization of chitosan/agar blended films: Part 1. chemical structure and morphology. E-Journal of Chemistry, 9(3), 1431–1439eng
dcterms.referencesEndreß, H.-U., & Christensen, S. H. (2009). Pectins. In Handbook of Hydrocolloids (Vol. 1, pp. 274–297). Elsevier.eng
dcterms.referencesEvageliou, V. I., Ryan, P. M., & Morris, E. R. (2019). Effect of monovalent cations on calciuminduced assemblies of kappa carrageenan. Food Hydrocolloids, 86, 141–145.eng
dcterms.referencesEvageliou, V., Papastamopoulou, K., Frantzeskaki, D., & Christodoulidou, C. C. (2015). Retention of esters by gellan and pectin solutions or their mixtures. Food Hydrocolloids, 51, 54–59.eng
dcterms.referencesFernandes, P. B., Gonçalves, M. P., & Doublier, J. L. (1992). Effect of galactomannan addition on the thermal behaviour of κ-carrageenan gels. Carbohydrate Polymers, 19(4), 261–269.eng
dcterms.referencesFernández-Ferreiro, A., Silva-Rodríguez, J., Otero-Espinar, F. J., González-Barcia, M., Lamas, M. J., Ruibal, A., … Aguiar, P. (2017). In vivo eye surface residence determination by high-resolution scintigraphy of a novel ion-sensitive hydrogel based on gellan gum and kappa-carrageenan. European Journal of Pharmaceutics and Biopharmaceutics, 114, 317–323eng
dcterms.referencesFerreira, L., Sánchez-Juanes, F., García-Fraile, P., Rivas, R., Mateos, P. F., MartínezMolina, E., … Velázquez, E. (2011). MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family rhizobiaceae. PLoS ONE, 6(5)eng
dcterms.referencesGe, S., Liu, Q., Li, M., Liu, J., Lu, H., Li, F., … Xiong, L. (2017). Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocolloids, 75, 1–12.eng
dcterms.referencesGiri, T. K., Pure, S., & Tripathi, D. K. (2015). Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polímeros, 25(2), 168–174.eng
dcterms.referencesGrisel, M., Aguni, Y., Renou, F., & Malhiac, C. (2015). Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy. Food Hydrocolloids, 51, 449–458.eng
dcterms.referencesGulzar, M., Lechevalier, V., Bouhallab, S., & Croguennec, T. (2012). The physicochemical parameters during dry heating strongly influence the gelling properties of whey proteins. Journal of Food Engineering, 112(4), 296–303.eng
dcterms.referencesHamouche, L., Laalami, S., Daerr, A., Song, S., Holland, I. B., Séror, S. J., … Putzer, H. (2017). Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants. MBio, 8(1), 1–14.eng
dcterms.referencesHashimoto, W., Miki, H., Nankai, H., Sato, N., Kawai, S., & Murata, K. (1998). Molecular cloning of two genes for β-D-glucosidase in Bacillus sp. GL1 and identification of one as a gellan-degrading enzyme. Archives of Biochemistry and Biophysics, 360(1), 1–9.eng
dcterms.referencesHulst, A. C., Hens, H. J. H., Buitelaar, R. M., & Tramper, J. (1989). Determination of the effective diffusion coefficient of oxygen in gel materials in relation to gel concentration. Biotechnology Techniques, 3(3), 199–204.eng
dcterms.referencesIvanova, E. P. (2002). Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 52(6), 2113–2120eng
dcterms.referencesJaeger, P. A., McElfresh, C., Wong, L. R., & Ideker, T. (2015). Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments. Applied and Environmental Microbiology, 81(16), 5639– 5649.eng
dcterms.referencesJanssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68(5), 2391–6.eng
dcterms.referencesKang, J., Guo, Q., Phillips, G. O. O., & Cui, S. W. W. (2014). Understanding the structureemulsification relationship of gum ghatti - A review of recent advances. Food Hydrocolloids, 42, 187–195.eng
dcterms.referencesKelly, R. M., Keller, M. W., Straub, C. T., Loder, A. J., Zeldes, B. M., & Adams, M. W. W. (2015). Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6(November), 1–17.eng
dcterms.referencesKennedy, L., & Sutherland, I. W. (1994). Gellan lyases - Novel polysaccharide lyases. Microbiology, 140(11), 3007–3013eng
dcterms.referencesKhedmat, L., Izadi, A., Mofid, V., & Mojtahedi, S. Y. (2020). Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydrate Polymers, 229(October 2019).eng
dcterms.referencesKlein, M., Aserin, A., Ishai, P. Ben, & Garti, N. (2010). Interactions between whey protein isolate and gum Arabic. Colloids and Surfaces B: Biointerfaces, 79(2), 377–383.eng
dcterms.referencesKlimaszewska, K., Bernier-Cardou, M., Cyr, D. R., & Sutton, B. C. S. (2000). Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cellular & Developmental Biology - Plant, 36(4), 279–286.eng
dcterms.referencesKohli, P., & Gupta, R. (2015). Alkaline pectinases: A review. Biocatalysis and Agricultural Biotechnology, 4(3), 279–285.eng
dcterms.referencesKumar, S., Kaur, P., Bernela, M., Rani, R., & Thakur, R. (2016). Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. International Journal of Biological Macromolecules, 93, 988–994.eng
dcterms.referencesLabropoulos, K. C., Rangarajan, S., Niesz, D. E., & Danforth, S. C. (2001). Dynamic Rheology of Agar Gel Based Aqueous Binders, 24, 1217–1224.eng
dcterms.referencesLee, S. H., Lefèvre, T., Subirade, M., & Paquin, P. (2009). Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chemistry, 113(1), 191–195.eng
dcterms.referencesLi, K., & Zhong, Q. (2016). Aggregation and gelation properties of preheated whey protein and pectin mixtures at pH 1.0-4.0. Food Hydrocolloids, 60, 11–20.eng
dcterms.referencesLin, C. C., & Casida, L. E. (1984). GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Applied and Environmental Microbiology, 47(2), 427– 429.eng
dcterms.referencesLin, L., Regenstein, J. M., Lv, S., Lu, J., & Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science and Technology, 68, 102–112.eng
dcterms.referencesLiu, S., Huang, S., & Li, L. (2016). Thermoreversible gelation and viscoelasticity of κcarrageenan hydrogels. Journal of Rheology, 60(2), 203–214.eng
dcterms.referencesLiu, Y.-X., Cao, M.-J., & Liu, G.-M. (2019). Texture analyzers for food quality evaluation. Evaluation Technologies for Food Quality. Elsevier Inc.eng
dcterms.referencesLópez, C. C., Mazzarrino, G., Rodríguez, A., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2015). Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America. Industrial Crops and Products, 63, 79–86.eng
dcterms.referencesMahdi, M. H., Diryak, R., Kontogiorgos, V., Morris, G. A., & Smith, A. M. (2016). In situ rheological measurements of the external gelation of alginate. Food Hydrocolloids, 55, 77–80eng
dcterms.referencesMahesh, M., Arivizhivendhan, K. V., Maharaja, P., Boopathy, R., Hamsavathani, V., & Sekaran, G. (2016). Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, 133, 43–54.eng
dcterms.referencesMaki, Y., & Annaka, M. (2020). Gelation of fish gelatin studied by multi-particle tracking method. Food Hydrocolloids, 101(October 2019), 105525.eng
dcterms.referencesMartin, D., Steinhoff, B., Warren, H., & Clark, R. (2014). Enhanced gelation properties of purified gellan gum. CARBOHYDRATE RESEARCH, 388, 125–129.eng
dcterms.referencesMartínez-Miranda, M. R., García-Martínez, V., & Gude, M. R. (2019). Gel point determination of a thermoset prepreg by means of rheology. Polymer Testing, 78(December 2018), 105950.eng
dcterms.referencesMartins, J. T., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., & Vicente, A. A. (2012). Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 29(2), 280–289.eng
dcterms.referencesMateen, A., Hussain, S., Rehman, S. U., Mahmood, B., Khan, A., Rashid, A., … Shah, S. J. A. (2012). Suitability of various plant derived gelling agents as agar substitute in microbiological growth media, 11(45), 10362–10367.eng
dcterms.referencesMcCarter, L. L., & Morabe, M. L. (2019). Swimming and Swarming Motility. In Reference Module in Life Sciences (pp. 1–9). Elsevier.eng
dcterms.referencesMcClements, D. J. (2016). Food emulsions : principles, practices, and techniques (Third edit). Retrieved from https://www.crcpress.com/Food-Emulsions-Principles-Practicesand-Techniques-Third-Edition/McClements/p/book/9781498726689eng
dcterms.referencesMeng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246(June 2017), 137–149.eng
dcterms.referencesMikuš, Ľ., Valík, Ľ., & Dodok, L. (2011). Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LIX(5), 325–334. Retrieved from https://acta.mendelu.cz/media/pdf/actaun_2011059050325.pdfeng
dcterms.referencesMoritaka, H., Fukuba, H., Kumeno, K., Nakahama, N., & Nishinari, K. (1991). Effect of monovalent and divalent cations on the rheological properties of gellan gels. Topics in Catalysis, 4(6), 495–507eng
dcterms.referencesMorris, E. R. (1977). Molecular Origin of Xanthan Solution Properties (pp. 81–89).eng
dcterms.referencesMosquera, L. H., Moraga, G., & Martínez-navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó ( Borojoa patinoi Cuatrec .) powder. Journal of Food Engineering, 97(1), 72–78.eng
dcterms.referencesMuchová, M., Růžička, J., Julinová, M., Doležalová, M., Houser, J., Koutný, M., & Buňková, L. (2009). Xanthan and gellan degradation by bacteria of activated sludge. Water Science and Technology, 60(4), 965–973.eng
dcterms.referencesMumtaz Hamdani, A., & Ahmed Wani, I. (2017). Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. Bioactive Carbohydrates and Dietary Fibre, 11(December 2016), 53–59eng
dcterms.referencesNaqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227–239.eng
dcterms.referencesNishida, Y., Sato, T., Tosa, T., & Chibata, I. (1979). Immobilization of Escherichia coli cells having aspartase activity with carrageenan and locust bean gum. Enzyme and Microbial Technology, 1(2), 95–99.eng
dcterms.referencesNishinari, K., Kohyama, K., Kumagai, H., Funami, T., & Bourne, malcolm c. (2013). Parameters of Texture Profile Analysis. Food Science and Technology Research, 19(3), 519–521.eng
dcterms.referencesO’Regan, J., Ennis, M. P., & Mulvihill, D. M. (2009). Milk Proteins. Handbook of Hydrocolloids. Woodhead Publishing Limited.eng
dcterms.referencesOzel, B., Cikrikci, S., Aydin, O., & Oztop, M. H. (2017). Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. Food Hydrocolloids, 71, 35–46.eng
dcterms.referencesOzgur, A., Dogan, M., & Karaman, S. (2017). Rheological interactions of the xanthan gum and carboxymethyl cellulose as alternative to pectin in organic acid–sucrose model system: simplex lattice mixture design approach. European Food Research and Technology, 243(6), 1041–1056.eng
dcterms.referencesPace, N. R. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science, 276(5313). Retrieved from http://science.sciencemag.org/content/276/5313/734eng
dcterms.referencesPalaniraj, A., & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1–12.eng
dcterms.referencesPalumbo, F. S., Federico, S., Pitarresi, G., Fiorica, C., & Giammona, G. (2019). Gellan gumbased delivery systems of therapeutic agents and cells. Carbohydrate Polymers, (October), 115430.eng
dcterms.referencesParker, E. T., Bernsteinas, J. B., & Green, J. H. (1968). Increased Recovery of Psychrophilic Bacteria by the Use of a New Medium ’ With Lower Solidifying Temperature, 16(11), 1968.eng
dcterms.referencesPetrovski, S., & Tillett, D. (2012). Back to the kitchen: Food-grade agar is a low-cost alternative to bacteriological agar. Analytical Biochemistry, 429(2), 140–141.eng
dcterms.referencesPickett, M. J., Greenwood, J. R., & Harvey, S. M. (1991). Tests for detecting degradation of gelatin: Comparison of five methods. Journal of Clinical Microbiology, 29(10), 2322– 2325eng
dcterms.referencesPires Vilela, J. A., Cavallieri, Â. L. F., & Lopes da Cunha, R. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolategellan gum. Food Hydrocolloids, 25(7), 1710–1718eng
dcterms.referencesPollitt, E. J. G., Crusz, S. A., & Diggle, S. P. (2015). Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Scientific Reports, 5(2), 1–12.eng
dcterms.referencesPorse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29(5), 2187–2200eng
dcterms.referencesPrajapati, V. D., Jani, G. K., Moradiya, N. G., & Randeria, N. P. (2013). Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymers, 92(2), 1685–1699.eng
dcterms.referencesQin, Y. (2018). Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products. Bioactive Seaweeds for Food Applications. Elsevier Inceng
dcterms.referencesRaina, R. J.-, Babbar, S. B., Jain-Raina, R., & Babbar, S. B. (2011). Evaluation of blends of alternative gelling agents with agar and development of xanthagar, a gelling mix, suitable for plant tissue culture media. Asian Journal of Biotechnology, 3(2), 153–164eng
dcterms.referencesRamezani, M., Sobhani-Nasab, A., & Hosseinpour-Mashkani, S. M. (2015). Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. Journal of Materials Science: Materials in Electronics, 26(7), 4848– 4853eng
dcterms.referencesReeslev, M., & Kjoller, A. (1995). Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology, 61(12), 4236–4239.eng
dcterms.referencesRegmi, S., G.C., P., Choi, Y. S. Y. H., Choi, Y. S. Y. H., Choi, J. E., Cho, S. S., & Yoo, J. C. (2016). A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Enzyme and Microbial Technology, 92, 76– 85.eng
dcterms.referencesRhein-Knudsen, N., Ale, M. T., Ajalloueian, F., Yu, L., & Meyer, A. S. (2017). Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids, 63, 50–58.eng
dcterms.referencesRioux, L.-E., & Turgeon, S. L. (2015). Seaweed Sustainability. Seaweed Sustainability.eng
dcterms.referencesRochín-Medina, J. J., Ramírez-Medina, H. K., Rangel-Peraza, J. G., Pineda-Hidalgo, K. V., & Iribe-Arellano, P. (2018). Use of whey as a culture medium for Bacillus clausii for the production of protein hydrolysates with antimicrobial and antioxidant activity. Food Science and Technology International, 24(1), 35–42.eng
dcterms.referencesRodríguez-Bernal, J. M., Tello, E., Flores-Andrade, E., de Jesús Perea-Flores, M., VallejoCardona, A. A., Gutiérrez-López, G. F., & Quintanilla-Carvajal, M. X. (2016). Effect of borojo (Borojoa patinoi Cuatrecasas) three-phase composition and gum arabic on the glass transition temperature. Journal of the Science of Food and Agriculture, 96(3), 1027–1036.eng
dcterms.referencesRoth, J. N. (1978, December 18). Pectin culture media and method. Retrieved from https://www.google.com/patents/US4241186eng
dcterms.referencesRule, P. L., & Alexander, A. D. (1986). Gellan gum as a substitute for agar in leptospiral media. Journal of Clinical Microbiology, 23(3), 500–504.eng
dcterms.referencesRygaard, A. Mac, Thøgersen, M. S., Nielsen, K. F., Gram, L., & Bentzon-Tilia, M. (2017). Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria. Applied and Environmental Microbiology, 83(9), e00243-17.eng
dcterms.referencesSait, M., Hugenholtz, P., & Janssen, P. H. (2002). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environmental Microbiology, 4(11), 654–666.eng
dcterms.referencesSamiey, B., & Ashoori, F. (2012). Adsorptive removal of methylene blue by agar: Effects of NaCl and ethanol. Chemistry Central Journal, 6(1), 14.eng
dcterms.referencesSanchez Cardozo, J. A., Ruiz Pardo, R. Y., Quintanilla Carvajal, M. X., & Acosta Gonzalez, L. A. (2019). Evaluating gelling-agent mixtures as potential substitutes for bacteriological agar: an approach by mixture design. DYNA, 86(208), 171–176eng
dcterms.referencesSandle, T. (2016). Microbiological culture media. In W. P. S. in Biomedicine (Ed.), Pharmaceutical Microbiology (80th ed., pp. 47–61). Cambridge: Elseviereng
dcterms.referencesSantos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2016). Applications of MALDI-TOF MS in environmental microbiology. Analyst, 141(10), 2827–2837.eng
dcterms.referencesSantos, R., & Melo, R. A. (2018). Global shortage of technical agars: back to basics (resource management). Journal of Applied Phycology, 30(4), 2463–2473.eng
dcterms.referencesSchiavi, A., Cuccaro, R., & Troia, A. (2016). Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 53, 119–130.eng
dcterms.referencesSedaghat Doost, A., Nikbakht Nasrabadi, M., Wu, J., A’yun, Q., & Van der Meeren, P. (2019). Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques. Trends in Food Science and Technology, 91(June), 1–11.eng
dcterms.referencesShayne, J. J., Hugenholtz, P., Sangwan, P., Osborne, C., and Janssen, H. P. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69(12), 7211–7214.eng
dcterms.referencesShungu, D., Valiant, M., & Tutlane, V. (1983). GELRITE as an agar substitute in bacteriological media. Applied and Environmental Microbiology, 46(4), 840–845.eng
dcterms.referencesSmith, H. L., & Goodner, K. (1958). Detection of bacterial gelatinases by gelatin-agar plate methods. Journal of Bacteriology, 76(6), 662–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13610806eng
dcterms.referencesSmithers, G. W. (2008). Whey and whey proteins-From “gutter-to-gold.” International Dairy Journal, 18(7), 695–704eng
dcterms.referencesSudha, P. N., Gomathi, T., Vinodhini, P. A., & Nasreen, K. (2014). Marine Carbohydrates of Wastewater Treatment. Advances in Food and Nutrition Research, 73, 103–143eng
dcterms.referencesSworn, G. (2009). Gellan gum. Handbook of Hydrocolloids: Second Edition, (Atcc 31461), 204–227.eng
dcterms.referencesSworn, G., & Sas, D. F. (2009). Xanthan gum. In Handbook of Hydrocolloids (pp. 186–203). Elsevier.eng
dcterms.referencesTadros, T. F. (2010). Rheology of Dispersions. Rheology of Dispersions: Principles and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.eng
dcterms.referencesTaintor, R. (2003, June 16). Microbial culture medium containing agar and iota carrageenan. Retrieved from https://patents.google.com/patent/US7018828eng
dcterms.referencesTamaki, H., Hanada, S., Sekiguchi, Y., Tanaka, Y., & Kamagata, Y. (2009). Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. Environmental Microbiology, 11(7), 1827–1834.eng
dcterms.referencesTanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H., … Kamagata, Y. (2014). A Hidden Pitfall in the Preparation of Agar Media Undermines, 80(24), 7659–7666.eng
dcterms.referencesTotosaus, A., Montejano, J. G., Salazar, J. A., & Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science and Technology, 37(6), 589–601.eng
dcterms.referencesUllah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414–433eng
dcterms.referencesVaraprasad, K., Raghavendra, G. M., Jayaramudu, T., Yallapu, M. M., & Sadiku, R. (2017). A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering C, 79, 958–971.eng
dcterms.referencesVasile, F. E., Martinez, M. J., Pizones Ruiz-Henestrosa, V. M., Judis, M. A., & Mazzobre, M. F. (2016). Physicochemical, interfacial and emulsifying properties of a nonconventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocolloids, 56, 245–253.eng
dcterms.referencesVolery, P., Besson, R., & Schaffer-Lequart, C. (2004). Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agric. Food Chem., 52(25), 7457–63eng
dcterms.referencesWielinga, W. C. (2009). Galactomannans. Handbook of Hydrocolloids, 228–251.eng
dcterms.referencesWüstenberg, T. (2015). Cellulose and cellulose derivatives in the food industry : fundamentals and applications.eng
dcterms.referencesYarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.-H., … RossellóMóra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635– 645.eng
dcterms.referencesYin, S., Sim, W., James, D., & Jun, X. (2017). Pectin as a rheology modifier : Origin , structure , commercial production and rheology. Carbohydrate Polymers, 161, 118– 139.eng
dcterms.referencesYousefi, M., & Jafari, S. M. (2019). Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. Trends in Food Science and Technology, 88(October 2018), 468–483eng
dcterms.referencesYuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H. (2016). Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food Chemistry, 210, 600–605.eng
dcterms.referencesYuryev, V. P., Blumenfeld, A. L., Braudo, E. E., & Tolstoguzov, V. B. (1991). Interaction of sodium and potassium ions with κ-carrageenan. Colloid & Polymer Science, 269(8), 850–854.eng
dcterms.referencesZertuche González, J. A., & FAO. (1990). SITUACION ACTUAL DE LA INDUSTRIA DE MACROALGAS PRODUCTORAS DE FICOCOLOIDES EN AMERICA LATINA Y EL ARIBE. Retrieved July 6, 2017, from http://www.fao.org/docrep/field/003/AB483S/AB483S01.htmeng
dcterms.referencesZia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A., & Zuber, M. (2017). Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 109, 1068–1087.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International