Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzález Mariño, Gloria Eugenia
dc.contributor.advisorKlotz Ceberio, Bernadette
dc.contributor.authorCórdoba Castro, Nancy Marleny
dc.date.accessioned2012-11-13T14:04:29Z
dc.date.available2012-11-13T14:04:29Z
dc.date.created2012-11-13
dc.date.issued2012
dc.identifier.citationAhlgren, G. & Hyenstrand, P. (2003). Nitrogen limitation effects of different nitrogen sources on the nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae). Journal of Phycology, 39 (5), 906–917.
dc.identifier.citationAlbarracin, I. (2007). La producción de Biocombustibles con eficiencia, estabilidad y equidad. XV Simposio electrónico internacional. 1-16.
dc.identifier.citationAmini Khoeyi, Z., Seyfabadi, J. & Ramezanpour, Z. (2011). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, DOI 10.1007/s10499011-9440-1.
dc.identifier.citationAtalah, E., Araya, M., Rosselot, G., Araya, H., Vera, G., Andreu, R. et al. (2009). Efecto de una bebida láctea con DHA en la composición de ácidos grasos del glóbulo rojo, de la leche materna y en el recién nacido. Archivos Latinoamericanos de Nutrición, 59 (3), 271-277.
dc.identifier.citationBadui, S. (1993). Química de los Alimentos. (3ª ed.). México D.F: Person.
dc.identifier.citationBanerjee, A., Sharma, R., Chisti, Y. & Benerjee, U.C., 2002. Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology. 22 (3), 245–279.
dc.identifier.citationBasova, M.M. (2005). Fatty acid composition of lipids in microalgae. International Journal on Algae, 7 (1), 33–57.
dc.identifier.citationBeardall, J., Johnston, A. & Raven, J.A. (1998). Environmental regulation of CO2-concentrating mechanism in microalgae. Canadian Journal of Botany, 76 (6), 1010-1017.
dc.identifier.citationBelarbi, E., Molina, E. & Chisti, Y. (2000). A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbiology Technology, 26 (7), 516-529
dc.identifier.citationBen-Amotz, A., Fishler, R. & Schneller, A. (1987). Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Marine Biology, 95 (1), 31-36.
dc.identifier.citationBigogno, C., Khozin-Goldberg, I. & Cohen, Z. (2002). Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry, 60 (2), 135–143.
dc.identifier.citationBorowitzka, M. A. (1992). Algal biotechnology products and processes– matching science and economics. Journal of Applied Phycology, 4 (3), 267– 279.
dc.identifier.citationBozbas K. (2008). Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable & Sustainable Energy Review, 12 (2), 542–52.
dc.identifier.citationBrennan, L. & Owende, P. (2010). Biofuels from microalgae. A review of technologies for production, processing, and extractions of biofuels and coproducts. Renewable and Sustainable Energy Reviews, 14 (2), 557-577.
dc.identifier.citationBurja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G. & Wright, P.C. (2001). Marine cyanobacteria – a profilic source of natural products. Tetrahedron, 57 (47), 9347-9377.
dc.identifier.citationBurkhardt, S., Zondervan, I. & Riebesell, U. (1999). Effects of CO2 concentration on C:N:P ratio in marine phytoplankton: a species comparison. Limnology and Oceanography, 44 (3), 683–690.
dc.identifier.citationCao, Z., Gao, H., Liu, M. & Jiao, P. (2006). Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnology Journal, 1 (1), 68–74.
dc.identifier.citationCardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopes, N.P. et al. (2007). Metabolites from algae with economic impact. Comparative Biochemistry and Physiology, C146 (1-2), 60-78.
dc.identifier.citationChisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26 (3), 126-131.
dc.identifier.citationChisti, Y. Biodiesel from microalgae. (2007). Biotechnology Advances, 25 (3), 294–306.
dc.identifier.citationChiu, S.Y, Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C. & Lin, C.S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99 (9), 3389–3396.
dc.identifier.citationChu, W.L., Phang, S.M., & Goh, S.H. (1997). Environmental Effects on Growth and Biochemical Composition of Nitzschia inconspicua Grunow. Journal of Applied Phycology, 8 (4-5), 389–396.
dc.identifier.citationCleber, F., Sant’Anna, E., Villela da Costa, B. M. & Barcelos J. (2006). Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas y Aceites, 57 (2), 270-274.
dc.identifier.citationColeman, R.A. & Lee, D.P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43 (2), 134–176.
dc.identifier.citationConverti, A, Casazza, A.A., Ortiz, E.Y. Perego, P. & Borghi, M.D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48 (6), 1146–1151.
dc.identifier.citationCourchesne, N.M.D., Parisien, A., Wang, B. & Lan, C.Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141 (1-2), 31–41.
dc.identifier.citationDanesi, E.D.G., Rangel-Yagui, C.O., Carvalho, J.C.M. & Sato, S. (2004). Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 26 (4), 29–335.
dc.identifier.citationDayananda, C., Sarada, R., Bhattacharya, S. & Ravishankar, G.A. (2005). Effect of media and culture conditions on growth and hydrocarbon production from Botryococcus braunii. Process Biochemistry, 40 (9), 3125–3131.
dc.identifier.citationDijkstra, A.J. (2006). Revisiting the formation of trans isomers during partial hydrogenation of tricylglycerol oils. European Journal Lipid Science Technology, 108 (3), 249-264.
dc.identifier.citationDismukes, G., Carrieri, D., Bennette, N., Ananyev, G. & Posewitz, M. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. (2008). Current Opinion in Biotechnology, 19 (3), 235-240.
dc.identifier.citationGarcía, C.J. M & García, L.J.A. (2006). Biocarburantes líquidos: biodiesel y bioetanol. Informe de vigilancia tecnológica., Madrid. España., de, http://www.madrimasd.org/informacionidi/biblioteca/publicacion/doc/vt/vt4_bioc arburantes_liquidos_biodiesel_y_bioetanol.pdf. Consultado 2011.
dc.identifier.citationGaribay-Hernández, A. R., Vázquez-Duhalt, R., Sánchez-Saavedra, M.P., Serrano-Carreón, L. & Martínez –Jiménez, A. (2009). Biodiesel a partir de Microalgas. Biotecnología, 13 (3), 38-61.
dc.identifier.citationGe, Y., Liu, J. & Tian, G. (2011). Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology, 102 (1), 130–134.
dc.identifier.citationGoss, R. & Wilhelm, C. (2009). Lipids in Algae, Lichens and Mosses. En: H. Wada and N. Murata (eds.), Lipids in Photosynthesis: Essential and Regulatory Functions (pp. 117–135). Springer Science, Paises Bajos.
dc.identifier.citationGouveia, L. & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology Biotechnology, 36 (2), 269–274.
dc.identifier.citationGriffiths, M.J. & Harrison, S.T.L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21 (5), 493-507.
dc.identifier.citationGuckert, J.B. & Cooksey, K.E. (1990). Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. Journal of Phycology, 26 (1), 72 – 79
dc.identifier.citationGuschina, I.A. & Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45 (2), 160–186.
dc.identifier.citationGuschina, I.A. & Harwood, J.L. (2009). Algal Lipids and Effect of the Environment on their Biochemistry. En M.T. Arts et al. (eds.), Lipids in Aquatic Ecosystems (pp. 1-24). Springer, New York.
dc.identifier.citationGutierrez, R. (2008). Análisis de Clúster. Estadística multivariada. Universidad de Granada. España., de, http://www.ugr.es/~ramongs/sociologia/tema6_cluster.pdf. Consultado 2011.
dc.identifier.citationHarwood, J. L. & Guschina, I.A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91 (6), 679-684
dc.identifier.citationHejasi, A. & Wijffels, R. (2004). Milking of microalgae. Trends in Biotechnology, 22 (4), 189-194.
dc.identifier.citationHernández, A. (2004). Metabolismo y actividad biológica de los ácidos grasos omega-3. Nutrición y dietética hospitalaria, 24 (6), 49-54.
dc.identifier.citationHinzpeter, I., Shene, C. & Masson, L. (2006). Alternativas biotecnológicas para la producción de ácidos grasos poliinsaturados omega-3. Grasas y aceites, 57 (3), 336-342.
dc.identifier.citationHsueh, H.T., Li, W.J., Chen, H.H. & Chu, H. (2009). Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculata. Journal of Photochemistry and Photobiology B: Biology, 95 (1), 33–39.
dc.identifier.citationHu, Q. (2004). Environmental effects on cell composition. En: Richmond A (ed), Handbook of microalgal mass, culture: biotechnology and applied phycology (pp. 83–93). CRC Press, Blackwell Publishing Company, Oxford.
dc.identifier.citationHu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54 (4), 621-39.
dc.identifier.citationHuang, G.H., Chen, F., Wei, D., Zhang, X.W. & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87 (1), 38–46.
dc.identifier.citationIllman, A.M., Scragg, A.H. & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27 (8), 631–635.
dc.identifier.citationJang, E.S., Jung, M.Y. & Min, D.B. (2005). Hydrogenation for low trans and high conjugated fatty acids. Comprehensive Review in Food Science and Food Safety, 4 (1), 22-30.
dc.identifier.citationKalacheva, G.S, Zhila, N.O. & Volova, T.G. (2002). Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36 (2), 317–330.
dc.identifier.citationKalogeropoulos, N., Chiou, A., Gavala, E., Christea, M. & Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (carotenoids, tocopherols, sterols and squalene) of raw and roasted chicken fed on DHA-rich microalgae. Food Research International, 43 (8), 2006–2013
dc.identifier.citationKitaya, Y., Azuma, H. & Kiyota, M. (2005). Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Advances in Space Research, 35 (9), 1584–1588.
dc.identifier.citationKnothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. (2005). Fuel Processing Technology, 86 (10), 1059–1070.
dc.identifier.citationLassing, M., Mårtensson, P., Olsson, E. & Svensson, M. Biodiesel Production from Microalgae. A Feasibility Study. (2008). Oslo, Noruega. Lund University, Faculty of Engineering-Statoil Hydro. ASA
dc.identifier.citationLatasa, M. (1995). Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Scientia Marina, 59 (1), 25-37
dc.identifier.citationLi, Y. & Qin, J.G. (2005). Comparison of growth and lipid content in three Botryococcus braunii strains. Journal of Applied Phycology, 17 (6), 551–556.
dc.identifier.citationLi, Y., Wang, B., Wu, N. & Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81 (4), 629–36.
dc.identifier.citationLópez, D., Belarbi, E.H., Rodriguez-Ruiz, J., Segura, C.I. & Gimenez, A. (1998). Acyl Lipids of Three Microalgae. Phvtochemistry, 47 (8), 1473- 1481.
dc.identifier.citationLv, J.M., Cheng, L.H., Xu, X.H., Zhang, L. & Chen, H.L. (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101 (17), 6797–6804
dc.identifier.citationMa, X., Chen, K.W. & Lee, Y.K. (1997). Growth of Chlorella outdoors in a changing light environment. Journal of Applied Phycology, 9 (5), 425–430
dc.identifier.citationMadigan, M.T., Martinko, J.M. & Parker, J. (1999). Brock: Biología de los Microorganismos. (8ª ed.). Madrid: Prentice Hall.
dc.identifier.citationMasojídek, J., Koblizek, M. & Torzillo, G. (2004). En: Richmond A (ed), Handbook of microalgal mass, culture: biotechnology and applied phycology (pp. 20–39). CRC Press, Blackwell Publishing Company, Oxford.
dc.identifier.citationMata, T., Martins, A. & Caetano, N. Microalgae for biodiesel production and other applications: A review. (2010). Renewable and Sustainable Energy Reviews, 14 (1), 217–232
dc.identifier.citationMeng, X., Yang, J., Xu, X., Zhang, L., Nie, Q. & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34 (1), 1–5
dc.identifier.citationMerzlyak, M. N., Chivkunova, O. B., Gorelova, O. A., Reshetnikova, I. V., Solovchenko, A. E., Khozin-Goldberg, I. et al. (2007), Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid Content of the unicellular green alga Parietochloris Incisa (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 43 (4), 833–843
dc.identifier.citationMetz, J.G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M. et al. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293 (5528), 291-293.
dc.identifier.citationMetzger, P. & Largeau, C. (2005). Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 66 (5), 486–496.
dc.identifier.citationMSDN. (2008). Conceptos de minería de datos (Analysis Services - Minería de datos)., de, http://msdn.microsoft.com/es-es/library/ms174949.aspx. Consultado 2011
dc.identifier.citationMutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A. & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology, 102 (1), 57–70.
dc.identifier.citationNorsker, N.H., Barbosa, M. J., Vermuë, M.H. & Wijffels R.H. (2011). Microalgal production - A close look at the economics. Biotechnology Advances, 29 (1), 24–27
dc.identifier.citationÖrdög, V., Stirk, W.A., Lenobel, R., Bancírová, M., Strnad, M., Van Staden, J. et al. (2004). Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology, 16 (4), 309-314
dc.identifier.citationPhatarpekar, P.V., Sreepada, R.A., Pednekar, C. & Achuthankutty, C.T. (2002). A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture, 181 (1-2), 141–155.
dc.identifier.citationQuevedo., H.A., García, H., Salas J, Domínguez M.A. & Esquivel V.H. (2007). Análisis estadístico de ozono a nivel del suelo. Cultura Científica y tecnológica: Modelos estadísticos, 43 (4), 35-43.
dc.identifier.citationRajakumari, S., Grillitsch, K. & Daum, G. (2008). Synthesis and turnover of nonpolar lipids in yeast. Progress in Lipid Research, 47 (3), 157–171.
dc.identifier.citationRasoul-Amini, S., Montazeri-Najafabady, N., Mobasher, M.A., HoseiniAlhashemi, S. & Ghasemi, Y. (2011). Chlorella sp.: A new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Applied Energy, 88 (10), 3354-3356.
dc.identifier.citationRawlings, J.O., Pantula, S.G. & Dickey, D.A. (1998). Applied Regression Analysis. A Research Tool (2ª ed .). USA: Springer.
dc.identifier.citationRichmond, A. (2004). Biological principles of mass cultivation. En: Richmond A (ed), Handbook of microalgal mass, culture: biotechnology and applied phycology (pp. 566). CRC Press, Blackwell Publishing Company, Oxford.
dc.identifier.citationRichmond, A.E. & Soeder, CJ. (1986). Microalgaculture. Critical Reviews in Biotechnology, 4 (4), 369-438.
dc.identifier.citationRivero, M., Santamaría, M. & Rodríguez-Palmero, M. (2005). La importancia de los ingredientes funcionales en las leches y cereales infantiles. Nutrición Hospitalaria, 20 (2) 135-146
dc.identifier.citationRodolfi, L., Chini, Z.G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. et al. (2009). Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102 (1), 100-112
dc.identifier.citationRoeselers, G., Van Loosdrecht, M.C.M. & Muyzer, G. (2008). Phototrophic biofilms and their potencial applications. Journal of Applied Phycology, 20 (3), 227-235.
dc.identifier.citationRosenberg, J.N, Oyler, G.A., Wilkinson, L. & Betenbaugh, M.J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19 (5), 430-436.
dc.identifier.citation. Rubio-Rodríguez, N., Beltrán, S., Jaime, I., De Diego, S.M., Sanz, M.T. & Carballido, J.R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innovative Food Science and Emerging Technologies, 11 (1), 1–12
dc.identifier.citationSasaki, Y. & Nagano, Y. (2004). Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Bioscience, Biotechnology and Biochemistry, 68 (6), 1175–1184.
dc.identifier.citationSatyanarayana, K.G., Mariano, A.B. & Vargas, J.V.C. (2010). A review on microalgae, a versatile source for sustainable energy and materials. International Journal of Energy Research, 35 (4), 291–31.
dc.identifier.citationSchenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C. et al. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Research, 1 (1), 20-43.
dc.identifier.citationSilva, C. & Salinas, M. (2006). Modelos de Regresión y Correlación. Ciencia & Trabajo, 8 (22), 185-189.
dc.identifier.citationSilva, C. & Salinas, M. (2007). Modelos de Regresión y Correlación II. Regresión lineal múltiple. Ciencia & Trabajo, 9 (23), 39-41.
dc.identifier.citationSimopoulos, A.P. (1999). Essential fatty acids in health and chronic disease. The American Journal of Clinical Nutrition,70 (3), 560S–569S.
dc.identifier.citationSingh, A., Nigam, P.S. & Murphy, J.D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102 (1), 26–34.
dc.identifier.citationSolovchenko, A. E., Merzlyak, M. N., Chivkunova, O. B., Reshetnikova, I. V., Khozina-Goldberg, I. et al. (2008) . Effects of illumination and nitrogen starvation on accumulation of arachidonic acid by the microalga Parietochloris incise. Moscow University Biological Sciences Bulletin, 63 (1), 44-48.
dc.identifier.citationSpolaore, P., Joanniss-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience a Bioengineering, 101 (2), 87-96.
dc.identifier.citationSubrahmanyam, S. & Cronan Jr., J.E. (1998). Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. Journal of Bacteriology 180 (17), 4596–4602.
dc.identifier.citationSukenik, A. & Livne, A. (1991). Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiology, 32 (3), 371–378.
dc.identifier.citationSuzuki, T., Matsuo, T., Ohtaguchi, K. & Koide, K. (1995). Gas-sparged bioreactors for CO2 fixation by Dunaliella tertiolecta. Journal of Chemical Technology and Biotechnology, 62 (4), 351–358.
dc.identifier.citationTakagi, M., Karseno. & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101 (3), 223–226
dc.identifier.citationTatsuzawa , H., Takizawa, E., Wada, M. & Yamamoto, Y. (1996). Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp . Jornal of Phycology, 32 (4), 598 – 601.
dc.identifier.citationThompson, G.A. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta, 1302 (1), 17–45.
dc.identifier.citationU.S. DOE (2010). National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program.
dc.identifier.citationUgwu, C.U., Aoyagi, H. & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99 (10), 4021–4028.
dc.identifier.citationVeldt Larsen, P. (2008). Selecting regression models. En Master of Applied Statistics. Regression and analysis of variance (Modulo 8)., de, http://statmaster.sdu.dk/courses/st111/. Consultado 2011.
dc.identifier.citationVerma, N. M., Mehrotra, S., Shukla, A. & Mishra, B.N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology, 9 (10), 1402-1411.
dc.identifier.citationVillardón, J.L.V. (2008). Introducción al análisis de Clúster., de, http://biplot.usal.es/ALUMNOS/CIENCIAS/2ESTADISTICA/MULTIVAR/cluster. pdf. Consultado 2011.
dc.identifier.citationWeldy, C.S. & Huesemann, M. (2007). Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. US Department of Energy Journal of Undergraduate Research, 7(1), 115–22.
dc.identifier.citationWidjaja, A., Chien, C. C. & Ju, Y.H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40 (1), 13–20.
dc.identifier.citationXu, H., Miao, X. & Qingyu, W. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126 (4), 499-507.
dc.identifier.citationYang, Y & Gao, K. (2003). Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology, 15 (5), 379-389
dc.identifier.citationYang, C., Hua, Q. & Shimizu, K. (2000). Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6 (2), 87–102
dc.identifier.citationYeesang, C. & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102 (3), 3034–3040
dc.identifier.citationYeh, K.L., Chang, J.S. & Chen, W.M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 10 (3), 201– 208.
dc.identifier.citationYoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. & Oh, H.M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101 (1), 71–74
dc.identifier.citationZhila, N.O., Kalacheva, G.S. & Volova, T.G. (2005). Effect of Nitrogen Limitation on the Growth and Lipid Composition of the Green Alga Botryococcus braunii Kütz IPPAS H-252. Russian Journal of Plant Physiology, 52 (3), 311–319.
dc.identifier.urihttp://hdl.handle.net/10818/3915
dc.description157 páginas
dc.description.abstractEl presente estudio tuvo como objetivo determinar la relación entre la concentración de nitrógeno, CO2, intensidad de luz y temperatura sobre la producción de lípidos de interés industrial, en microalgas de la división Chlorophyta. A través de minería de datos se seleccionaron, analizaron y procesaron los datos. Se plantearon modelos de regresión para evaluar el ajuste de los mismos. Se identificaron cinco microalgas con mayor potencial para la producción de lípidos. En los modelos, la concentración de lípidos incrementó cuando el nitrógeno se fijó en su nivel más bajo. En estas condiciones, concentraciones de CO2 altas mejoraron el rendimiento lipídico. Los modelos permitieron encontrar las variables significativas para maximizar la producción de lípidos y entender sus efectos a nivel bio-metabólico.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectMicroalgas-Aplicaciones industriales-Investigacioneses_CO
dc.subjectLípidos-Investigacioneses_CO
dc.titleRelación entre parámetros de proceso fotótrofo y la producción de lípidos de interés industrial en microalgas de la división Chlorophytaes_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local152815
dc.identifier.localTE05483
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagister en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem