dc.contributor.advisor | Ruiz Pardo, Ruth Yolanda | |
dc.contributor.advisor | Prieto Correa, Rosa Erlide | |
dc.contributor.advisor | Acosta González, Luis Alejandro | |
dc.contributor.author | Vargas Trujillo, Katherine | |
dc.date.accessioned | 2019-12-03T19:51:11Z | |
dc.date.available | 2019-12-03T19:51:11Z | |
dc.date.issued | 2019-11 | |
dc.identifier.uri | http://hdl.handle.net/10818/38605 | |
dc.description | 91 páginas | es_CO |
dc.description.abstract | El Biodiesel es un biocombustible renovable, que es producido en nuestro país a partir de aceite crudo de palma y en la actualidad se emplea como aditivo del diésel máximo en un 10% de acuerdo a la zona del país. El biodiesel y sus mezclas con diésel son sensibles a la colonización de diferentes tipos de microorganismos, en particular durante el almacenamiento y la manipulación del combustible, situación favorecida principalmente por la absorción de agua; los microorganismos pueden generar problemas en la operación por los productos de degradación formados, lo que produce pérdidas económicas en el sector. La colonización microbiana; ha sido estudiada en otras matrices, sin embargo no se conocen estudios sobre este aspecto en biodiesel de palma producido en Colombia. Para conocer mejor la diversidad microbiana que coloniza y crece en el biodiesel de palma colombiano y sus mezclas con diésel, se planteó en primer lugar caracterizar los microorganismos cultivables de distintas muestras del biodiesel de palma y sus mezclas con diésel y paralelamente evaluar la eficacia de un tratamiento biocida sobre el crecimiento de los mismos. Por tal razón en la primera parte del trabajo se propuso aislar e identificar microorganismos cultivables presentes en muestras colonizadas de la cadena del biodiesel de palma (B100, B70, B50, B40, B10 y B8). Se encontró que tres microorganismos con alta capacidad degradadora del biodiesel eran frecuentes en la mayoría de las muestras: Staphylococcus saprophyticus, Bacillus cereus y el aislado 6 de hongos filamentosos, el primero aislado de la mezcla B8, reportado en la producción de lipasas y el segundo reportado en sistemas contaminados de biodiesel. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Energía biomásica | es_CO |
dc.subject | Aceite de palma | es_CO |
dc.subject | Biodiesel | es_CO |
dc.subject | Combustibles vegetales | es_CO |
dc.title | Evaluación del uso de biocidas sobre el crecimiento microbiano en Biodiesel de palma, mezclas B50 y B2 | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to Biodeterioration.
https://doi.org/10.1017/CBO9780511617065. | eng |
dcterms.references | Alzate, D. A. O., Mier, G. I. M., Afanador, L. K., Durango, D. L. R., & García, C. M. P.
(2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum
acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo
(Cymbopogon citratus), y sus componentes mayoritarios. Vitae, 16(1), 116–125 | spa |
dcterms.references | Anderson, S., Patricia, Y., Bücker, F., Clarice, J., Dörr, P., Quadros, D., … Piatnicki,
S. (2016). Effect of different concentrations of tert- butylhydroquinone ( TBHQ ) on
microbial growth and chemical stability of soybean biodiesel during simulated storage.
Fuel, 184, 701–707. https://doi.org/10.1016/j.fuel.2016.07.067. | eng |
dcterms.references | Andrews, J. M. (2001). JAC Determination of minimum inhibitory concentrations, 5–
16 | eng |
dcterms.references | ASTM Standard D 6974, 2009b. Practice for Enumeration of Viable Bacteria and Fungi
in Liquid Fuels-Filtration and Culture Procedures. ASTM International, West
Conshohocken. http://dx.doi.org/10.1520/D6974-09. Available online at.
www.astm.org. | eng |
dcterms.references | ASTM Standard E 1259, 2010e. Standard practice for evaluation of antimicrobials in
liquid fuels boiling below 390 °C. West Conshohocken, PA: ASTM International; 2010.
Doi: 10.1520/E1259-10 [www.astm.org]. | eng |
dcterms.references | ASTM Standard D 6469, 2011a. Guide for Microbial Contamination in Fuels and Fuel
Systems. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D6469-
11. Available online at. www.astm.org | eng |
dcterms.references | Content of Microorganisms in Fuel, Fuel/Water Mixtures and Fuel Associated Water.
ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D7463-08.
Available online at. www.astm.org. | eng |
dcterms.references | ASTM Standard D 7464, 2011b. Practice for Manual Sampling of Liquid Fuels,
Associated Materials and Fuel System Components for Microbiological Testing. ASTM
International, West Conshohocken. http://dx.doi.org/10.1520/D7464-08. Available
online at. www.astm.org | eng |
dcterms.references | ASTM Standard D 7687, 2011b. Standard Test Method for Measurement of Cellular
Adenosine Triphosphate in Fuel, Fuel/Water Mixtures, and Fuel Associated Water with
Sample Concentration by Filtration. ASTM Interna- tional, West Conshohocken.
http://dx.doi.org/10.1520/D7687-11. Available online at. www.astm.org | eng |
dcterms.references | Bahuguna, A., Lily, M. K., Munjal, A., Singh, R. N., & Dangwal, K. (2011).
Desulfurization of dibenzothiophene ( DBT ) by a novel strain Lysinibacillus sphaericus
DMT-7 isolated from diesel contaminated soil, 23(6), 975–982. | eng |
dcterms.references | Balasubramanian, N., & Simões, N. (2014). International Journal of Biological
Macromolecules Bacillus pumilus S124A carboxymethyl cellulase ; a thermo stable
enzyme with a wide substrate spectrum utility, 67, 132–139. | eng |
dcterms.references | Bautista, L. F., Vargas, C., González, N., Molina, M. C., Simarro, R., Salmerón, A., &
Murillo, Y. (2016). Assessment of biocides and ultrasound treatment to avoid bacterial
growth in diesel fuel. Fuel Processing Technology, 152, 56–63.
https://doi.org/10.1016/j.fuproc.2016.06.002 | eng |
dcterms.references | Benjumea, P. N., Agudelo, J. R., & Benavidez, A. Y. (2004). Análisis de calidad de los
Biogasoleos de Aceite de Palma e Higuerilla. Energética Universidad Nacional 31,
11–21. | eng |
dcterms.references | Bento, F. M., & Gaylarde, C. C. (2001). Biodeterioration of stored diesel oil : Studies
in Brazil. International Biodeterioration & Biodegradation. (47). 107–112. | eng |
dcterms.references | Bücker, F., Barbosa, C. S., Quadros, P. D., Bueno, M. K., Fiori, P., Huang, C., Bento,
F. M. (2014). Fuel biodegradation and molecular characterization of microbial biofilms
in stored diesel/biodiesel blend B10 and the effect of biocide. International
Biodeterioration & Biodegradation, 95, 346–355.
https://doi.org/10.1016/j.ibiod.2014.05.030 | eng |
dcterms.references | Bücker, F., Santestevan, N. A., Roesch, L. F., Seminotti Jacques, R. J., Peralba, M.
D. C. R., Camargo, F. A. D. O., & Bento, F. M. (2011). Impact of biodiesel on
biodeterioration of stored Brazilian diesel oil. International Biodeterioration &
Biodegradation, 65(1), 172–178. https://doi.org/10.1016/j.ibiod.2010.09.008 | eng |
dcterms.references | Bushnell, L. ., & Haas, H. . (1940). The utilization of certain hydrocarbons by
microorganisms. Kansas Agricultural Experiment Station.(199), 653–673 | eng |
dcterms.references | Carrizo, S., Ramousse, C., & Velut, D. (2009). Biocombustibles en Argentina , Brasil
y Colombia : Avances y limitaciones. Disponible en:
http://www.fuentesmemoria.fahce.unlp.edu.ar/art_revistas/pr.4443/pr.4443.pdf | eng |
dcterms.references | Cazarolli, J. C., Guzatto, R., Samios, D., Peralba, M. D. C. R., Cavalcanti, E. H. D. S.,
& Bento, F. M. (2014). Susceptibility of linseed, soybean, and olive biodiesel to growth
of the deteriogenic fungus Pseudallescheria boydii. International Biodeterioration &
Biodegradation, 95(X), 364–372. https://doi.org/10.1016/j.ibiod.2013.09.025 | eng |
dcterms.references | Cea, M., Sangaletti, G., Acuña, N., Fuentes, I., Jorquera, M., Godoy, K., Navia, R.
(2015). Screening transesterifiable lipid accumulating bacteria from sewage sludge for
biodiesel production. Biotechnology reports. (8). 116–123. | eng |
dcterms.references | . Chao, Y., Liu, N., Zhang, T., & Chen, S. (2010). Isolation and characterization of
bacteria from engine sludge generated from biodiesel-diesel blends. Fuel, 89(11),
3358–3364. https://doi.org/10.1016/j.fuel.2010.05.041 | eng |
dcterms.references | Ching, T. H., Yoza, B. A., Wang, R., Masutani, S., Donachie, S., Hihara, L., & Li, Q. X.
(2016). International Biodeterioration & Biodegradation Biodegradation of biodiesel
and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12.
International Biodeterioration & Biodegradation, 108, 122–126.
https://doi.org/10.1016/j.ibiod.2015.11.027 | eng |
dcterms.references | Christensen, E., & Mccormick, B. (2014). Long-Term Storage Stability of Biodiesel and
Blends. National Biodiesel Conference- National Renewable Energy-Laboratory. 1-14. | eng |
dcterms.references | CONCAWE Fuels Quality and Emissions Management Group. The Natural
Attenuation of Fatty Acid Methyl Esters (FAME) in Soil and Groundwater. March
2016.https://www.concawe.eu/uploads/Modules/Publications/the-natural-attenuationof-fatty-acid-methyl-esters-in-soil-and-grounwater.pdf. | eng |
dcterms.references | Consortium, A. F., & Burton, R. (2008). An Overview of ASTM D6751: Biodiesel
Standards and Testing Methods. | eng |
dcterms.references | . Copp, B. R. (2003). Antimycobacterial natural products. Natural Product Reports,
20(6), 535. https://doi.org/10.1039/b212154a. | eng |
dcterms.references | Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon
contaminants: an overview. Biotechnology Research International, 2011, 941810.
https://doi.org/10.4061/2011/941810 | eng |
dcterms.references | Decho, A. W. (2000). Microbial biofilms in intertidal systems : An overview. Continental
Shelf Research (20). 1257–1273. | eng |
dcterms.references | . DeMello, J. a, Carmichael, C. a, Peacock, E. E., Nelson, R. K., Samuel Arey, J., &
Reddy, C. M. (2007). Biodegradation and environmental behavior of biodiesel mixtures
in the sea: An initial study. Marine Pollution Bulletin, 54(7), 894–904.
https://doi.org/10.1016/j.marpolbul.2007.02.016 | eng |
dcterms.references | Demirbas, A. (2009). Political , economic and environmental impacts of biofuels : A
review. Applied Energy, 86, S108–S117.
https://doi.org/10.1016/j.apenergy.2009.04.036 | eng |
dcterms.references | Doku, A., & Di Falco, S. (2012). Biofuels in developing countries: Are comparative
advantages enough? Energy Policy, 44, 101–117.
https://doi.org/10.1016/j.enpol.2012.01.022 | eng |
dcterms.references | . Donaldson, J. R., Warner, S. L., Cates, R. G., & Gary Young, D. (2005). Assessment
of Antimicrobial Activity of Fourteen Essential Oils When Using Dilution and Diffusion
Methods. Pharmaceutical Biology, 43(8), 687–695.
https://doi.org/10.1080/13880200500384932 | eng |
dcterms.references | Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious
Diseases, (9). 881–890. | eng |
dcterms.references | EN14103:2003. Fatty acid methyl esters (FAME) – Determination of ester and linolenic
acid methyl esters contents. European Committee for Standardization, Brussels
(2003). | eng |
dcterms.references | EN 14078:2014. Determination of the methyl esters of fatty acids (FAME) of medium
distillates. Infrared spectroscopy. European Committee for Standardization, Brussels
(2014). | eng |
dcterms.references | Fang, Y., Lu, Z., Lv, F. et al. A Newly Isolated Organic Solvent
Tolerant Staphylococcus saprophyticus M36 Produced Organic Solvent-Stable
Lipase. Curr Microbiol (2006) 512-515.53:510.doi:10.1007/s00284-006-000260. | eng |
dcterms.references | Frank & Yousef (2004). En Standard Methods for the Examination of Dairy
Products. H. Michael Wehr and Joseph F. Frank (2004). American Public Health
Association. eISBN: 978-0-87553-264-
6. | eng |
dcterms.references | Federación Nacional de Biocombustibles. (2008). PRÁCTICAS DE MANEJO para el
biodiesel y las mezclas diesel – biodiesel en la cadena de distribución de combustibles
líquidos derivados de petróleo en.
www.minminas.gov.co/minminas/downloads/archivosEventos/6448.pdf. | eng |
dcterms.references | Federación Nacional de Biocombustibles. (2012). El vademécum de los
Biocombustibles. Disponible en
http://www.fedebiocombustibles.com/files/El_Vademecum_de_los_Biocombustibles.
pdf. | spa |
dcterms.references | Garcia, H., & Calderon, L. (2012). Evaluación de la-política de Biocombustibles en
Colombia. UPME.1-146. Disponible en http://www.fedesarrollo.org.co/wp-content/uploads/2011/08Evaluación-de-la-política-de-Biocombustibles-enColombia.pdf. | spa |
dcterms.references | Gaylarde, C. C., Kelley, J., Agronomia, F. De, Alegre, P., Alegre, P., & Lane, B. (1999).
Microbial contamination of stored Hydrocarbon fuels and its fuels and its control.
Revista de Microbiología. 1–10. | eng |
dcterms.references | Gomez, & Et. Al. (2009). Potencial antimicrobiano de los aceites esenciales de
orégano(Oregano vulgare) y canela (Cinnamomun zeylanicum). Temas Selectos de
Ingeniería de Alimentos 3. | spa |
dcterms.references | . J. Hartman, J. Geva, R. Fass A computerized expert system for diagnosis and control
of microbial contamination in jet fuel and diesel fuel storage systems H.N. Giles (Ed.),
Proceedings of the Fourth International Conference on Stability and Handling of Liquid
Fuels, Orlando, Florida, 19–22 November 1991, U.S. Department of Energy,
Washington (1992), pp. 153–166. | eng |
dcterms.references | . Izrael-Zivkovic LT, Gojgic-Cvijovic GD, Gopcevic KR, Vrvic MM, Karadzic
IM. Enzymatic characterization of 30 kDa lipase from Pseudomonas
aeruginosa ATCC 27853.J Basic Microbiol. 2009 Oct;49(5):452-
http://onlinelibrary.wiley.com/doi/10.1002/jobm.200800229/epdf. | eng |
dcterms.references | Jakeria, M. R., Fazal, M. a., & Haseeb, a. S. M. a. (2014). Influence of different factors
on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews,
30, 154–163. https://doi.org/10.1016/j.rser.2013.09.024 | eng |
dcterms.references | Koch G.H, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer. Corrosion
Costs and Preventive Strategies in the United States. Report No. FHWA-RD-01–
156 United States Federal Highway Administration, Washington (2002) Available
online http://www.corrosioncost.com/downloads/pdf/index.htm. | eng |
dcterms.references | Kumar, R., Kumar, V., & Sham, R. (2016). Stability of biodiesel – A review. Renewable
and Sustainable Energy Reviews, 62, 866–881.
https://doi.org/10.1016/j.rser.2016.05.001. | eng |
dcterms.references | Leung, D. Y. C., Koo, B. C. P., & Guo, Y. (2006). Degradation of biodiesel under
different storage conditions, 97(August 2004), 250–256.
https://doi.org/10.1016/j.biortech.2005.02.006 | eng |
dcterms.references | Lin, M., Liu, Y., Chen, W., Wang, H., & Hu, X. (2014). International Biodeterioration &
Biodegradation Use of bacteria-immobilized cotton fi bers to absorb and degrade
crude oil, 88, 8–12. https://doi.org/10.1016/j.ibiod.2013.11.015. | eng |
dcterms.references | Liu, B., Liu, J., Ju, M., Li, X., & Yu, Q. (2015). Puri fi cation and characterization of
biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation
of petroleum contaminated soil. MPB, (2015), 1–6.
https://doi.org/10.1016/j.marpolbul.2016.04.025. | eng |
dcterms.references | Lutz, G., Chavarría, M., Arias, M. L., Mata-segreda, J. F., Tropical, R. D. B., & Rica,
U. D. C. (2006). Redalyc.Microbial degradation of palm (Elaeis guineensis ) biodiesel,
54, 59–63. | eng |
dcterms.references | Marqués-calvo, M. S., Codony, F., Agustí, G., & Lahera, C. (n.d.). Visible light
enhances the antimicrobial effect of some essential oils. Photodiagnosis and
Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2016.12.002. | eng |
dcterms.references | Martin Sanchez, P. M., & Gorbushina, A. A. (2016). International Biodeterioration &
Biodegradation Quanti fi cation of microbial load in diesel storage tanks using cultureand qPCR-based approaches. https://doi.org/10.1016/j.ibiod.2016.04.009. | eng |
dcterms.references | Masy, T., Caterina, D., Tromme, O., Lavigne, B., Thonart, P., Hiligsmann, S., & Nguyen, F. (2016). Electrical resistivity tomography to monitor enhanced
biodegradation of hydrocarbons with Rhodococcus erythropolis T902 . 1 at a pilot
scale. Journal of Contaminant Hydrology, 184, 1–13.
https://doi.org/10.1016/j.jconhyd.2015.11.001 | eng |
dcterms.references | Mata, T.M., Cardoso, N., Ornelas, M., Neves, S., Caetano, N.S. (2008). Sustainable
Production of Biodiesel from Tallow , Lard and Poultry Fat and its Quality Evaluation.
University of Porto.(10).1-6. | eng |
dcterms.references | Mathews, S. L., Grunden, A. M., & Pawlak, J. (2016). Degradation of lignocellulose
and lignin by Paenibacillus glucanolyticus. International Biodeterioration &
Biodegradation, 110. 79–86. https://doi.org/10.1016/j.ibiod.2016.02.012 | eng |
dcterms.references | Mathews, S. L., Pawlak, J. J., & Grunden, A. M. (2014). Isolation of Paenibacillus
glucanolyticus from pulp mill sources with potential to deconstruct pulping waste.
Bioresource Technology. (164). 100–105.
https://doi.org/10.1016/j.biortech.2014.04.093 | eng |
dcterms.references | . Medina, A., Lambert, R. J. W., & Magan, N. (2012). Rapid throughput analysis of
filamentous fungal growth using turbidimetric measurements with the Bioscreen C: a
tool for screening antifungal compounds. Fungal Biology, 116(1), 161–9.
https://doi.org/10.1016/j.funbio.2011.11.001 | eng |
dcterms.references | Ministerio de Minas y Energía, U. P. M. E. (Upme). (2009). Biocombustibles en
Colombia. Report, 22. Retrieved from
http://www.upme.gov.co/Docs/Biocombustibles_Colombia.pdf | eng |
dcterms.references | Ministerio de Minas y Energía. (2011). Guía de BUENAS PRÁCTICAS DE MANEJO
para el biodiesel y las mezclas diesel–biodiesél en la cadena de distribución de
combustibles líquidos derivados de petróleo en Colombia.
http://www.minminas.gov.co/documents/10180/488465/CARTILLAMINORISTAS_11.
pdf/42eaff10-3c06-4b83-aae9-142c557b09c6 | eng |
dcterms.references | Mudge, S. M., & Pereira, G. (1999). Stimulating the biodegradation of crude oil with
biodiesel preliminary results. Spill Science and Technology Bulletin, 5(5–6), 353–355.
https://doi.org/10.1016/S1353-2561(99)00075-4 | eng |
dcterms.references | Muthukumar, N., Maruthamuthu, S., & Palaniswamy, N. (2007). Role of cationic and
nonionic surfactants on biocidal efficiency in diesel-water interface. Colloids and
Surfaces B: Biointerfaces, 57(2), 152–160.
https://doi.org/10.1016/j.colsurfb.2007.01.019 | eng |
dcterms.references | Ni, Y., Young, D., Gyu, M., Hee, S., Park, H., & Ha, Y. (2010). Biosynthesis of mediumchain-length poly ( 3-hydroxyalkanoates ) by volatile aromatic hydrocarbonsdegrading Pseudomonas fulva TY16. Bioresource Technology (101). 8485–8488.
https://doi.org/10.1016/j.biortech.2010.06.033 | eng |
dcterms.references | Nowicka, D., Ginter-kramarczyk, D., Holderna-odachowska, A., & Budnik, I. (2013).
Ecotoxicology and Environmental Safety Biodegradation of oxyethylated fatty alcohols
by bacteria Microbacterium. Ecotoxicology and Environmental Safety, 91, 32–38.
https://doi.org/10.1016/j.ecoenv.2013.01.005. | eng |
dcterms.references | Oliboni, A., Azambuja, D., Bücker, F., Dörr, P., Quadros, D., Zhalnina, K., … Menezes,
F. (2016). Microbial community composition in Brazilian stored diesel fuel of varying
sulfur content , using high-throughput sequencing. Fuel, 189, 340–349.
https://doi.org/10.1016/j.fuel.2016.10.108 | eng |
dcterms.references | Palmer, J. D., & Brigham, C. J. (2016). Feasibility of triacylglycerol production for
biodiesel , utilizing Rhodococcus opacus as a biocatalyst and fi shery waste as
feedstock. Renewable and Sustainable Energy Reviews, 56, 922–928.
https://doi.org/10.1016/j.rser.2015.12.002 | eng |
dcterms.references | Pasqualino, J. C., Montané, D., & Salvadó, J. (2006). Synergic effects of biodiesel in
the biodegradability of fossil-derived fuels. Biomass and Bioenergy, 30(10), 874–879.
https://doi.org/10.1016/j.biombioe.2006.03.002 | eng |
dcterms.references | . Passman, F. J. (2013). Microbial contamination and its control in fuels and fuel
systems since 1980 – a review. International Biodeterioration & Biodegradation, 81,
88–104. https://doi.org/10.1016/j.ibiod.2012.08.002 | eng |
dcterms.references | Picard B, Denamur E, Barakat A, Elion J, Goullet P. Genetic heterogeneity
of Pseudomonas aeruginosaclinical isolates revealed by esterase electrophoretic
polymorphism and restriction fragment length polymorphism of the ribosomal RNA
gene region. J Med Microbiol. 1994 May;40(5):313-22. | eng |
dcterms.references | . Rauch et al., 2006.M.E. Rauch, H.W. Graef, S.M. Rozenzhak, S.E. Jones, C.A.
Bleckmann, R.L. Kruger, R.R. Naik, M.O. Stone Characterization of microbial
contamination in United States Air Force aviation fuel tanks J. Ind. Microbiol.
Biotechnol., 33 (2006), pp. 29–36 | eng |
dcterms.references | Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L., & Thompson, M. R. (2013). Effect of
biodiesel addition on microbial community structure in a simulated fuel storage system.
Bioresource Technology, 147, 456–63. https://doi.org/10.1016/j.biortech.2013.08.068 | eng |
dcterms.references | Rodríguez, E. N. (2011). Uso de agentes naturales antimicrobianos naturales en la
conservación de frutas y hortalizas. Ra Ximhai, 7, 153–170. | spa |
dcterms.references | Reyes, F., Palou, E., Lopez, A. (2014). Métodos de la evaluación de la actividad
antimicrobiana y determinación de los componentes uímicos de los aceites
esenciales. Universidad de las Américas Puebla- Doctorado en Ciencia de Alimentos.
68–78. | spa |
dcterms.references | Ruggeri, C., Franzetti, A., Bestetti, G., Caredda, P., La, P., Pintus, M., … Tamburini,
E. (2009). International Biodeterioration & Biodegradation Isolation and
characterisation of surface active compound-producing bacteria from hydrocarboncontaminated environments. International Biodeterioration & Biodegradation, 63(7),
936–942. https://doi.org/10.1016/j.ibiod.2009.05.003 | eng |
dcterms.references | Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Bioremediation of Coastal and
Marine Pollution due to Crude Oil using a Microorganism Bacillus subtilis. Procedia
Engineering, 116(Apac), 213–220. https://doi.org/10.1016/j.proeng.2015.08.284 | eng |
dcterms.references | Schleicher, T., Werkmeister, R., Russ, W., & Meyer-Pittroff, R. (2009). Microbiological
stability of biodiesel-diesel-mixtures. Bioresource Technology, 100(2), 724–30.
https://doi.org/10.1016/j.biortech.2008.07.029 | eng |
dcterms.references | Siegert, W., Gmbh, M., & Sraße, R. K. (2009).Microbial contamination in diesel fuelAre new problems arising from Biodiesel blends. IASH 11th International Conference
on stability, Handling and use of liquid Fuels Prague. (11). 1–20 | eng |
dcterms.references | Silva, T. R., Verde, L. C. L., Neto, E. V. S., & Oliveira, V. M. (2013). International
Biodeterioration & Biodegradation Diversity analyses of microbial communities in
petroleum samples from Brazilian oil fi elds. International Biodeterioration &
Biodegradation, 81, 57–70. https://doi.org/10.1016/j.ibiod.2012.05.005 | eng |
dcterms.references | Soares et al., 2009.J. Soares Jr., A.P. Mariano, D.F. Angelis Biodegradation of
biodiesel/diesel blends by Candida viswanathii. Afr. J. Biotechnol., 8 (2009), pp. 2774–
2778. | eng |
dcterms.references | Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D.
(2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8),
5259–5264. https://doi.org/10.1016/j.biortech.2011.02.017. | eng |
dcterms.references | Soriano, A. U., Martins, L. F., Santos de Assumpção Ventura, E., Teixeira Gerken de
Landa, F. H., de Araújo Valoni, É., Dutra Faria, F. R., … Peixoto, R. S. (2015).
Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration.
International Biodeterioration and Biodegradation, 99, 102–114.
https://doi.org/10.1016/j.ibiod.2014.11.014. | eng |
dcterms.references | Striebich, R. C., Smart, C. E., Gunasekera, T. S., Mueller, S. S., Strobel, E. M.,
McNichols, B. W., & Ruiz, O. N. (2014). Characterization of the F-76 diesel and Jet-A
aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and
Marinobacter hydrocarbonoclasticus. International Biodeterioration & Biodegradation,
93, 33–43. https://doi.org/10.1016/j.ibiod.2014.04.024 | eng |
dcterms.references | Subramaniam, D., Murugesan, A., Avinash, A., & Kumaravel, A. (2013). Bio-diesel
production and its engine characteristics — An expatiate view. Renewable and
Sustainable Energy Reviews, 22, 361–370. https://doi.org/10.1016/j.rser.2013.02.002 | eng |
dcterms.references | Tripathi, R., Singh, J., & Shekhar, I. (2014). Isolation , Purification and characterization
of lipase from Microbacterium sp . and its application in biodiesel production. Energy
Procedia, 54, 518–529. https://doi.org/10.1016/j.egypro.2014.07.293 | eng |
dcterms.references | Verma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium
optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and
Agricultural Biotechnology. (1). 321–329. | eng |
dcterms.references | Wang, J., Luo, Z., Xu, W., & Ding, J. (2016). International Biodeterioration &
Biodegradation Transformation of dimethyl phthalate esters ( DMPEs ) by a marine
red yeast Rhodotorula mucilaginosa isolated from deep sea sediments of the Atlantic
Ocean. International Biodeterioration & Biodegradation, 109, 223–228.
https://doi.org/10.1016/j.ibiod.2016.02.006 | eng |
dcterms.references | White, J., Gilbert, J., Hill, G., Hill, E., Huse, S. M., Weightman, A. J (2011). CultureIndependent Analysis of Bacterial Fuel Contamination Provides Insight into the Level
of Concordance with the Standard Industry Practice of Aerobic Cultivation. Applied
and Environmental Microbiology. 77(13). 4527–4538.
https://doi.org/10.1128/AEM.02317-10 | eng |
dcterms.references | Wolski, E. A., Murialdo, S. E., & Gonzalez, J. F. (2006). Effect of pH and inoculum size
on pentachlorophenol degradation by Pseudomonas sp ., 32(1), 1–6. | eng |
dcterms.references | Yáñez, X., Granados, C., & Durán, M. (2013). Composición química y actividad
antibacteriana del aceite esencial de Myrcianthes leucoxyla de Pamplona (Colombia).
@ Limentech, Ciencia Y Tecnología Alimentaria, 11(1), 88–93 | spa |
dcterms.references | Yusof AM, Samad, C. Nyonya A. Razak, Abu Bakar Salleh, W.M. Zin Wan Yunus,
Kamaruzaman Ampon I and Mahiran Basri. A plate assay for primary screening of
lipase activity. Journal of Microbiological Methods 9 (1989) 51- 56. | eng |
dcterms.references | Zhang X, C. Peterson, D. Rhee, D. Mbller, R. Haws Biodegradability of biodiesel in the
aquatic environment Transactions of American Society of Agricultural Engineers, 41
(1998), pp. 1423–1430. | eng |
dcterms.references | Zimmer, a., Cazarolli, J., Teixeira, R. M., Viscardi, S. L. C., Cavalcanti, E. S. H.,
Gerbase, a. E., … Bento, F. M. (2013). Monitoring of efficacy of antimicrobial products
during 60days storage simulation of diesel (B0), biodiesel (B100) and blends (B7 and
B10). Fuel, 112, 153–162. https://doi.org/10.1016/j.fuel.2013.04.062. | eng |