Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.advisorPrieto Correa, Rosa Erlide
dc.contributor.advisorAcosta González, Luis Alejandro
dc.contributor.authorVargas Trujillo, Katherine
dc.date.accessioned2019-12-03T19:51:11Z
dc.date.available2019-12-03T19:51:11Z
dc.date.issued2019-11
dc.identifier.urihttp://hdl.handle.net/10818/38605
dc.description91 páginases_CO
dc.description.abstractEl Biodiesel es un biocombustible renovable, que es producido en nuestro país a partir de aceite crudo de palma y en la actualidad se emplea como aditivo del diésel máximo en un 10% de acuerdo a la zona del país. El biodiesel y sus mezclas con diésel son sensibles a la colonización de diferentes tipos de microorganismos, en particular durante el almacenamiento y la manipulación del combustible, situación favorecida principalmente por la absorción de agua; los microorganismos pueden generar problemas en la operación por los productos de degradación formados, lo que produce pérdidas económicas en el sector. La colonización microbiana; ha sido estudiada en otras matrices, sin embargo no se conocen estudios sobre este aspecto en biodiesel de palma producido en Colombia. Para conocer mejor la diversidad microbiana que coloniza y crece en el biodiesel de palma colombiano y sus mezclas con diésel, se planteó en primer lugar caracterizar los microorganismos cultivables de distintas muestras del biodiesel de palma y sus mezclas con diésel y paralelamente evaluar la eficacia de un tratamiento biocida sobre el crecimiento de los mismos. Por tal razón en la primera parte del trabajo se propuso aislar e identificar microorganismos cultivables presentes en muestras colonizadas de la cadena del biodiesel de palma (B100, B70, B50, B40, B10 y B8). Se encontró que tres microorganismos con alta capacidad degradadora del biodiesel eran frecuentes en la mayoría de las muestras: Staphylococcus saprophyticus, Bacillus cereus y el aislado 6 de hongos filamentosos, el primero aislado de la mezcla B8, reportado en la producción de lipasas y el segundo reportado en sistemas contaminados de biodiesel.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectEnergía biomásicaes_CO
dc.subjectAceite de palmaes_CO
dc.subjectBiodieseles_CO
dc.subjectCombustibles vegetaleses_CO
dc.titleEvaluación del uso de biocidas sobre el crecimiento microbiano en Biodiesel de palma, mezclas B50 y B2es_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local275285
dc.identifier.localTE10480
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesAllsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to Biodeterioration. https://doi.org/10.1017/CBO9780511617065.eng
dcterms.referencesAlzate, D. A. O., Mier, G. I. M., Afanador, L. K., Durango, D. L. R., & García, C. M. P. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus), y sus componentes mayoritarios. Vitae, 16(1), 116–125spa
dcterms.referencesAnderson, S., Patricia, Y., Bücker, F., Clarice, J., Dörr, P., Quadros, D., … Piatnicki, S. (2016). Effect of different concentrations of tert- butylhydroquinone ( TBHQ ) on microbial growth and chemical stability of soybean biodiesel during simulated storage. Fuel, 184, 701–707. https://doi.org/10.1016/j.fuel.2016.07.067.eng
dcterms.referencesAndrews, J. M. (2001). JAC Determination of minimum inhibitory concentrations, 5– 16eng
dcterms.referencesASTM Standard D 6974, 2009b. Practice for Enumeration of Viable Bacteria and Fungi in Liquid Fuels-Filtration and Culture Procedures. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/D6974-09. Available online at. www.astm.org.eng
dcterms.referencesASTM Standard E 1259, 2010e. Standard practice for evaluation of antimicrobials in liquid fuels boiling below 390 °C. West Conshohocken, PA: ASTM International; 2010. Doi: 10.1520/E1259-10 [www.astm.org].eng
dcterms.referencesASTM Standard D 6469, 2011a. Guide for Microbial Contamination in Fuels and Fuel Systems. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D6469- 11. Available online at. www.astm.orgeng
dcterms.referencesContent of Microorganisms in Fuel, Fuel/Water Mixtures and Fuel Associated Water. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D7463-08. Available online at. www.astm.org.eng
dcterms.referencesASTM Standard D 7464, 2011b. Practice for Manual Sampling of Liquid Fuels, Associated Materials and Fuel System Components for Microbiological Testing. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/D7464-08. Available online at. www.astm.orgeng
dcterms.referencesASTM Standard D 7687, 2011b. Standard Test Method for Measurement of Cellular Adenosine Triphosphate in Fuel, Fuel/Water Mixtures, and Fuel Associated Water with Sample Concentration by Filtration. ASTM Interna- tional, West Conshohocken. http://dx.doi.org/10.1520/D7687-11. Available online at. www.astm.orgeng
dcterms.referencesBahuguna, A., Lily, M. K., Munjal, A., Singh, R. N., & Dangwal, K. (2011). Desulfurization of dibenzothiophene ( DBT ) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil, 23(6), 975–982.eng
dcterms.referencesBalasubramanian, N., & Simões, N. (2014). International Journal of Biological Macromolecules Bacillus pumilus S124A carboxymethyl cellulase ; a thermo stable enzyme with a wide substrate spectrum utility, 67, 132–139.eng
dcterms.referencesBautista, L. F., Vargas, C., González, N., Molina, M. C., Simarro, R., Salmerón, A., & Murillo, Y. (2016). Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel. Fuel Processing Technology, 152, 56–63. https://doi.org/10.1016/j.fuproc.2016.06.002eng
dcterms.referencesBenjumea, P. N., Agudelo, J. R., & Benavidez, A. Y. (2004). Análisis de calidad de los Biogasoleos de Aceite de Palma e Higuerilla. Energética Universidad Nacional 31, 11–21.eng
dcterms.referencesBento, F. M., & Gaylarde, C. C. (2001). Biodeterioration of stored diesel oil : Studies in Brazil. International Biodeterioration & Biodegradation. (47). 107–112.eng
dcterms.referencesBücker, F., Barbosa, C. S., Quadros, P. D., Bueno, M. K., Fiori, P., Huang, C., Bento, F. M. (2014). Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. International Biodeterioration & Biodegradation, 95, 346–355. https://doi.org/10.1016/j.ibiod.2014.05.030eng
dcterms.referencesBücker, F., Santestevan, N. A., Roesch, L. F., Seminotti Jacques, R. J., Peralba, M. D. C. R., Camargo, F. A. D. O., & Bento, F. M. (2011). Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. International Biodeterioration & Biodegradation, 65(1), 172–178. https://doi.org/10.1016/j.ibiod.2010.09.008eng
dcterms.referencesBushnell, L. ., & Haas, H. . (1940). The utilization of certain hydrocarbons by microorganisms. Kansas Agricultural Experiment Station.(199), 653–673eng
dcterms.referencesCarrizo, S., Ramousse, C., & Velut, D. (2009). Biocombustibles en Argentina , Brasil y Colombia : Avances y limitaciones. Disponible en: http://www.fuentesmemoria.fahce.unlp.edu.ar/art_revistas/pr.4443/pr.4443.pdfeng
dcterms.referencesCazarolli, J. C., Guzatto, R., Samios, D., Peralba, M. D. C. R., Cavalcanti, E. H. D. S., & Bento, F. M. (2014). Susceptibility of linseed, soybean, and olive biodiesel to growth of the deteriogenic fungus Pseudallescheria boydii. International Biodeterioration & Biodegradation, 95(X), 364–372. https://doi.org/10.1016/j.ibiod.2013.09.025eng
dcterms.referencesCea, M., Sangaletti, G., Acuña, N., Fuentes, I., Jorquera, M., Godoy, K., Navia, R. (2015). Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnology reports. (8). 116–123.eng
dcterms.references. Chao, Y., Liu, N., Zhang, T., & Chen, S. (2010). Isolation and characterization of bacteria from engine sludge generated from biodiesel-diesel blends. Fuel, 89(11), 3358–3364. https://doi.org/10.1016/j.fuel.2010.05.041eng
dcterms.referencesChing, T. H., Yoza, B. A., Wang, R., Masutani, S., Donachie, S., Hihara, L., & Li, Q. X. (2016). International Biodeterioration & Biodegradation Biodegradation of biodiesel and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12. International Biodeterioration & Biodegradation, 108, 122–126. https://doi.org/10.1016/j.ibiod.2015.11.027eng
dcterms.referencesChristensen, E., & Mccormick, B. (2014). Long-Term Storage Stability of Biodiesel and Blends. National Biodiesel Conference- National Renewable Energy-Laboratory. 1-14.eng
dcterms.referencesCONCAWE Fuels Quality and Emissions Management Group. The Natural Attenuation of Fatty Acid Methyl Esters (FAME) in Soil and Groundwater. March 2016.https://www.concawe.eu/uploads/Modules/Publications/the-natural-attenuationof-fatty-acid-methyl-esters-in-soil-and-grounwater.pdf.eng
dcterms.referencesConsortium, A. F., & Burton, R. (2008). An Overview of ASTM D6751: Biodiesel Standards and Testing Methods.eng
dcterms.references. Copp, B. R. (2003). Antimycobacterial natural products. Natural Product Reports, 20(6), 535. https://doi.org/10.1039/b212154a.eng
dcterms.referencesDas, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810eng
dcterms.referencesDecho, A. W. (2000). Microbial biofilms in intertidal systems : An overview. Continental Shelf Research (20). 1257–1273.eng
dcterms.references. DeMello, J. a, Carmichael, C. a, Peacock, E. E., Nelson, R. K., Samuel Arey, J., & Reddy, C. M. (2007). Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study. Marine Pollution Bulletin, 54(7), 894–904. https://doi.org/10.1016/j.marpolbul.2007.02.016eng
dcterms.referencesDemirbas, A. (2009). Political , economic and environmental impacts of biofuels : A review. Applied Energy, 86, S108–S117. https://doi.org/10.1016/j.apenergy.2009.04.036eng
dcterms.referencesDoku, A., & Di Falco, S. (2012). Biofuels in developing countries: Are comparative advantages enough? Energy Policy, 44, 101–117. https://doi.org/10.1016/j.enpol.2012.01.022eng
dcterms.references. Donaldson, J. R., Warner, S. L., Cates, R. G., & Gary Young, D. (2005). Assessment of Antimicrobial Activity of Fourteen Essential Oils When Using Dilution and Diffusion Methods. Pharmaceutical Biology, 43(8), 687–695. https://doi.org/10.1080/13880200500384932eng
dcterms.referencesDonlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, (9). 881–890.eng
dcterms.referencesEN14103:2003. Fatty acid methyl esters (FAME) – Determination of ester and linolenic acid methyl esters contents. European Committee for Standardization, Brussels (2003).eng
dcterms.referencesEN 14078:2014. Determination of the methyl esters of fatty acids (FAME) of medium distillates. Infrared spectroscopy. European Committee for Standardization, Brussels (2014).eng
dcterms.referencesFang, Y., Lu, Z., Lv, F. et al. A Newly Isolated Organic Solvent Tolerant Staphylococcus saprophyticus M36 Produced Organic Solvent-Stable Lipase. Curr Microbiol (2006) 512-515.53:510.doi:10.1007/s00284-006-000260.eng
dcterms.referencesFrank & Yousef (2004). En Standard Methods for the Examination of Dairy Products. H. Michael Wehr and Joseph F. Frank (2004). American Public Health Association. eISBN: 978-0-87553-264- 6.eng
dcterms.referencesFederación Nacional de Biocombustibles. (2008). PRÁCTICAS DE MANEJO para el biodiesel y las mezclas diesel – biodiesel en la cadena de distribución de combustibles líquidos derivados de petróleo en. www.minminas.gov.co/minminas/downloads/archivosEventos/6448.pdf.eng
dcterms.referencesFederación Nacional de Biocombustibles. (2012). El vademécum de los Biocombustibles. Disponible en http://www.fedebiocombustibles.com/files/El_Vademecum_de_los_Biocombustibles. pdf.spa
dcterms.referencesGarcia, H., & Calderon, L. (2012). Evaluación de la-política de Biocombustibles en Colombia. UPME.1-146. Disponible en http://www.fedesarrollo.org.co/wp-content/uploads/2011/08Evaluación-de-la-política-de-Biocombustibles-enColombia.pdf.spa
dcterms.referencesGaylarde, C. C., Kelley, J., Agronomia, F. De, Alegre, P., Alegre, P., & Lane, B. (1999). Microbial contamination of stored Hydrocarbon fuels and its fuels and its control. Revista de Microbiología. 1–10.eng
dcterms.referencesGomez, & Et. Al. (2009). Potencial antimicrobiano de los aceites esenciales de orégano(Oregano vulgare) y canela (Cinnamomun zeylanicum). Temas Selectos de Ingeniería de Alimentos 3.spa
dcterms.references. J. Hartman, J. Geva, R. Fass A computerized expert system for diagnosis and control of microbial contamination in jet fuel and diesel fuel storage systems H.N. Giles (Ed.), Proceedings of the Fourth International Conference on Stability and Handling of Liquid Fuels, Orlando, Florida, 19–22 November 1991, U.S. Department of Energy, Washington (1992), pp. 153–166.eng
dcterms.references. Izrael-Zivkovic LT, Gojgic-Cvijovic GD, Gopcevic KR, Vrvic MM, Karadzic IM. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853.J Basic Microbiol. 2009 Oct;49(5):452- http://onlinelibrary.wiley.com/doi/10.1002/jobm.200800229/epdf.eng
dcterms.referencesJakeria, M. R., Fazal, M. a., & Haseeb, a. S. M. a. (2014). Influence of different factors on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews, 30, 154–163. https://doi.org/10.1016/j.rser.2013.09.024eng
dcterms.referencesKoch G.H, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer. Corrosion Costs and Preventive Strategies in the United States. Report No. FHWA-RD-01– 156 United States Federal Highway Administration, Washington (2002) Available online http://www.corrosioncost.com/downloads/pdf/index.htm.eng
dcterms.referencesKumar, R., Kumar, V., & Sham, R. (2016). Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001.eng
dcterms.referencesLeung, D. Y. C., Koo, B. C. P., & Guo, Y. (2006). Degradation of biodiesel under different storage conditions, 97(August 2004), 250–256. https://doi.org/10.1016/j.biortech.2005.02.006eng
dcterms.referencesLin, M., Liu, Y., Chen, W., Wang, H., & Hu, X. (2014). International Biodeterioration & Biodegradation Use of bacteria-immobilized cotton fi bers to absorb and degrade crude oil, 88, 8–12. https://doi.org/10.1016/j.ibiod.2013.11.015.eng
dcterms.referencesLiu, B., Liu, J., Ju, M., Li, X., & Yu, Q. (2015). Puri fi cation and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. MPB, (2015), 1–6. https://doi.org/10.1016/j.marpolbul.2016.04.025.eng
dcterms.referencesLutz, G., Chavarría, M., Arias, M. L., Mata-segreda, J. F., Tropical, R. D. B., & Rica, U. D. C. (2006). Redalyc.Microbial degradation of palm (Elaeis guineensis ) biodiesel, 54, 59–63.eng
dcterms.referencesMarqués-calvo, M. S., Codony, F., Agustí, G., & Lahera, C. (n.d.). Visible light enhances the antimicrobial effect of some essential oils. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2016.12.002.eng
dcterms.referencesMartin Sanchez, P. M., & Gorbushina, A. A. (2016). International Biodeterioration & Biodegradation Quanti fi cation of microbial load in diesel storage tanks using cultureand qPCR-based approaches. https://doi.org/10.1016/j.ibiod.2016.04.009.eng
dcterms.referencesMasy, T., Caterina, D., Tromme, O., Lavigne, B., Thonart, P., Hiligsmann, S., & Nguyen, F. (2016). Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902 . 1 at a pilot scale. Journal of Contaminant Hydrology, 184, 1–13. https://doi.org/10.1016/j.jconhyd.2015.11.001eng
dcterms.referencesMata, T.M., Cardoso, N., Ornelas, M., Neves, S., Caetano, N.S. (2008). Sustainable Production of Biodiesel from Tallow , Lard and Poultry Fat and its Quality Evaluation. University of Porto.(10).1-6.eng
dcterms.referencesMathews, S. L., Grunden, A. M., & Pawlak, J. (2016). Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. International Biodeterioration & Biodegradation, 110. 79–86. https://doi.org/10.1016/j.ibiod.2016.02.012eng
dcterms.referencesMathews, S. L., Pawlak, J. J., & Grunden, A. M. (2014). Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresource Technology. (164). 100–105. https://doi.org/10.1016/j.biortech.2014.04.093eng
dcterms.references. Medina, A., Lambert, R. J. W., & Magan, N. (2012). Rapid throughput analysis of filamentous fungal growth using turbidimetric measurements with the Bioscreen C: a tool for screening antifungal compounds. Fungal Biology, 116(1), 161–9. https://doi.org/10.1016/j.funbio.2011.11.001eng
dcterms.referencesMinisterio de Minas y Energía, U. P. M. E. (Upme). (2009). Biocombustibles en Colombia. Report, 22. Retrieved from http://www.upme.gov.co/Docs/Biocombustibles_Colombia.pdfeng
dcterms.referencesMinisterio de Minas y Energía. (2011). Guía de BUENAS PRÁCTICAS DE MANEJO para el biodiesel y las mezclas diesel–biodiesél en la cadena de distribución de combustibles líquidos derivados de petróleo en Colombia. http://www.minminas.gov.co/documents/10180/488465/CARTILLAMINORISTAS_11. pdf/42eaff10-3c06-4b83-aae9-142c557b09c6eng
dcterms.referencesMudge, S. M., & Pereira, G. (1999). Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Science and Technology Bulletin, 5(5–6), 353–355. https://doi.org/10.1016/S1353-2561(99)00075-4eng
dcterms.referencesMuthukumar, N., Maruthamuthu, S., & Palaniswamy, N. (2007). Role of cationic and nonionic surfactants on biocidal efficiency in diesel-water interface. Colloids and Surfaces B: Biointerfaces, 57(2), 152–160. https://doi.org/10.1016/j.colsurfb.2007.01.019eng
dcterms.referencesNi, Y., Young, D., Gyu, M., Hee, S., Park, H., & Ha, Y. (2010). Biosynthesis of mediumchain-length poly ( 3-hydroxyalkanoates ) by volatile aromatic hydrocarbonsdegrading Pseudomonas fulva TY16. Bioresource Technology (101). 8485–8488. https://doi.org/10.1016/j.biortech.2010.06.033eng
dcterms.referencesNowicka, D., Ginter-kramarczyk, D., Holderna-odachowska, A., & Budnik, I. (2013). Ecotoxicology and Environmental Safety Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium. Ecotoxicology and Environmental Safety, 91, 32–38. https://doi.org/10.1016/j.ecoenv.2013.01.005.eng
dcterms.referencesOliboni, A., Azambuja, D., Bücker, F., Dörr, P., Quadros, D., Zhalnina, K., … Menezes, F. (2016). Microbial community composition in Brazilian stored diesel fuel of varying sulfur content , using high-throughput sequencing. Fuel, 189, 340–349. https://doi.org/10.1016/j.fuel.2016.10.108eng
dcterms.referencesPalmer, J. D., & Brigham, C. J. (2016). Feasibility of triacylglycerol production for biodiesel , utilizing Rhodococcus opacus as a biocatalyst and fi shery waste as feedstock. Renewable and Sustainable Energy Reviews, 56, 922–928. https://doi.org/10.1016/j.rser.2015.12.002eng
dcterms.referencesPasqualino, J. C., Montané, D., & Salvadó, J. (2006). Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass and Bioenergy, 30(10), 874–879. https://doi.org/10.1016/j.biombioe.2006.03.002eng
dcterms.references. Passman, F. J. (2013). Microbial contamination and its control in fuels and fuel systems since 1980 – a review. International Biodeterioration & Biodegradation, 81, 88–104. https://doi.org/10.1016/j.ibiod.2012.08.002eng
dcterms.referencesPicard B, Denamur E, Barakat A, Elion J, Goullet P. Genetic heterogeneity of Pseudomonas aeruginosaclinical isolates revealed by esterase electrophoretic polymorphism and restriction fragment length polymorphism of the ribosomal RNA gene region. J Med Microbiol. 1994 May;40(5):313-22.eng
dcterms.references. Rauch et al., 2006.M.E. Rauch, H.W. Graef, S.M. Rozenzhak, S.E. Jones, C.A. Bleckmann, R.L. Kruger, R.R. Naik, M.O. Stone Characterization of microbial contamination in United States Air Force aviation fuel tanks J. Ind. Microbiol. Biotechnol., 33 (2006), pp. 29–36eng
dcterms.referencesRestrepo-Flórez, J.-M., Bassi, A., Rehmann, L., & Thompson, M. R. (2013). Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresource Technology, 147, 456–63. https://doi.org/10.1016/j.biortech.2013.08.068eng
dcterms.referencesRodríguez, E. N. (2011). Uso de agentes naturales antimicrobianos naturales en la conservación de frutas y hortalizas. Ra Ximhai, 7, 153–170.spa
dcterms.referencesReyes, F., Palou, E., Lopez, A. (2014). Métodos de la evaluación de la actividad antimicrobiana y determinación de los componentes uímicos de los aceites esenciales. Universidad de las Américas Puebla- Doctorado en Ciencia de Alimentos. 68–78.spa
dcterms.referencesRuggeri, C., Franzetti, A., Bestetti, G., Caredda, P., La, P., Pintus, M., … Tamburini, E. (2009). International Biodeterioration & Biodegradation Isolation and characterisation of surface active compound-producing bacteria from hydrocarboncontaminated environments. International Biodeterioration & Biodegradation, 63(7), 936–942. https://doi.org/10.1016/j.ibiod.2009.05.003eng
dcterms.referencesSakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Bioremediation of Coastal and Marine Pollution due to Crude Oil using a Microorganism Bacillus subtilis. Procedia Engineering, 116(Apac), 213–220. https://doi.org/10.1016/j.proeng.2015.08.284eng
dcterms.referencesSchleicher, T., Werkmeister, R., Russ, W., & Meyer-Pittroff, R. (2009). Microbiological stability of biodiesel-diesel-mixtures. Bioresource Technology, 100(2), 724–30. https://doi.org/10.1016/j.biortech.2008.07.029eng
dcterms.referencesSiegert, W., Gmbh, M., & Sraße, R. K. (2009).Microbial contamination in diesel fuelAre new problems arising from Biodiesel blends. IASH 11th International Conference on stability, Handling and use of liquid Fuels Prague. (11). 1–20eng
dcterms.referencesSilva, T. R., Verde, L. C. L., Neto, E. V. S., & Oliveira, V. M. (2013). International Biodeterioration & Biodegradation Diversity analyses of microbial communities in petroleum samples from Brazilian oil fi elds. International Biodeterioration & Biodegradation, 81, 57–70. https://doi.org/10.1016/j.ibiod.2012.05.005eng
dcterms.referencesSoares et al., 2009.J. Soares Jr., A.P. Mariano, D.F. Angelis Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr. J. Biotechnol., 8 (2009), pp. 2774– 2778.eng
dcterms.referencesSørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259–5264. https://doi.org/10.1016/j.biortech.2011.02.017.eng
dcterms.referencesSoriano, A. U., Martins, L. F., Santos de Assumpção Ventura, E., Teixeira Gerken de Landa, F. H., de Araújo Valoni, É., Dutra Faria, F. R., … Peixoto, R. S. (2015). Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration. International Biodeterioration and Biodegradation, 99, 102–114. https://doi.org/10.1016/j.ibiod.2014.11.014.eng
dcterms.referencesStriebich, R. C., Smart, C. E., Gunasekera, T. S., Mueller, S. S., Strobel, E. M., McNichols, B. W., & Ruiz, O. N. (2014). Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. International Biodeterioration & Biodegradation, 93, 33–43. https://doi.org/10.1016/j.ibiod.2014.04.024eng
dcterms.referencesSubramaniam, D., Murugesan, A., Avinash, A., & Kumaravel, A. (2013). Bio-diesel production and its engine characteristics — An expatiate view. Renewable and Sustainable Energy Reviews, 22, 361–370. https://doi.org/10.1016/j.rser.2013.02.002eng
dcterms.referencesTripathi, R., Singh, J., & Shekhar, I. (2014). Isolation , Purification and characterization of lipase from Microbacterium sp . and its application in biodiesel production. Energy Procedia, 54, 518–529. https://doi.org/10.1016/j.egypro.2014.07.293eng
dcterms.referencesVerma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and Agricultural Biotechnology. (1). 321–329.eng
dcterms.referencesWang, J., Luo, Z., Xu, W., & Ding, J. (2016). International Biodeterioration & Biodegradation Transformation of dimethyl phthalate esters ( DMPEs ) by a marine red yeast Rhodotorula mucilaginosa isolated from deep sea sediments of the Atlantic Ocean. International Biodeterioration & Biodegradation, 109, 223–228. https://doi.org/10.1016/j.ibiod.2016.02.006eng
dcterms.referencesWhite, J., Gilbert, J., Hill, G., Hill, E., Huse, S. M., Weightman, A. J (2011). CultureIndependent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation. Applied and Environmental Microbiology. 77(13). 4527–4538. https://doi.org/10.1128/AEM.02317-10eng
dcterms.referencesWolski, E. A., Murialdo, S. E., & Gonzalez, J. F. (2006). Effect of pH and inoculum size on pentachlorophenol degradation by Pseudomonas sp ., 32(1), 1–6.eng
dcterms.referencesYáñez, X., Granados, C., & Durán, M. (2013). Composición química y actividad antibacteriana del aceite esencial de Myrcianthes leucoxyla de Pamplona (Colombia). @ Limentech, Ciencia Y Tecnología Alimentaria, 11(1), 88–93spa
dcterms.referencesYusof AM, Samad, C. Nyonya A. Razak, Abu Bakar Salleh, W.M. Zin Wan Yunus, Kamaruzaman Ampon I and Mahiran Basri. A plate assay for primary screening of lipase activity. Journal of Microbiological Methods 9 (1989) 51- 56.eng
dcterms.referencesZhang X, C. Peterson, D. Rhee, D. Mbller, R. Haws Biodegradability of biodiesel in the aquatic environment Transactions of American Society of Agricultural Engineers, 41 (1998), pp. 1423–1430.eng
dcterms.referencesZimmer, a., Cazarolli, J., Teixeira, R. M., Viscardi, S. L. C., Cavalcanti, E. S. H., Gerbase, a. E., … Bento, F. M. (2013). Monitoring of efficacy of antimicrobial products during 60days storage simulation of diesel (B0), biodiesel (B100) and blends (B7 and B10). Fuel, 112, 153–162. https://doi.org/10.1016/j.fuel.2013.04.062.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International