Mostrar el registro sencillo del ítem
Evaluación del uso de biocidas sobre el crecimiento microbiano en Biodiesel de palma, mezclas B50 y B2
dc.contributor.advisor | Ruiz Pardo, Ruth Yolanda | |
dc.contributor.advisor | Prieto Correa, Rosa Erlide | |
dc.contributor.advisor | Acosta González, Luis Alejandro | |
dc.contributor.author | Vargas Trujillo, Katherine | |
dc.date.accessioned | 2019-12-03T19:51:11Z | |
dc.date.available | 2019-12-03T19:51:11Z | |
dc.date.issued | 2019-11 | |
dc.identifier.uri | http://hdl.handle.net/10818/38605 | |
dc.description | 91 páginas | es_CO |
dc.description.abstract | El Biodiesel es un biocombustible renovable, que es producido en nuestro país a partir de aceite crudo de palma y en la actualidad se emplea como aditivo del diésel máximo en un 10% de acuerdo a la zona del país. El biodiesel y sus mezclas con diésel son sensibles a la colonización de diferentes tipos de microorganismos, en particular durante el almacenamiento y la manipulación del combustible, situación favorecida principalmente por la absorción de agua; los microorganismos pueden generar problemas en la operación por los productos de degradación formados, lo que produce pérdidas económicas en el sector. La colonización microbiana; ha sido estudiada en otras matrices, sin embargo no se conocen estudios sobre este aspecto en biodiesel de palma producido en Colombia. Para conocer mejor la diversidad microbiana que coloniza y crece en el biodiesel de palma colombiano y sus mezclas con diésel, se planteó en primer lugar caracterizar los microorganismos cultivables de distintas muestras del biodiesel de palma y sus mezclas con diésel y paralelamente evaluar la eficacia de un tratamiento biocida sobre el crecimiento de los mismos. Por tal razón en la primera parte del trabajo se propuso aislar e identificar microorganismos cultivables presentes en muestras colonizadas de la cadena del biodiesel de palma (B100, B70, B50, B40, B10 y B8). Se encontró que tres microorganismos con alta capacidad degradadora del biodiesel eran frecuentes en la mayoría de las muestras: Staphylococcus saprophyticus, Bacillus cereus y el aislado 6 de hongos filamentosos, el primero aislado de la mezcla B8, reportado en la producción de lipasas y el segundo reportado en sistemas contaminados de biodiesel. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Energía biomásica | es_CO |
dc.subject | Aceite de palma | es_CO |
dc.subject | Biodiesel | es_CO |
dc.subject | Combustibles vegetales | es_CO |
dc.title | Evaluación del uso de biocidas sobre el crecimiento microbiano en Biodiesel de palma, mezclas B50 y B2 | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 275285 | |
dc.identifier.local | TE10480 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to Biodeterioration. https://doi.org/10.1017/CBO9780511617065. | eng |
dcterms.references | Alzate, D. A. O., Mier, G. I. M., Afanador, L. K., Durango, D. L. R., & García, C. M. P. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus), y sus componentes mayoritarios. Vitae, 16(1), 116–125 | spa |
dcterms.references | Anderson, S., Patricia, Y., Bücker, F., Clarice, J., Dörr, P., Quadros, D., … Piatnicki, S. (2016). Effect of different concentrations of tert- butylhydroquinone ( TBHQ ) on microbial growth and chemical stability of soybean biodiesel during simulated storage. Fuel, 184, 701–707. https://doi.org/10.1016/j.fuel.2016.07.067. | eng |
dcterms.references | Andrews, J. M. (2001). JAC Determination of minimum inhibitory concentrations, 5– 16 | eng |
dcterms.references | ASTM Standard D 6974, 2009b. Practice for Enumeration of Viable Bacteria and Fungi in Liquid Fuels-Filtration and Culture Procedures. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/D6974-09. Available online at. www.astm.org. | eng |
dcterms.references | ASTM Standard E 1259, 2010e. Standard practice for evaluation of antimicrobials in liquid fuels boiling below 390 °C. West Conshohocken, PA: ASTM International; 2010. Doi: 10.1520/E1259-10 [www.astm.org]. | eng |
dcterms.references | ASTM Standard D 6469, 2011a. Guide for Microbial Contamination in Fuels and Fuel Systems. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D6469- 11. Available online at. www.astm.org | eng |
dcterms.references | Content of Microorganisms in Fuel, Fuel/Water Mixtures and Fuel Associated Water. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/ D7463-08. Available online at. www.astm.org. | eng |
dcterms.references | ASTM Standard D 7464, 2011b. Practice for Manual Sampling of Liquid Fuels, Associated Materials and Fuel System Components for Microbiological Testing. ASTM International, West Conshohocken. http://dx.doi.org/10.1520/D7464-08. Available online at. www.astm.org | eng |
dcterms.references | ASTM Standard D 7687, 2011b. Standard Test Method for Measurement of Cellular Adenosine Triphosphate in Fuel, Fuel/Water Mixtures, and Fuel Associated Water with Sample Concentration by Filtration. ASTM Interna- tional, West Conshohocken. http://dx.doi.org/10.1520/D7687-11. Available online at. www.astm.org | eng |
dcterms.references | Bahuguna, A., Lily, M. K., Munjal, A., Singh, R. N., & Dangwal, K. (2011). Desulfurization of dibenzothiophene ( DBT ) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil, 23(6), 975–982. | eng |
dcterms.references | Balasubramanian, N., & Simões, N. (2014). International Journal of Biological Macromolecules Bacillus pumilus S124A carboxymethyl cellulase ; a thermo stable enzyme with a wide substrate spectrum utility, 67, 132–139. | eng |
dcterms.references | Bautista, L. F., Vargas, C., González, N., Molina, M. C., Simarro, R., Salmerón, A., & Murillo, Y. (2016). Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel. Fuel Processing Technology, 152, 56–63. https://doi.org/10.1016/j.fuproc.2016.06.002 | eng |
dcterms.references | Benjumea, P. N., Agudelo, J. R., & Benavidez, A. Y. (2004). Análisis de calidad de los Biogasoleos de Aceite de Palma e Higuerilla. Energética Universidad Nacional 31, 11–21. | eng |
dcterms.references | Bento, F. M., & Gaylarde, C. C. (2001). Biodeterioration of stored diesel oil : Studies in Brazil. International Biodeterioration & Biodegradation. (47). 107–112. | eng |
dcterms.references | Bücker, F., Barbosa, C. S., Quadros, P. D., Bueno, M. K., Fiori, P., Huang, C., Bento, F. M. (2014). Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. International Biodeterioration & Biodegradation, 95, 346–355. https://doi.org/10.1016/j.ibiod.2014.05.030 | eng |
dcterms.references | Bücker, F., Santestevan, N. A., Roesch, L. F., Seminotti Jacques, R. J., Peralba, M. D. C. R., Camargo, F. A. D. O., & Bento, F. M. (2011). Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. International Biodeterioration & Biodegradation, 65(1), 172–178. https://doi.org/10.1016/j.ibiod.2010.09.008 | eng |
dcterms.references | Bushnell, L. ., & Haas, H. . (1940). The utilization of certain hydrocarbons by microorganisms. Kansas Agricultural Experiment Station.(199), 653–673 | eng |
dcterms.references | Carrizo, S., Ramousse, C., & Velut, D. (2009). Biocombustibles en Argentina , Brasil y Colombia : Avances y limitaciones. Disponible en: http://www.fuentesmemoria.fahce.unlp.edu.ar/art_revistas/pr.4443/pr.4443.pdf | eng |
dcterms.references | Cazarolli, J. C., Guzatto, R., Samios, D., Peralba, M. D. C. R., Cavalcanti, E. H. D. S., & Bento, F. M. (2014). Susceptibility of linseed, soybean, and olive biodiesel to growth of the deteriogenic fungus Pseudallescheria boydii. International Biodeterioration & Biodegradation, 95(X), 364–372. https://doi.org/10.1016/j.ibiod.2013.09.025 | eng |
dcterms.references | Cea, M., Sangaletti, G., Acuña, N., Fuentes, I., Jorquera, M., Godoy, K., Navia, R. (2015). Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnology reports. (8). 116–123. | eng |
dcterms.references | . Chao, Y., Liu, N., Zhang, T., & Chen, S. (2010). Isolation and characterization of bacteria from engine sludge generated from biodiesel-diesel blends. Fuel, 89(11), 3358–3364. https://doi.org/10.1016/j.fuel.2010.05.041 | eng |
dcterms.references | Ching, T. H., Yoza, B. A., Wang, R., Masutani, S., Donachie, S., Hihara, L., & Li, Q. X. (2016). International Biodeterioration & Biodegradation Biodegradation of biodiesel and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12. International Biodeterioration & Biodegradation, 108, 122–126. https://doi.org/10.1016/j.ibiod.2015.11.027 | eng |
dcterms.references | Christensen, E., & Mccormick, B. (2014). Long-Term Storage Stability of Biodiesel and Blends. National Biodiesel Conference- National Renewable Energy-Laboratory. 1-14. | eng |
dcterms.references | CONCAWE Fuels Quality and Emissions Management Group. The Natural Attenuation of Fatty Acid Methyl Esters (FAME) in Soil and Groundwater. March 2016.https://www.concawe.eu/uploads/Modules/Publications/the-natural-attenuationof-fatty-acid-methyl-esters-in-soil-and-grounwater.pdf. | eng |
dcterms.references | Consortium, A. F., & Burton, R. (2008). An Overview of ASTM D6751: Biodiesel Standards and Testing Methods. | eng |
dcterms.references | . Copp, B. R. (2003). Antimycobacterial natural products. Natural Product Reports, 20(6), 535. https://doi.org/10.1039/b212154a. | eng |
dcterms.references | Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810 | eng |
dcterms.references | Decho, A. W. (2000). Microbial biofilms in intertidal systems : An overview. Continental Shelf Research (20). 1257–1273. | eng |
dcterms.references | . DeMello, J. a, Carmichael, C. a, Peacock, E. E., Nelson, R. K., Samuel Arey, J., & Reddy, C. M. (2007). Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study. Marine Pollution Bulletin, 54(7), 894–904. https://doi.org/10.1016/j.marpolbul.2007.02.016 | eng |
dcterms.references | Demirbas, A. (2009). Political , economic and environmental impacts of biofuels : A review. Applied Energy, 86, S108–S117. https://doi.org/10.1016/j.apenergy.2009.04.036 | eng |
dcterms.references | Doku, A., & Di Falco, S. (2012). Biofuels in developing countries: Are comparative advantages enough? Energy Policy, 44, 101–117. https://doi.org/10.1016/j.enpol.2012.01.022 | eng |
dcterms.references | . Donaldson, J. R., Warner, S. L., Cates, R. G., & Gary Young, D. (2005). Assessment of Antimicrobial Activity of Fourteen Essential Oils When Using Dilution and Diffusion Methods. Pharmaceutical Biology, 43(8), 687–695. https://doi.org/10.1080/13880200500384932 | eng |
dcterms.references | Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, (9). 881–890. | eng |
dcterms.references | EN14103:2003. Fatty acid methyl esters (FAME) – Determination of ester and linolenic acid methyl esters contents. European Committee for Standardization, Brussels (2003). | eng |
dcterms.references | EN 14078:2014. Determination of the methyl esters of fatty acids (FAME) of medium distillates. Infrared spectroscopy. European Committee for Standardization, Brussels (2014). | eng |
dcterms.references | Fang, Y., Lu, Z., Lv, F. et al. A Newly Isolated Organic Solvent Tolerant Staphylococcus saprophyticus M36 Produced Organic Solvent-Stable Lipase. Curr Microbiol (2006) 512-515.53:510.doi:10.1007/s00284-006-000260. | eng |
dcterms.references | Frank & Yousef (2004). En Standard Methods for the Examination of Dairy Products. H. Michael Wehr and Joseph F. Frank (2004). American Public Health Association. eISBN: 978-0-87553-264- 6. | eng |
dcterms.references | Federación Nacional de Biocombustibles. (2008). PRÁCTICAS DE MANEJO para el biodiesel y las mezclas diesel – biodiesel en la cadena de distribución de combustibles líquidos derivados de petróleo en. www.minminas.gov.co/minminas/downloads/archivosEventos/6448.pdf. | eng |
dcterms.references | Federación Nacional de Biocombustibles. (2012). El vademécum de los Biocombustibles. Disponible en http://www.fedebiocombustibles.com/files/El_Vademecum_de_los_Biocombustibles. pdf. | spa |
dcterms.references | Garcia, H., & Calderon, L. (2012). Evaluación de la-política de Biocombustibles en Colombia. UPME.1-146. Disponible en http://www.fedesarrollo.org.co/wp-content/uploads/2011/08Evaluación-de-la-política-de-Biocombustibles-enColombia.pdf. | spa |
dcterms.references | Gaylarde, C. C., Kelley, J., Agronomia, F. De, Alegre, P., Alegre, P., & Lane, B. (1999). Microbial contamination of stored Hydrocarbon fuels and its fuels and its control. Revista de Microbiología. 1–10. | eng |
dcterms.references | Gomez, & Et. Al. (2009). Potencial antimicrobiano de los aceites esenciales de orégano(Oregano vulgare) y canela (Cinnamomun zeylanicum). Temas Selectos de Ingeniería de Alimentos 3. | spa |
dcterms.references | . J. Hartman, J. Geva, R. Fass A computerized expert system for diagnosis and control of microbial contamination in jet fuel and diesel fuel storage systems H.N. Giles (Ed.), Proceedings of the Fourth International Conference on Stability and Handling of Liquid Fuels, Orlando, Florida, 19–22 November 1991, U.S. Department of Energy, Washington (1992), pp. 153–166. | eng |
dcterms.references | . Izrael-Zivkovic LT, Gojgic-Cvijovic GD, Gopcevic KR, Vrvic MM, Karadzic IM. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853.J Basic Microbiol. 2009 Oct;49(5):452- http://onlinelibrary.wiley.com/doi/10.1002/jobm.200800229/epdf. | eng |
dcterms.references | Jakeria, M. R., Fazal, M. a., & Haseeb, a. S. M. a. (2014). Influence of different factors on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews, 30, 154–163. https://doi.org/10.1016/j.rser.2013.09.024 | eng |
dcterms.references | Koch G.H, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer. Corrosion Costs and Preventive Strategies in the United States. Report No. FHWA-RD-01– 156 United States Federal Highway Administration, Washington (2002) Available online http://www.corrosioncost.com/downloads/pdf/index.htm. | eng |
dcterms.references | Kumar, R., Kumar, V., & Sham, R. (2016). Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001. | eng |
dcterms.references | Leung, D. Y. C., Koo, B. C. P., & Guo, Y. (2006). Degradation of biodiesel under different storage conditions, 97(August 2004), 250–256. https://doi.org/10.1016/j.biortech.2005.02.006 | eng |
dcterms.references | Lin, M., Liu, Y., Chen, W., Wang, H., & Hu, X. (2014). International Biodeterioration & Biodegradation Use of bacteria-immobilized cotton fi bers to absorb and degrade crude oil, 88, 8–12. https://doi.org/10.1016/j.ibiod.2013.11.015. | eng |
dcterms.references | Liu, B., Liu, J., Ju, M., Li, X., & Yu, Q. (2015). Puri fi cation and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. MPB, (2015), 1–6. https://doi.org/10.1016/j.marpolbul.2016.04.025. | eng |
dcterms.references | Lutz, G., Chavarría, M., Arias, M. L., Mata-segreda, J. F., Tropical, R. D. B., & Rica, U. D. C. (2006). Redalyc.Microbial degradation of palm (Elaeis guineensis ) biodiesel, 54, 59–63. | eng |
dcterms.references | Marqués-calvo, M. S., Codony, F., Agustí, G., & Lahera, C. (n.d.). Visible light enhances the antimicrobial effect of some essential oils. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2016.12.002. | eng |
dcterms.references | Martin Sanchez, P. M., & Gorbushina, A. A. (2016). International Biodeterioration & Biodegradation Quanti fi cation of microbial load in diesel storage tanks using cultureand qPCR-based approaches. https://doi.org/10.1016/j.ibiod.2016.04.009. | eng |
dcterms.references | Masy, T., Caterina, D., Tromme, O., Lavigne, B., Thonart, P., Hiligsmann, S., & Nguyen, F. (2016). Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902 . 1 at a pilot scale. Journal of Contaminant Hydrology, 184, 1–13. https://doi.org/10.1016/j.jconhyd.2015.11.001 | eng |
dcterms.references | Mata, T.M., Cardoso, N., Ornelas, M., Neves, S., Caetano, N.S. (2008). Sustainable Production of Biodiesel from Tallow , Lard and Poultry Fat and its Quality Evaluation. University of Porto.(10).1-6. | eng |
dcterms.references | Mathews, S. L., Grunden, A. M., & Pawlak, J. (2016). Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. International Biodeterioration & Biodegradation, 110. 79–86. https://doi.org/10.1016/j.ibiod.2016.02.012 | eng |
dcterms.references | Mathews, S. L., Pawlak, J. J., & Grunden, A. M. (2014). Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresource Technology. (164). 100–105. https://doi.org/10.1016/j.biortech.2014.04.093 | eng |
dcterms.references | . Medina, A., Lambert, R. J. W., & Magan, N. (2012). Rapid throughput analysis of filamentous fungal growth using turbidimetric measurements with the Bioscreen C: a tool for screening antifungal compounds. Fungal Biology, 116(1), 161–9. https://doi.org/10.1016/j.funbio.2011.11.001 | eng |
dcterms.references | Ministerio de Minas y Energía, U. P. M. E. (Upme). (2009). Biocombustibles en Colombia. Report, 22. Retrieved from http://www.upme.gov.co/Docs/Biocombustibles_Colombia.pdf | eng |
dcterms.references | Ministerio de Minas y Energía. (2011). Guía de BUENAS PRÁCTICAS DE MANEJO para el biodiesel y las mezclas diesel–biodiesél en la cadena de distribución de combustibles líquidos derivados de petróleo en Colombia. http://www.minminas.gov.co/documents/10180/488465/CARTILLAMINORISTAS_11. pdf/42eaff10-3c06-4b83-aae9-142c557b09c6 | eng |
dcterms.references | Mudge, S. M., & Pereira, G. (1999). Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Science and Technology Bulletin, 5(5–6), 353–355. https://doi.org/10.1016/S1353-2561(99)00075-4 | eng |
dcterms.references | Muthukumar, N., Maruthamuthu, S., & Palaniswamy, N. (2007). Role of cationic and nonionic surfactants on biocidal efficiency in diesel-water interface. Colloids and Surfaces B: Biointerfaces, 57(2), 152–160. https://doi.org/10.1016/j.colsurfb.2007.01.019 | eng |
dcterms.references | Ni, Y., Young, D., Gyu, M., Hee, S., Park, H., & Ha, Y. (2010). Biosynthesis of mediumchain-length poly ( 3-hydroxyalkanoates ) by volatile aromatic hydrocarbonsdegrading Pseudomonas fulva TY16. Bioresource Technology (101). 8485–8488. https://doi.org/10.1016/j.biortech.2010.06.033 | eng |
dcterms.references | Nowicka, D., Ginter-kramarczyk, D., Holderna-odachowska, A., & Budnik, I. (2013). Ecotoxicology and Environmental Safety Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium. Ecotoxicology and Environmental Safety, 91, 32–38. https://doi.org/10.1016/j.ecoenv.2013.01.005. | eng |
dcterms.references | Oliboni, A., Azambuja, D., Bücker, F., Dörr, P., Quadros, D., Zhalnina, K., … Menezes, F. (2016). Microbial community composition in Brazilian stored diesel fuel of varying sulfur content , using high-throughput sequencing. Fuel, 189, 340–349. https://doi.org/10.1016/j.fuel.2016.10.108 | eng |
dcterms.references | Palmer, J. D., & Brigham, C. J. (2016). Feasibility of triacylglycerol production for biodiesel , utilizing Rhodococcus opacus as a biocatalyst and fi shery waste as feedstock. Renewable and Sustainable Energy Reviews, 56, 922–928. https://doi.org/10.1016/j.rser.2015.12.002 | eng |
dcterms.references | Pasqualino, J. C., Montané, D., & Salvadó, J. (2006). Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass and Bioenergy, 30(10), 874–879. https://doi.org/10.1016/j.biombioe.2006.03.002 | eng |
dcterms.references | . Passman, F. J. (2013). Microbial contamination and its control in fuels and fuel systems since 1980 – a review. International Biodeterioration & Biodegradation, 81, 88–104. https://doi.org/10.1016/j.ibiod.2012.08.002 | eng |
dcterms.references | Picard B, Denamur E, Barakat A, Elion J, Goullet P. Genetic heterogeneity of Pseudomonas aeruginosaclinical isolates revealed by esterase electrophoretic polymorphism and restriction fragment length polymorphism of the ribosomal RNA gene region. J Med Microbiol. 1994 May;40(5):313-22. | eng |
dcterms.references | . Rauch et al., 2006.M.E. Rauch, H.W. Graef, S.M. Rozenzhak, S.E. Jones, C.A. Bleckmann, R.L. Kruger, R.R. Naik, M.O. Stone Characterization of microbial contamination in United States Air Force aviation fuel tanks J. Ind. Microbiol. Biotechnol., 33 (2006), pp. 29–36 | eng |
dcterms.references | Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L., & Thompson, M. R. (2013). Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresource Technology, 147, 456–63. https://doi.org/10.1016/j.biortech.2013.08.068 | eng |
dcterms.references | Rodríguez, E. N. (2011). Uso de agentes naturales antimicrobianos naturales en la conservación de frutas y hortalizas. Ra Ximhai, 7, 153–170. | spa |
dcterms.references | Reyes, F., Palou, E., Lopez, A. (2014). Métodos de la evaluación de la actividad antimicrobiana y determinación de los componentes uímicos de los aceites esenciales. Universidad de las Américas Puebla- Doctorado en Ciencia de Alimentos. 68–78. | spa |
dcterms.references | Ruggeri, C., Franzetti, A., Bestetti, G., Caredda, P., La, P., Pintus, M., … Tamburini, E. (2009). International Biodeterioration & Biodegradation Isolation and characterisation of surface active compound-producing bacteria from hydrocarboncontaminated environments. International Biodeterioration & Biodegradation, 63(7), 936–942. https://doi.org/10.1016/j.ibiod.2009.05.003 | eng |
dcterms.references | Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Bioremediation of Coastal and Marine Pollution due to Crude Oil using a Microorganism Bacillus subtilis. Procedia Engineering, 116(Apac), 213–220. https://doi.org/10.1016/j.proeng.2015.08.284 | eng |
dcterms.references | Schleicher, T., Werkmeister, R., Russ, W., & Meyer-Pittroff, R. (2009). Microbiological stability of biodiesel-diesel-mixtures. Bioresource Technology, 100(2), 724–30. https://doi.org/10.1016/j.biortech.2008.07.029 | eng |
dcterms.references | Siegert, W., Gmbh, M., & Sraße, R. K. (2009).Microbial contamination in diesel fuelAre new problems arising from Biodiesel blends. IASH 11th International Conference on stability, Handling and use of liquid Fuels Prague. (11). 1–20 | eng |
dcterms.references | Silva, T. R., Verde, L. C. L., Neto, E. V. S., & Oliveira, V. M. (2013). International Biodeterioration & Biodegradation Diversity analyses of microbial communities in petroleum samples from Brazilian oil fi elds. International Biodeterioration & Biodegradation, 81, 57–70. https://doi.org/10.1016/j.ibiod.2012.05.005 | eng |
dcterms.references | Soares et al., 2009.J. Soares Jr., A.P. Mariano, D.F. Angelis Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr. J. Biotechnol., 8 (2009), pp. 2774– 2778. | eng |
dcterms.references | Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259–5264. https://doi.org/10.1016/j.biortech.2011.02.017. | eng |
dcterms.references | Soriano, A. U., Martins, L. F., Santos de Assumpção Ventura, E., Teixeira Gerken de Landa, F. H., de Araújo Valoni, É., Dutra Faria, F. R., … Peixoto, R. S. (2015). Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration. International Biodeterioration and Biodegradation, 99, 102–114. https://doi.org/10.1016/j.ibiod.2014.11.014. | eng |
dcterms.references | Striebich, R. C., Smart, C. E., Gunasekera, T. S., Mueller, S. S., Strobel, E. M., McNichols, B. W., & Ruiz, O. N. (2014). Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. International Biodeterioration & Biodegradation, 93, 33–43. https://doi.org/10.1016/j.ibiod.2014.04.024 | eng |
dcterms.references | Subramaniam, D., Murugesan, A., Avinash, A., & Kumaravel, A. (2013). Bio-diesel production and its engine characteristics — An expatiate view. Renewable and Sustainable Energy Reviews, 22, 361–370. https://doi.org/10.1016/j.rser.2013.02.002 | eng |
dcterms.references | Tripathi, R., Singh, J., & Shekhar, I. (2014). Isolation , Purification and characterization of lipase from Microbacterium sp . and its application in biodiesel production. Energy Procedia, 54, 518–529. https://doi.org/10.1016/j.egypro.2014.07.293 | eng |
dcterms.references | Verma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and Agricultural Biotechnology. (1). 321–329. | eng |
dcterms.references | Wang, J., Luo, Z., Xu, W., & Ding, J. (2016). International Biodeterioration & Biodegradation Transformation of dimethyl phthalate esters ( DMPEs ) by a marine red yeast Rhodotorula mucilaginosa isolated from deep sea sediments of the Atlantic Ocean. International Biodeterioration & Biodegradation, 109, 223–228. https://doi.org/10.1016/j.ibiod.2016.02.006 | eng |
dcterms.references | White, J., Gilbert, J., Hill, G., Hill, E., Huse, S. M., Weightman, A. J (2011). CultureIndependent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation. Applied and Environmental Microbiology. 77(13). 4527–4538. https://doi.org/10.1128/AEM.02317-10 | eng |
dcterms.references | Wolski, E. A., Murialdo, S. E., & Gonzalez, J. F. (2006). Effect of pH and inoculum size on pentachlorophenol degradation by Pseudomonas sp ., 32(1), 1–6. | eng |
dcterms.references | Yáñez, X., Granados, C., & Durán, M. (2013). Composición química y actividad antibacteriana del aceite esencial de Myrcianthes leucoxyla de Pamplona (Colombia). @ Limentech, Ciencia Y Tecnología Alimentaria, 11(1), 88–93 | spa |
dcterms.references | Yusof AM, Samad, C. Nyonya A. Razak, Abu Bakar Salleh, W.M. Zin Wan Yunus, Kamaruzaman Ampon I and Mahiran Basri. A plate assay for primary screening of lipase activity. Journal of Microbiological Methods 9 (1989) 51- 56. | eng |
dcterms.references | Zhang X, C. Peterson, D. Rhee, D. Mbller, R. Haws Biodegradability of biodiesel in the aquatic environment Transactions of American Society of Agricultural Engineers, 41 (1998), pp. 1423–1430. | eng |
dcterms.references | Zimmer, a., Cazarolli, J., Teixeira, R. M., Viscardi, S. L. C., Cavalcanti, E. S. H., Gerbase, a. E., … Bento, F. M. (2013). Monitoring of efficacy of antimicrobial products during 60days storage simulation of diesel (B0), biodiesel (B100) and blends (B7 and B10). Fuel, 112, 153–162. https://doi.org/10.1016/j.fuel.2013.04.062. | eng |