Mostrar el registro sencillo del ítem
Olefins production by bioethanol dehydration using hzsm-5 catalyst
dc.contributor.advisor | Cobo Ángel, Martha Isabel | |
dc.contributor.advisor | Figueredo Medina, Manuel Alfredo | |
dc.contributor.author | Becerra Sánchez, Jorge Alonso | |
dc.date.accessioned | 2019-02-12T19:52:46Z | |
dc.date.available | 2019-02-12T19:52:46Z | |
dc.date.issued | 2018-03-02 | |
dc.identifier.uri | http://hdl.handle.net/10818/34949 | |
dc.description | 122 páginas | es_CO |
dc.description.abstract | The crisis in the oil industry and its impact on the environment have led not only to the search of new sources of energy but also to the development of processes to obtain raw materials derived from this industry. Bioethanol is a compound that can be obtained from various renewable sources as biomass and could be used to produce energy and as a precursor for the synthesis of high value compounds such as light olefins in novel, efficient, and environment friendly technologies. Ethylene and propylene are compounds with high commercial value and are mostly produced from petroleum. The production of light olefins from bioethanol has recently attracted interest, as it can contribute to reducing pollution and boosting the development of the agricultural and chemical industries. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Alquenos | es_CO |
dc.subject | Industria y comercio del petróleo | es_CO |
dc.subject | Medio ambiente | es_CO |
dc.subject | Recursos energéticos | es_CO |
dc.subject | Bioetanol -- Producción | es_CO |
dc.title | Olefins production by bioethanol dehydration using hzsm-5 catalyst | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 268255 | |
dc.identifier.local | TE09550 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |
dcterms.references | H. Xin, X. Li, Y. Fang, X. Yi, W. Hu, Y. Chu, et al., Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites, J. Catal. 312 (2014) 204–215. | eng |
dcterms.references | Asocaña, Balance de producción mensual de caña, (2010). http://www.asocana.org/ (accessed October 21, 2015). | eng |
dcterms.references | Federación Nacional de Biocombustibles, producción de alcohol carburante en el año 2014, (2015). http://www.fedebiocombustibles.com/v3/main-index.htm (accessed February 9, 2017). | eng |
dcterms.references | G.P. Ortegón, F.M. Arboleda, L. Candela, K. Tamoh, J. Valdes-Abellan, Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia)., Sci. Total Environ. 539 (2016) 410–9. | eng |
dcterms.references | O.J. Sánchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks., Bioresour. Technol. 99 (2008) 5270–95. | eng |
dcterms.references | R. Le Van Mao, T.M. Nguyen, G.P. McLaughlin, The bioethanol-to-ethylene (B.E.T.E.) process, Appl. Catal. 48 (1989) 265–277. | eng |
dcterms.references | E. Derouane, Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite, J. Catal. 53 (1978) 40–55. | eng |
dcterms.references | A.G. Gayubo, A.M. Tarrío, A.T. Aguayo, M. Olazar, J. Bilbao, Kinetic modeling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite, Ind. Eng. Chem. Res. 40 (2001) 3467–3474. | eng |
dcterms.references | D. Goto, Y. Harada, Y. Furumoto, A. Takahashi, T. Fujitani, Y. Oumi, et al., Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals, Appl. Catal. A Gen. 383 (2010) 89–95. | eng |
dcterms.references | M. Klein, O. Griess, I.N. Pulidindi, N. Perkas, A. Gedanken, Bioethanol production from Ficus religiosa leaves using microwave irradiation., J. Environ. Manage. 177 (2016) 20–25. | eng |
dcterms.references | T. Zavřel, H. Knoop, R. Steuer, P.R. Jones, J. Červený, M. Trtílek, A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry, Bioresour. Technol. 202 (2016) 142–151. | eng |
dcterms.references | M. Eramo, Global ethylene market outlook: low cost feedstocks fuel the next wave of investmentsi in north America and China, (2013). https://www.ihs.com/index.html (accessed January 1, 2017). | eng |
dcterms.references | Ceresana, Market study: Propylene, (2014). http://www.ceresana.com/en (accessed February 9, 2017). | eng |
dcterms.references | L. Kong, J. Li, Z. Zhao, Q. Liu, Q. Sun, J. Liu, et al., Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion, Appl. Catal. A Gen. 510 (2016) 84–97. | eng |
dcterms.references | S. Matar, M. Mirbach, H. Tayim, Catalysis in petrochemical processes, 3rd ed., Kluwer Academic, Boston, 1989. | eng |
dcterms.references | W.D. Seider, J.D. Seader, D.R. Lewin, Product & Process Design Primciples: Synthesis, Analysis and Evaluation, 3rd ed., Wiley, New Yersey, 2009. | eng |
dcterms.references | T. Lehmann, A. Seidel-Morgenstern, Thermodynamic appraisal of the gas phase conversion of ethylene or ethanol to propylene, Chem. Eng. J. 242 (2014) 422–432. | eng |
dcterms.references | M.M. Ludvig, H.E. Rautiainen, A. Powels, Modified Y-Zeolite/ZSM-5 catalyst for increased propylene production, 20150298107, Patent WO20150298107A1, Type A1, Class 585/653, 2015. https://www.google.com/patents/WO2014096267A1?cl=en (Accesed February 9, 2017). | eng |
dcterms.references | P. Lanzafame, G. Centi, S. Perathoner, Evolving scenarios for biorefineries and the impact on catalysis, Catal. Today. 234 (2014) 2–12. | eng |
dcterms.references | A.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, J. Bilbao, Kinetic model for the transformation of bioethanol into olefins over a HZSM-5 zeolite treated with alkali, Ind. Eng. Chem. Res. 49 (2010) 10836–10844. | eng |
dcterms.references | A.T. Aguayo, A.G. Gayubo, A. Atutxa, B. Valle, J. Bilbao, Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons, Catal. Today. 107 (2005) 410–416. | eng |
dcterms.references | A.T. Aguayo, A.G. Gayubo, A. Atutxa, M. Olazar, J. Bilbao, Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst, Ind. Eng. Chem. Res. 41 (2002) 4216–4224. | eng |
dcterms.references | J. Mathew, A. Konstantinos, R. Marie-Françoise, G.B. Marin, Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling, J. Catal. 330 (2015) 28–45. | eng |
dcterms.references | G.P. Babu, R.S. Murthyy, V. Krishnan, Conversion of isoamyl alcohol over acid catalysts: Reaction dependence on nature of active centers, J. Catal. 166 (1997) 111–114. | eng |
dcterms.references | S.-G. Yoon, J. Lee, S. Park, Heat integration analysis for an industrial ethylbenzene plant using pinch analysis, Appl. Therm. Eng. 27 (2007) 886–893. | eng |
dcterms.references | U. Ali, E.O. Agbonghae, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Techno-economic process design of a commercial-scale amine-based CO2 capture system for natural gas combined cycle power plant with exhaust gas recirculation, Appl. Therm. Eng. 103 (2016) 747–758. | eng |
dcterms.references | G. Sobočan, P. Glavič, Optimization of ethylene process design, Comput. Aided Chem. Eng. 9 (2001) 529–534. | eng |
dcterms.references | E. Tut, Performance assessment by simulation of a gas-recycle oxosynthesis plant with propylene recovery, Ind. Eng. Chem. Res. 50 (2011) 4545–4552. | eng |
dcterms.references | S. Begum, M.G. Rasul, D. Akbar, A numerical investigation of municipal solid waste gasification using Aspen Plus, Procedia Eng. 90 (2014) 710–717. | eng |
dcterms.references | G.S. Soave, Estimation of the critical constants of heavy hydrocarbons for their treatment by the Soave–Redlich–Kwong equation of state, Fluid Phase Equilib. 143 (1998) 29–39. | eng |
dcterms.references | J.M. Smith, C. Hendrick, V. Ness, M. Abbott, Introduction to chemical engineering thermodynamics, 7th ed., McGraw-Hill, Michigan, 2005. | eng |
dcterms.references | I. Adeyemi, I. Janajreh, Modeling of the entrained flow gasification: Kinetics-based ASPEN Plus model, Renew. Energy. 82 (2014) 77–84. | eng |
dcterms.references | N. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming, Int. J. Hydrogen Energy. (2016) 5640-5651. | eng |
dcterms.references | M.M. Trubyanov, G.M. Mochalov, V.M. Vorotyntsev, S.S. Suvorov, High-pressure distillation: Simultaneous impact of pressure, temperature and loading on separation performance during distillation of high-purity gases in high-performance randomly-packed columns, Sep. Purif. Technol. 135 (2014) 117–126. | eng |
dcterms.references | American Association of Cost Engineers, (2015). http://www.aacei.org/ (accessed February 9, 2017). | eng |
dcterms.references | World Bank, (2015). http://www.worldbank.org/ (accessed February 9, 2017). | eng |
dcterms.references | P.C. Wankat, Separation process engineering, 3rd Ed., Prentice Hall, Boston, 2012. | eng |
dcterms.references | R. Turton, R. Bailie, W. Whiting, J. Shaeiwitz, D. Bhattacharyya, Analysis, synthesis, and design of chemical processes, 4th Ed., Prentice Hall, Michigan, 2013. | eng |
dcterms.references | A.T. Aguayo, A.G. Gayubo, A.M. Tarrío, A. Atutza, J. Bilbao, Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite, J. Chem. Technol. Biotechnol. 77 (2002) 211–216. | eng |
dcterms.references | A.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, J. Bilbao, Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH, Appl. Catal. B Environ. 97 (2010) 299–306. | eng |
dcterms.references | A.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, M. Olazar, J. Bilbao, Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons, Fuel. 89 (2010) 3365–3372. | eng |
dcterms.references | F.F. Madeira, N.S. Gnep, P. Magnoux, S. Maury, N. Cadran, Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity, Appl. Catal. A Gen. 367 (2009) 39–46. | eng |
dcterms.references | M. Iwamoto, K. Kasai, T. Haishi, Conversion of ethanol into polyolefin building blocks: reaction pathways on nickel ion-loaded mesoporous silica., ChemSusChem. 4 (2011) 1055–8. | eng |
dcterms.references | T.K. Phung, L. Proietti Hernández, A. Lagazzo, G. Busca, Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects, Appl. Catal. A Gen. 493 (2015) 77–89. | eng |
dcterms.references | W. Xia, Q. Sun, S.W. Liu, L.P. Qiang, Y.C. Cui, Effect of Si/Al ratio on catalytic performance of HZSM-5 zeolites for conversion of ethanol to propylene, Adv. Mater. Res. 953–954 (2014) 1121–1124. | eng |
dcterms.references | A.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, M. Olazar, J. Bilbao, Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke, Chem. Eng. J. 167 (2011) 262–277. | eng |
dcterms.references | J. Bi, M. Liu, C. Song, X. Wang, X. Guo, C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts, Appl. Catal. B Environ. 107 (2011) 68–76. | eng |
dcterms.references | T. Tsoncheva, M. Järn, D. Paneva, M. Dimitrov, I. Mitov, Copper and chromium oxide nanocomposites supported on SBA-15 silica as catalysts for ethylacetate combustion: Effect of mesoporous structure and metal oxide composition, Microporous Mesoporous Mater. 137 (2011) 56–64. | eng |
dcterms.references | W. Huang, F. Gong, M. Fan, Q. Zhai, C. Hong, Q. Li, Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum, Bioresour. Technol. 121 (2012) 248–255. | eng |
dcterms.references | S&P Global Platts, Latest oil, energy & metals news, market data and analysis, (2015). http://www.platts.com/ (accessed November 11, 2016). | eng |
dcterms.references | M.M. Ghiasi, A. Bahadori, S. Zendehboudi, Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network, J. Nat. Gas Sci. Eng. 17 (2014) 26–32. | eng |
dcterms.references | H. Ranjbar, H. Ahmadi, R. Khalighi Sheshdeh, H. Ranjbar, Application of relative sensitivity function in parametric optimization of a tri-ethylene glycol dehydration plant, J. Nat. Gas Sci. Eng. 25 (2015) 39–45. | eng |
dcterms.references | S. Baek, C. Lee, S. Jeong, Investigation of two-phase heat transfer coefficients of argon–freon cryogenic mixed refrigerants, Cryogenics (Guildf). 64 (2014) 29–39. | eng |
dcterms.references | R. Kadambur, P. Kotecha, Multi-level production planning in a petrochemical industry using elitist Teaching–Learning-Based-Optimization, Expert Syst. Appl. 42 (2015) 628–641. | eng |
dcterms.references | W. True, Global ethylene capacity continues advance in 2011, Oil Gas J. 110 (2012) 78–84. | eng |
dcterms.references | A. Takahashi, W. Xia, Q. Wu, T. Furukawa, I. Nakamura, H. Shimada, et al., Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts, Appl. Catal. A Gen. 467 (2013) 380–385. | eng |