Mostrar el registro sencillo del ítem

dc.contributor.advisorQuintanilla, María Ximena
dc.contributor.advisorRicaurte, Leidy Yineth
dc.contributor.authorBeltrán Hernández, Juan David
dc.date.accessioned2019-01-15T13:58:37Z
dc.date.available2019-01-15T13:58:37Z
dc.date.issued2018-10-25
dc.identifier.citationF. and H. W. W. Uniting Food, “Global Palm Oil Conference,” Bogotá, 2015
dc.identifier.citationO. I. Mba, M.-J. Dumont, and M. Ngadi, “Palm oil: Processing, characterization and utilization in the food industry – A review,” Food Biosci., vol. 10, pp. 26–41, 2015.
dc.identifier.citationFedepalma, “La palma de aceite en Colombia | Fedepalma,” 2017. [Online]. Available: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos. [Accessed: 13-Aug-2018].
dc.identifier.citationM. Mozzon, D. Pacetti, P. Lucci, M. Balzano, and N. G. Frega, “Crude palm oil from interspecific hybrid Elaeis oleifera × Elaeis guineensis: Fatty acid regiodistribution and molecular species of glycerides,” Food Chem., vol. 141, no. 1, pp. 245–252, 2013.
dc.identifier.citationZ. A. M. Daud, D. Kaur, and P. Khosla, “18 – Health and Nutritional Properties of Palm Oil and Its Components,” in Palm Oil, 2012, pp. 545–560
dc.identifier.citationM. Michelon, R. A. Mantovani, R. Sinigaglia-Coimbra, L. G. de la Torre, and R. L. Cunha, “Structural characterization of β-carotene-incorporated nanovesicles produced with non-purified phospholipids,” Food Res. Int., vol. 79, pp. 95–105, Jan. 2016.
dc.identifier.citationG. R. List, “2 – Oilseed Composition and Modification for Health and Nutrition,” in Functional Dietary Lipids, 2016, pp. 23–46.
dc.identifier.citationMinsalud, “ESTRATEGIA NACIONAL PARA LA PREVENCIÓN Y CONTROL DE LAS DEFICIENCIAS DE MICRONUTRIENTES EN COLOMBIA 2014 – 2021,” Bogotá, 2015.
dc.identifier.citationICBF, “ENCUESTA NACIONAL DE LA SITUACIÓN NUTRICIONAL EN COLOMBIA 2010,” 2010. .
dc.identifier.citationM. X. Quintanilla-Carvajal et al., “Effects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules obtained by spray drying,” Food Res. Int., vol. 63, pp. 2–8, 2014.
dc.identifier.citationS. Rahman, Handbook of food preservation. CRC Press, 2007.
dc.identifier.citationL. Ricaurte, M. de J. Perea-Flores, A. Martinez, and M. X. Quintanilla-Carvajal, “Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization),” Innov. Food Sci. Emerg. Technol., vol. 35, pp. 75–85, 2016.
dc.identifier.citationW. Liu, A. Ye, and H. Singh, “Chapter 8 – Progress in Applications of Liposomes in Food Systems,” in Microencapsulation and Microspheres for Food Applications, 2015, pp. 151–170.
dc.identifier.citationD. R. Tobergte and S. Curtis, Handbook of Food Preservation, vol. 53, no. 9. 2013
dc.identifier.citationM. Â. P. R. Cerqueira, A. C. B. Pinheiro, C. V. S. do Carmo, C. M. M. Duarte, M. das G. C. da Cunha, and A. A. M. de O. S. Vicente, “Nanostructured biobased systems for nutrient and bioactive compounds delivery,” in Nutrient Delivery, Elsevier, 2017, pp. 43–85.
dc.identifier.citationS. M. Jafari and S. M. Jafari, “Chapter 1 – An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients,” in Nanoencapsulation of Food Bioactive Ingredients, 2017, pp. 1–62.
dc.identifier.citationT. Ghorbanzade, S. M. Jafari, S. Akhavan, and R. Hadavi, “Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt,” Food Chem., vol. 216, pp. 146–152, 2017.
dc.identifier.citationD. J. McClements, “Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems,” Adv. Colloid Interface Sci., vol. 219, pp. 27–53, 2015.
dc.identifier.citationM. R. Mozafari, “Nanoliposomes: Preparation and Analysis,” 2010, pp. 29–50.
dc.identifier.citationJ.-C. Colas, W. Shi, V. S. N. M. Rao, A. Omri, M. R. Mozafari, and H. Singh, “Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting,” Micron, vol. 38, no. 8, pp. 841–847, 2007.
dc.identifier.citationD. Taladrid, D. Marín, A. Alemán, I. Álvarez-Acero, P. Montero, and M. C. GómezGuillén, “Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol,” Food Res. Int., vol. 100, pp. 541–550, Oct. 2017.
dc.identifier.citationV. Đorđević, A. Belščak-Cvitanović, I. Drvenica, D. Komes, V. Nedović, and B. Bugarski, “3 – Nanoscale nutrient delivery systems,” in Nutrient Delivery, 2017, pp. 87–139
dc.identifier.citationL. de Souza Simões, D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente, and Ó. L. Ramos, “Micro- and nano bio-based delivery systems for food applications: In vitro behavior,” Adv. Colloid Interface Sci., vol. 243, no. Supplement C, pp. 23–45, May 2017
dc.identifier.citationI. J. Joye, G. Davidov-Pardo, and D. J. McClements, “Nanotechnology for increased micronutrient bioavailability,” Trends Food Sci. Technol., vol. 40, no. 2, pp. 168–182, 2014.
dc.identifier.citationA. Guerra, L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric, “Relevance and challenges in modeling human gastric and small intestinal digestion,” Trends Biotechnol., vol. 30, no. 11, pp. 591–600, Nov. 2012.
dc.identifier.citationD. J. McClements and Y. Li, “Review of in vitro digestion models for rapid screening of emulsion-based systems,” Food Funct., vol. 1, no. 1, pp. 32–59, Oct. 2010.
dc.identifier.citationM. Imran, A.-M. Revol-Junelles, C. Paris, E. Guedon, M. Linder, and S. Desobry, “Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin,” LWT - Food Sci. Technol., vol. 62, no. 1, pp. 341–349, Jun. 2015
dc.identifier.citationJ. P. Gleeson, S. M. Ryan, and D. J. Brayden, “Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers,” Trends Food Sci. Technol., vol. 53, pp. 90–101, Jul. 2016.
dc.identifier.citationM. Ayelén Vélez, M. Cristina Perotti, L. Santiago, A. María Gennaro, and E. Hynes, “6 – Bioactive compounds delivery using nanotechnology: design and applications in dairy food,” in Nutrient Delivery, 2017, pp. 221–250
dc.identifier.citationP. G. Cadena et al., “Nanoencapsulation of quercetin and resveratrol into elastic liposomes,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 309–316, 2013.
dc.identifier.citationS. Akhavan, E. Assadpour, I. Katouzian, and S. M. Jafari, “Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals,” Trends Food Sci. Technol., vol. 74, pp. 132–146, Apr. 2018
dc.identifier.citationM. Gültekin-Özgüven, A. Karadağ, Ş. Duman, B. Özkal, and B. Özçelik, “Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies,” Food Chem., vol. 201, pp. 205–212, 2016
dc.identifier.citationB. Guldiken, M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss, “Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage,” Food Res. Int., Mar. 2018.
dc.identifier.citationM. Gibis, B. Zeeb, and J. Weiss, “Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes,” Food Hydrocoll., vol. 38, pp. 28–39, 2014.
dc.identifier.citationS. Guner and M. H. Oztop, “Food grade liposome systems: Effect of solvent, homogenization types and storage conditions on oxidative and physical stability,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 513, pp. 468–478, Jan. 2017.
dc.identifier.citationH. Singh, A. Thompson, W. Liu, and M. Corredig, “11 – Liposomes as food ingredients and nutraceutical delivery systems,” in Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, 2012, pp. 287–318.
dc.identifier.citationB. Rasti, A. Erfanian, and J. Selamat, “Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food,” Food Chem., vol. 230, pp. 690–696, Sep. 2017.
dc.identifier.citationM. A. Sahari, H. R. Moghimi, Z. Hadian, M. Barzegar, and A. Mohammadi, “Physicochemical properties and antioxidant activity of α-tocopherol loaded nanoliposome’s containing DHA and EPA,” Food Chem., vol. 215, pp. 157–164, Jan. 2017.
dc.identifier.citationB. Ding et al., “Preparation, characterization and the stability of ferrous glycinate nanoliposomes,” J. Food Eng., vol. 102, no. 2, pp. 202–208, Jan. 2011.
dc.identifier.citationC. Tan, J. Xue, S. Abbas, B. Feng, X. Zhang, and S. Xia, “Liposome as a Delivery System for Carotenoids: Comparative Antioxidant Activity of Carotenoids As Measured by Ferric Reducing Antioxidant Power, DPPH Assay and Lipid Peroxidation,” J. Agric. Food Chem., vol. 62, no. 28, pp. 6726–6735, Jul. 2014
dc.identifier.citationL. Ricaurte, M. Hernández-Carrión, M. Moyano-Molano, A. Clavijo-Romero, and M. X. Quintanilla-Carvajal, “Physical, thermal and thermodynamical study of high oleic palm oil nanoemulsions,” Food Chem., vol. 256, pp. 62–70, Aug. 2018.
dc.identifier.citationZ. Liu et al., “Development of liposomal Ganoderma lucidum polysaccharide: Formulation optimization and evaluation of its immunological activity,” Carbohydr. Polym., vol. 117, pp. 510–517, 2015.
dc.identifier.citationS. K. Chung, G. H. Shin, M. K. Jung, I. C. Hwang, and H. J. Park, “Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 454, pp. 8–15, Jul. 2014.
dc.identifier.citationS.-S. Hong, S. H. Kim, and S.-J. Lim, “Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes,” Int. J. Pharm., vol. 483, no. 1–2, pp. 142–150, Apr. 2015.
dc.identifier.citationC. Rodríguez-Nogales, E. Garbayo, I. Martínez-Valbuena, V. Sebastián, M. R. Luquin, and M. J. Blanco-Prieto, “Development and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein,” Int. J. Pharm., vol. 514, no. 1, pp. 142–149, Nov. 2016.
dc.identifier.citationE. R. Cintra et al., “Nanoparticle agglomerates in magnetoliposomes,” Nanotechnology, vol. 20, no. 4, p. 045103, Jan. 2009.
dc.identifier.citationR. Silva, H. Ferreira, C. Little, and A. Cavaco-Paulo, “Effect of ultrasound parameters for unilamellar liposome preparation,” Ultrason. Sonochem., vol. 17, no. 3, pp. 628–632, Mar. 2010.
dc.identifier.citationJ. Pereira-Lachataignerais, R. Pons, P. Panizza, L. Courbin, J. Rouch, and O. López, “Study and formation of vesicle systems with low polydispersity index by ultrasound method,” Chem. Phys. Lipids, vol. 140, no. 1–2, pp. 88–97, Apr. 2006.
dc.identifier.citationJ. de Plessisa, C. Ramachandran, N. Weiner, and D. G. Müllera, “The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage,” Int. J. Pharm., vol. 127, no. 2, pp. 273–278, Feb. 1996.
dc.identifier.citationL. M. (Leonard M. Sagis, Microencapsulation and microspheres for food applications. 2015.
dc.identifier.citationM. Gibis, N. Rahn, and J. Weiss, “Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract,” Pharmaceutics, vol. 5, no. 4, pp. 421–433, Aug. 2013.
dc.identifier.citationU. Baxa, “Imaging of Liposomes by Transmission Electron Microscopy,” in Methods in molecular biology (Clifton, N.J.), vol. 1682, 2018, pp. 73–88.
dc.identifier.citationY. Wu et al., “Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities,” Int. J. Biol. Macromol., vol. 102, pp. 68–75, Sep. 2017.
dc.identifier.citationL. E. Zapata M., “Situación y perspectivas del aceite de palma alto oleico OxG en Colombia,” Rev. Palmas, vol. 31, no. especial, pp. 349–353, Jan. 2010.
dc.identifier.citationT. Toniazzo, I. F. Berbel, S. Cho, C. S. Fávaro-Trindade, I. C. F. Moraes, and S. C. Pinho, “β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt,” LWT - FoodSci. Technol., vol. 59, no. 2, pp. 1265–1273, Dec. 2014.
dc.identifier.citationI. Katouzian, A. Faridi Esfanjani, S. M. Jafari, and S. Akhavan, “Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients,” Trends Food Sci. Technol., vol. 68, pp. 14–25, Oct. 2017.
dc.identifier.citationM. Minekus et al., “A standardised static in vitro digestion method suitable for food – an international consensus,” Food Funct., vol. 5, no. 6, pp. 1113–1124, May 2014.
dc.identifier.citationD. J. L. Mat, S. Le Feunteun, C. Michon, and I. Souchon, “In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids,” Food Res. Int., vol. 88, pp. 226–233, Oct. 2016.
dc.identifier.citationL. Zou et al., “Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions,” RSC Adv., vol. 6, no. 4, pp. 3126–3136, Jan. 2016
dc.identifier.citationQ. Lin, R. Liang, P. A. Williams, and F. Zhong, “Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules,” Food Hydrocoll., vol. 77, pp. 187–203, Apr. 2018
dc.identifier.citationW. Liu et al., “Physical-chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes.,” Food Funct., vol. 8, no. 4, pp. 1688–1697, Apr. 2017.
dc.identifier.citationR. Zhang et al., “Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots,” J. Agric. Food Chem., vol. 63, no. 48, pp. 10508– 10517, Dec. 2015.
dc.identifier.citationC. Tan, Y. Zhang, S. Abbas, B. Feng, X. Zhang, and S. Xia, “Modulation of the carotenoid bioaccessibility through liposomal encapsulation,” Colloids Surfaces B Biointerfaces, vol. 123, pp. 692–700, Nov. 2014.
dc.identifier.citationR. A. Mantovani, A. C. Pinheiro, A. A. Vicente, and R. L. Cunha, “In vitro digestion of oil-in-water emulsions stabilized by whey protein nanofibrils,” Food Res. Int., vol. 99, pp. 790–798, Sep. 2017
dc.identifier.citationY. Li and D. J. McClements, “New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility,” J. Agric. Food Chem., vol. 58, no. 13, pp. 8085–8092, Jul. 2010
dc.identifier.citationY. Li, M. Hu, and D. J. McClements, “Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pHstat method,” Food Chem., vol. 126, no. 2, pp. 498–505, May 2011.
dc.identifier.citationW. Wu, Y. Lu, and J. Qi, “Oral delivery of liposomes,” Ther. Deliv., vol. 6, no. 11, pp. 1239–1241, Nov. 2015.
dc.identifier.citationW. Liu, J. Liu, W. Liu, T. Li, and C. Liu, “Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer SelfAssembly Alginate–Chitosan-Coated Nanoliposomes,” J. Agric. Food Chem., vol. 61, no. 17, pp. 4133–4144, May 2013.
dc.identifier.urihttp://hdl.handle.net/10818/34546
dc.description70 páginases_CO
dc.description.abstractEl aceite de palma alto oleico (HOPO) es un importante constituyente empleado por diferentes industrias debido a su versatilidad y su elevado potencial nutricional, aunque la baja bioaccesibilidad de sus biocompuestos y la alta susceptibilidad a ser degradados hacen necesario el desarrollo de técnicas de protección y liberación como la nanoencapsulación. Esta investigación estudió las condiciones óptimas de preparación de nanoliposomas (NLs) para la nanoencapsulación de HOPO por tres diferentes tecnologías: microfluidización (MF), ultrasonido (US) y rotor-estator (RS), usando la metodología de optimización de superficie de respuesta. Las pruebas con estas tres tecnologías permitieron alcanzar tamaños de vesícula inferiores a los 200 nm. Se demostró que con la MF se logró la mayor estabilidad física y que el contenido de HOPO aportó a la estabilidad física de los NLs durante el periodo de almacenamiento. Teniendo en cuenta que los NLs pueden ser afectados por condiciones del tracto gastrointestinal, este estudio evaluó la estabilidad física y la digestibilidad intestinal de HOPO encapsulado en NLs producidos por MF y US, utilizando un modelo estático in vitro. Durante la fase oral no se observaron cambios significativos en las propiedades de estabilidad, sin embargo, en la fase gástrica los dos tipos de NLs estudiados se desestabilizaron por condiciones del medio, generando un aumento del tamaño de partícula, del índice de polidispersión y del potencial Z. Finalmente, se registró un aumento de ácidos grasos libres para MF y US, y se estableció que los triglicéridos en los NLs preparados por US se digirieron menos que los preparados por MF, lo cual indicó que la nanoencapsulación en NLs puede reducir la degradación gástrica del HOPO y la velocidad de degradación de los biocompuestos solubilizados en él bajo condiciones intestinales.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectAceite de palmaes_CO
dc.subjectNanotecnologíaes_CO
dc.subjectEncapsulado (Electrónica)es_CO
dc.subjectOndas ultrasónicas -- Aplicaciones industrialeses_CO
dc.titleNanoencapsulación de aceite de palma alto oleico en liposomases_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local270120
dc.identifier.localTE09925
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International