dc.contributor.advisor | Quintanilla, María Ximena | |
dc.contributor.advisor | Ricaurte, Leidy Yineth | |
dc.contributor.author | Beltrán Hernández, Juan David | |
dc.date.accessioned | 2019-01-15T13:58:37Z | |
dc.date.available | 2019-01-15T13:58:37Z | |
dc.date.issued | 2018-10-25 | |
dc.identifier.citation | F. and H. W. W. Uniting Food, “Global Palm Oil Conference,” Bogotá, 2015 | |
dc.identifier.citation | O. I. Mba, M.-J. Dumont, and M. Ngadi, “Palm oil: Processing, characterization and
utilization in the food industry – A review,” Food Biosci., vol. 10, pp. 26–41, 2015. | |
dc.identifier.citation | Fedepalma, “La palma de aceite en Colombia | Fedepalma,” 2017. [Online].
Available: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos.
[Accessed: 13-Aug-2018]. | |
dc.identifier.citation | M. Mozzon, D. Pacetti, P. Lucci, M. Balzano, and N. G. Frega, “Crude palm oil from
interspecific hybrid Elaeis oleifera × Elaeis guineensis: Fatty acid regiodistribution
and molecular species of glycerides,” Food Chem., vol. 141, no. 1, pp. 245–252, 2013. | |
dc.identifier.citation | Z. A. M. Daud, D. Kaur, and P. Khosla, “18 – Health and Nutritional Properties of
Palm Oil and Its Components,” in Palm Oil, 2012, pp. 545–560 | |
dc.identifier.citation | M. Michelon, R. A. Mantovani, R. Sinigaglia-Coimbra, L. G. de la Torre, and R. L.
Cunha, “Structural characterization of β-carotene-incorporated nanovesicles
produced with non-purified phospholipids,” Food Res. Int., vol. 79, pp. 95–105, Jan. 2016. | |
dc.identifier.citation | G. R. List, “2 – Oilseed Composition and Modification for Health and Nutrition,” in
Functional Dietary Lipids, 2016, pp. 23–46. | |
dc.identifier.citation | Minsalud, “ESTRATEGIA NACIONAL PARA LA PREVENCIÓN Y CONTROL DE
LAS DEFICIENCIAS DE MICRONUTRIENTES EN COLOMBIA 2014 – 2021,” Bogotá, 2015. | |
dc.identifier.citation | ICBF, “ENCUESTA NACIONAL DE LA SITUACIÓN NUTRICIONAL EN COLOMBIA
2010,” 2010. . | |
dc.identifier.citation | M. X. Quintanilla-Carvajal et al., “Effects of microfluidisation process on the amounts
and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules
obtained by spray drying,” Food Res. Int., vol. 63, pp. 2–8, 2014. | |
dc.identifier.citation | S. Rahman, Handbook of food preservation. CRC Press, 2007. | |
dc.identifier.citation | L. Ricaurte, M. de J. Perea-Flores, A. Martinez, and M. X. Quintanilla-Carvajal,
“Production of high-oleic palm oil nanoemulsions by high-shear homogenization
(microfluidization),” Innov. Food Sci. Emerg. Technol., vol. 35, pp. 75–85, 2016. | |
dc.identifier.citation | W. Liu, A. Ye, and H. Singh, “Chapter 8 – Progress in Applications of Liposomes in
Food Systems,” in Microencapsulation and Microspheres for Food Applications,
2015, pp. 151–170. | |
dc.identifier.citation | D. R. Tobergte and S. Curtis, Handbook of Food Preservation, vol. 53, no. 9. 2013 | |
dc.identifier.citation | M. Â. P. R. Cerqueira, A. C. B. Pinheiro, C. V. S. do Carmo, C. M. M. Duarte, M.
das G. C. da Cunha, and A. A. M. de O. S. Vicente, “Nanostructured biobased
systems for nutrient and bioactive compounds delivery,” in Nutrient Delivery, Elsevier, 2017, pp. 43–85. | |
dc.identifier.citation | S. M. Jafari and S. M. Jafari, “Chapter 1 – An Introduction to Nanoencapsulation
Techniques for the Food Bioactive Ingredients,” in Nanoencapsulation of Food
Bioactive Ingredients, 2017, pp. 1–62. | |
dc.identifier.citation | T. Ghorbanzade, S. M. Jafari, S. Akhavan, and R. Hadavi, “Nano-encapsulation of
fish oil in nano-liposomes and its application in fortification of yogurt,” Food Chem.,
vol. 216, pp. 146–152, 2017. | |
dc.identifier.citation | D. J. McClements, “Encapsulation, protection, and release of hydrophilic active
components: Potential and limitations of colloidal delivery systems,” Adv. Colloid
Interface Sci., vol. 219, pp. 27–53, 2015. | |
dc.identifier.citation | M. R. Mozafari, “Nanoliposomes: Preparation and Analysis,” 2010, pp. 29–50. | |
dc.identifier.citation | J.-C. Colas, W. Shi, V. S. N. M. Rao, A. Omri, M. R. Mozafari, and H. Singh,
“Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari
method and their bacterial targeting,” Micron, vol. 38, no. 8, pp. 841–847, 2007. | |
dc.identifier.citation | D. Taladrid, D. Marín, A. Alemán, I. Álvarez-Acero, P. Montero, and M. C. GómezGuillén, “Effect of chemical composition and sonication procedure on properties of
food-grade soy lecithin liposomes with added glycerol,” Food Res. Int., vol. 100, pp. 541–550, Oct. 2017. | |
dc.identifier.citation | V. Đorđević, A. Belščak-Cvitanović, I. Drvenica, D. Komes, V. Nedović, and B.
Bugarski, “3 – Nanoscale nutrient delivery systems,” in Nutrient Delivery, 2017, pp. 87–139 | |
dc.identifier.citation | L. de Souza Simões, D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente,
and Ó. L. Ramos, “Micro- and nano bio-based delivery systems for food
applications: In vitro behavior,” Adv. Colloid Interface Sci., vol. 243, no. Supplement
C, pp. 23–45, May 2017 | |
dc.identifier.citation | I. J. Joye, G. Davidov-Pardo, and D. J. McClements, “Nanotechnology for increased
micronutrient bioavailability,” Trends Food Sci. Technol., vol. 40, no. 2, pp. 168–182, 2014. | |
dc.identifier.citation | A. Guerra, L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric,
“Relevance and challenges in modeling human gastric and small intestinal
digestion,” Trends Biotechnol., vol. 30, no. 11, pp. 591–600, Nov. 2012. | |
dc.identifier.citation | D. J. McClements and Y. Li, “Review of in vitro digestion models for rapid screening
of emulsion-based systems,” Food Funct., vol. 1, no. 1, pp. 32–59, Oct. 2010. | |
dc.identifier.citation | M. Imran, A.-M. Revol-Junelles, C. Paris, E. Guedon, M. Linder, and S. Desobry,
“Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food
biopreservative nisin,” LWT - Food Sci. Technol., vol. 62, no. 1, pp. 341–349, Jun. 2015 | |
dc.identifier.citation | J. P. Gleeson, S. M. Ryan, and D. J. Brayden, “Oral delivery strategies for
nutraceuticals: Delivery vehicles and absorption enhancers,” Trends Food Sci.
Technol., vol. 53, pp. 90–101, Jul. 2016. | |
dc.identifier.citation | M. Ayelén Vélez, M. Cristina Perotti, L. Santiago, A. María Gennaro, and E. Hynes,
“6 – Bioactive compounds delivery using nanotechnology: design and applications
in dairy food,” in Nutrient Delivery, 2017, pp. 221–250 | |
dc.identifier.citation | P. G. Cadena et al., “Nanoencapsulation of quercetin and resveratrol into elastic
liposomes,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 309–316, 2013. | |
dc.identifier.citation | S. Akhavan, E. Assadpour, I. Katouzian, and S. M. Jafari, “Lipid nano scale cargos
for the protection and delivery of food bioactive ingredients and nutraceuticals,”
Trends Food Sci. Technol., vol. 74, pp. 132–146, Apr. 2018 | |
dc.identifier.citation | M. Gültekin-Özgüven, A. Karadağ, Ş. Duman, B. Özkal, and B. Özçelik,
“Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste
extract encapsulated in chitosan-coated liposomes and bioaccessability studies,”
Food Chem., vol. 201, pp. 205–212, 2016 | |
dc.identifier.citation | B. Guldiken, M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss, “Physical and
chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during
storage,” Food Res. Int., Mar. 2018. | |
dc.identifier.citation | M. Gibis, B. Zeeb, and J. Weiss, “Formation, characterization, and stability of
encapsulated hibiscus extract in multilayered liposomes,” Food Hydrocoll., vol. 38, pp. 28–39, 2014. | |
dc.identifier.citation | S. Guner and M. H. Oztop, “Food grade liposome systems: Effect of solvent,
homogenization types and storage conditions on oxidative and physical stability,”
Colloids Surfaces A Physicochem. Eng. Asp., vol. 513, pp. 468–478, Jan. 2017. | |
dc.identifier.citation | H. Singh, A. Thompson, W. Liu, and M. Corredig, “11 – Liposomes as food
ingredients and nutraceutical delivery systems,” in Encapsulation Technologies and
Delivery Systems for Food Ingredients and Nutraceuticals, 2012, pp. 287–318. | |
dc.identifier.citation | B. Rasti, A. Erfanian, and J. Selamat, “Novel nanoliposomal encapsulated omega-3
fatty acids and their applications in food,” Food Chem., vol. 230, pp. 690–696, Sep. 2017. | |
dc.identifier.citation | M. A. Sahari, H. R. Moghimi, Z. Hadian, M. Barzegar, and A. Mohammadi,
“Physicochemical properties and antioxidant activity of α-tocopherol loaded
nanoliposome’s containing DHA and EPA,” Food Chem., vol. 215, pp. 157–164, Jan. 2017. | |
dc.identifier.citation | B. Ding et al., “Preparation, characterization and the stability of ferrous glycinate
nanoliposomes,” J. Food Eng., vol. 102, no. 2, pp. 202–208, Jan. 2011. | |
dc.identifier.citation | C. Tan, J. Xue, S. Abbas, B. Feng, X. Zhang, and S. Xia, “Liposome as a Delivery
System for Carotenoids: Comparative Antioxidant Activity of Carotenoids As
Measured by Ferric Reducing Antioxidant Power, DPPH Assay and Lipid
Peroxidation,” J. Agric. Food Chem., vol. 62, no. 28, pp. 6726–6735, Jul. 2014 | |
dc.identifier.citation | L. Ricaurte, M. Hernández-Carrión, M. Moyano-Molano, A. Clavijo-Romero, and M.
X. Quintanilla-Carvajal, “Physical, thermal and thermodynamical study of high oleic
palm oil nanoemulsions,” Food Chem., vol. 256, pp. 62–70, Aug. 2018. | |
dc.identifier.citation | Z. Liu et al., “Development of liposomal Ganoderma lucidum polysaccharide:
Formulation optimization and evaluation of its immunological activity,” Carbohydr.
Polym., vol. 117, pp. 510–517, 2015. | |
dc.identifier.citation | S. K. Chung, G. H. Shin, M. K. Jung, I. C. Hwang, and H. J. Park, “Factors
influencing the physicochemical characteristics of cationic polymer-coated
liposomes prepared by high-pressure homogenization,” Colloids Surfaces A
Physicochem. Eng. Asp., vol. 454, pp. 8–15, Jul. 2014. | |
dc.identifier.citation | S.-S. Hong, S. H. Kim, and S.-J. Lim, “Effects of triglycerides on the hydrophobic
drug loading capacity of saturated phosphatidylcholine-based liposomes,” Int. J.
Pharm., vol. 483, no. 1–2, pp. 142–150, Apr. 2015. | |
dc.identifier.citation | C. Rodríguez-Nogales, E. Garbayo, I. Martínez-Valbuena, V. Sebastián, M. R.
Luquin, and M. J. Blanco-Prieto, “Development and characterization of polo-like
kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of
alpha-synuclein,” Int. J. Pharm., vol. 514, no. 1, pp. 142–149, Nov. 2016. | |
dc.identifier.citation | E. R. Cintra et al., “Nanoparticle agglomerates in magnetoliposomes,”
Nanotechnology, vol. 20, no. 4, p. 045103, Jan. 2009. | |
dc.identifier.citation | R. Silva, H. Ferreira, C. Little, and A. Cavaco-Paulo, “Effect of ultrasound
parameters for unilamellar liposome preparation,” Ultrason. Sonochem., vol. 17, no.
3, pp. 628–632, Mar. 2010. | |
dc.identifier.citation | J. Pereira-Lachataignerais, R. Pons, P. Panizza, L. Courbin, J. Rouch, and O.
López, “Study and formation of vesicle systems with low polydispersity index by
ultrasound method,” Chem. Phys. Lipids, vol. 140, no. 1–2, pp. 88–97, Apr. 2006. | |
dc.identifier.citation | J. de Plessisa, C. Ramachandran, N. Weiner, and D. G. Müllera, “The influence of
lipid composition and lamellarity of liposomes on the physical stability of liposomes
upon storage,” Int. J. Pharm., vol. 127, no. 2, pp. 273–278, Feb. 1996. | |
dc.identifier.citation | L. M. (Leonard M. Sagis, Microencapsulation and microspheres for food
applications. 2015. | |
dc.identifier.citation | M. Gibis, N. Rahn, and J. Weiss, “Physical and Oxidative Stability of Uncoated and
Chitosan-Coated Liposomes Containing Grape Seed Extract,” Pharmaceutics, vol.
5, no. 4, pp. 421–433, Aug. 2013. | |
dc.identifier.citation | U. Baxa, “Imaging of Liposomes by Transmission Electron Microscopy,” in Methods
in molecular biology (Clifton, N.J.), vol. 1682, 2018, pp. 73–88. | |
dc.identifier.citation | Y. Wu et al., “Optimization of Glycyrrhiza polysaccharide liposome by response
surface methodology and its immune activities,” Int. J. Biol. Macromol., vol. 102, pp.
68–75, Sep. 2017. | |
dc.identifier.citation | L. E. Zapata M., “Situación y perspectivas del aceite de palma alto oleico OxG en
Colombia,” Rev. Palmas, vol. 31, no. especial, pp. 349–353, Jan. 2010. | |
dc.identifier.citation | T. Toniazzo, I. F. Berbel, S. Cho, C. S. Fávaro-Trindade, I. C. F. Moraes, and S. C.
Pinho, “β-carotene-loaded liposome dispersions stabilized with xanthan and guar
gums: Physico-chemical stability and feasibility of application in yogurt,” LWT - FoodSci. Technol., vol. 59, no. 2, pp. 1265–1273, Dec. 2014. | |
dc.identifier.citation | I. Katouzian, A. Faridi Esfanjani, S. M. Jafari, and S. Akhavan, “Formulation and
application of a new generation of lipid nano-carriers for the food bioactive
ingredients,” Trends Food Sci. Technol., vol. 68, pp. 14–25, Oct. 2017. | |
dc.identifier.citation | M. Minekus et al., “A standardised static in vitro digestion method suitable for food –
an international consensus,” Food Funct., vol. 5, no. 6, pp. 1113–1124, May 2014. | |
dc.identifier.citation | D. J. L. Mat, S. Le Feunteun, C. Michon, and I. Souchon, “In vitro digestion of foods
using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion
kinetics of macronutrients, proteins and lipids,” Food Res. Int., vol. 88, pp. 226–233, Oct. 2016. | |
dc.identifier.citation | L. Zou et al., “Food-grade nanoparticles for encapsulation, protection and delivery of
curcumin: comparison of lipid, protein, and phospholipid nanoparticles under
simulated gastrointestinal conditions,” RSC Adv., vol. 6, no. 4, pp. 3126–3136, Jan. 2016 | |
dc.identifier.citation | Q. Lin, R. Liang, P. A. Williams, and F. Zhong, “Factors affecting the bioaccessibility
of β-carotene in lipid-based microcapsules: Digestive conditions, the composition,
structure and physical state of microcapsules,” Food Hydrocoll., vol. 77, pp. 187–203, Apr. 2018 | |
dc.identifier.citation | W. Liu et al., “Physical-chemical stability and in vitro digestibility of hybrid
nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on
liposomes.,” Food Funct., vol. 8, no. 4, pp. 1688–1697, Apr. 2017. | |
dc.identifier.citation | R. Zhang et al., “Enhancing Nutraceutical Bioavailability from Raw and Cooked
Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid
Bioaccessibility from Carrots,” J. Agric. Food Chem., vol. 63, no. 48, pp. 10508–
10517, Dec. 2015. | |
dc.identifier.citation | C. Tan, Y. Zhang, S. Abbas, B. Feng, X. Zhang, and S. Xia, “Modulation of the
carotenoid bioaccessibility through liposomal encapsulation,” Colloids Surfaces B
Biointerfaces, vol. 123, pp. 692–700, Nov. 2014. | |
dc.identifier.citation | R. A. Mantovani, A. C. Pinheiro, A. A. Vicente, and R. L. Cunha, “In vitro digestion
of oil-in-water emulsions stabilized by whey protein nanofibrils,” Food Res. Int., vol.
99, pp. 790–798, Sep. 2017 | |
dc.identifier.citation | Y. Li and D. J. McClements, “New Mathematical Model for Interpreting pH-Stat
Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility,” J.
Agric. Food Chem., vol. 58, no. 13, pp. 8085–8092, Jul. 2010 | |
dc.identifier.citation | Y. Li, M. Hu, and D. J. McClements, “Factors affecting lipase digestibility of
emulsified lipids using an in vitro digestion model: Proposal for a standardised pHstat method,” Food Chem., vol. 126, no. 2, pp. 498–505, May 2011. | |
dc.identifier.citation | W. Wu, Y. Lu, and J. Qi, “Oral delivery of liposomes,” Ther. Deliv., vol. 6, no. 11, pp.
1239–1241, Nov. 2015. | |
dc.identifier.citation | W. Liu, J. Liu, W. Liu, T. Li, and C. Liu, “Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer SelfAssembly Alginate–Chitosan-Coated Nanoliposomes,” J. Agric. Food Chem., vol.
61, no. 17, pp. 4133–4144, May 2013. | |
dc.identifier.uri | http://hdl.handle.net/10818/34546 | |
dc.description | 70 páginas | es_CO |
dc.description.abstract | El aceite de palma alto oleico (HOPO) es un importante constituyente empleado por diferentes industrias debido a su versatilidad y su elevado potencial nutricional, aunque la baja bioaccesibilidad de sus biocompuestos y la alta susceptibilidad a ser degradados hacen necesario el desarrollo de técnicas de protección y liberación como la nanoencapsulación. Esta investigación estudió las condiciones óptimas de preparación de nanoliposomas (NLs) para la nanoencapsulación de HOPO por tres diferentes tecnologías: microfluidización (MF), ultrasonido (US) y rotor-estator (RS), usando la metodología de optimización de superficie de respuesta. Las pruebas con estas tres tecnologías permitieron alcanzar tamaños de vesícula inferiores a los 200 nm. Se demostró que con la MF se logró la mayor estabilidad física y que el contenido de HOPO aportó a la estabilidad física de los NLs durante el periodo de almacenamiento. Teniendo en cuenta que los NLs pueden ser afectados por condiciones del tracto gastrointestinal, este estudio evaluó la estabilidad física y la digestibilidad intestinal de HOPO encapsulado en NLs producidos por MF y US, utilizando un modelo estático in vitro. Durante la fase oral no se observaron cambios significativos en las propiedades de estabilidad, sin embargo, en la fase gástrica los dos tipos de NLs estudiados se desestabilizaron por condiciones del medio, generando un aumento del tamaño de partícula, del índice de polidispersión y del potencial Z. Finalmente, se registró un aumento de ácidos grasos libres para MF y US, y se estableció que los triglicéridos en los NLs preparados por US se digirieron menos que los preparados por MF, lo cual indicó que la nanoencapsulación en NLs puede reducir la degradación gástrica del HOPO y la velocidad de degradación de los biocompuestos solubilizados en él bajo condiciones intestinales. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Aceite de palma | es_CO |
dc.subject | Nanotecnología | es_CO |
dc.subject | Encapsulado (Electrónica) | es_CO |
dc.subject | Ondas ultrasónicas -- Aplicaciones industriales | es_CO |
dc.title | Nanoencapsulación de aceite de palma alto oleico en liposomas | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |