Mostrar el registro sencillo del ítem
Efecto del uso de dbtdl (como catalizador órganometálico) en la síntesis de biomateriales tipo poliuretano a partir de aceite de higuerilla y nanocristales de celulosa
dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.author | Villegas Villalobos, Santiago | |
dc.date.accessioned | 2018-11-09T16:30:55Z | |
dc.date.available | 2018-11-09T16:30:55Z | |
dc.date.issued | 2018-09-26 | |
dc.identifier.citation | M. R. Nabid and I. Omrani, “Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery,” Mater. Sci. Eng. C, vol. 69, pp. 532–537, 2016 | |
dc.identifier.citation | K. A. Rocco, M. W. Maxfield, C. A. Best, E. W. Dean, and C. K. Breuer, “In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review,” Tissue Eng. Part B Rev., vol. 20, no. 6, pp. 628–640, 2014. | |
dc.identifier.citation | J. L. Gómez, “Polymer-ceramic hybrid material,” WO2013178852 A1, 2013. | |
dc.identifier.citation | D. K. Patel, A. Biswas, and P. Maiti, “Nanoparticle-induced phenomena in polyurethanes,” in Advances in Polyurethane Biomaterials, S. L. Cooper and J. Guan, Eds. Woodhead Publishing, 2016, pp. 171–194 | |
dc.identifier.citation | W. Fang, S. Arola, J. M. Malho, E. Kontturi, M. B. Linder, and P. Laaksonen, “Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides,” Biomacromolecules, vol. 17, no. 4, pp. 1458– 1465, 2016 | |
dc.identifier.citation | P. Alagi, Y. J. Choi, J. Seog, and S. C. Hong, “Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes,” Ind. Crops Prod., vol. 87, pp. 78– 88, 2016. | |
dc.identifier.citation | T. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer : Synthesis and characterization,” Prog. Org. Coatings, vol. 80, pp. 39–48, 2015. | |
dc.identifier.citation | T. S. Omonov, E. Kharraz, and J. M. Curtis, “Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil,” Ind. Crops Prod., vol. 107, no. May, pp. 378–385, 2017 | |
dc.identifier.citation | M. Szycher, “Biomedical polyurethanes,” in An Introduction to Biomaterials, Second., J. O. Hollinger, Ed. Boca Raton: CRC Press, 2011, pp. 281–301. | |
dc.identifier.citation | J. Ryszkowska, M. Bil, P. Woźniak, M. Lewandowska-Szumieł, and K. Kurzydłowski, “Influence of Catalyst Type on Biocompatibility of Polyurethanes,” Mater. Sci. Forum, vol. 514–516, pp. 887–891, 2006. | |
dc.identifier.citation | M. C. Tanzi, P. Verderio, M. G. Lampugnani, M. Resnati, E. Dejana, and E. Sturani, “Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use,” J. Mater. Sci. Mater. Med., vol. 5, pp. 393– 396, 1994 | |
dc.identifier.citation | N. D. Luong, L. H. Sinh, M. Minna, W. Jürgen, W. Torsten, S. Matthias, and S. Jukka, “Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties,” Eur. Polym. J., vol. 81, pp. 129–137, 2016. | |
dc.identifier.citation | M. Ionescu, Chemistry and Technology of Polyols for Polyurethane. Shawbury: Smithers Rapra Press, 2008. | |
dc.identifier.citation | K. J. Saunders, Organic Polymer Chemistry: an introduction to the organic chemistry of adhesives, fibres, paints, plastics and rubbers, Second edi. New York: Chapman and Hall, 1988 | |
dc.identifier.citation | S. A. Guelcher, “Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine,” Tissue Eng. Part B Rev., vol. 14, no. 1, pp. 3–17, Mar. 2008. | |
dc.identifier.citation | Q. Chen, S. Liang, and G. A. Thouas, “Elastomeric biomaterials for tissue engineering,” Prog. Polym. Sci., vol. 38, no. 3–4, pp. 584–671, 2013 | |
dc.identifier.citation | A. Shirke, B. Dholakiya, and K. Kuperkar, “Novel applications of castor oil based polyurethanes: a short review,” Polym. Sci. Ser. B, vol. 57, no. 4, pp. 292–297, 2015. | |
dc.identifier.citation | T. McKeon, “Castor (Ricinus communis L.),” in Industrial Oil Crops, T. McKeon, D. Hayes, D. Hildebrand, and R. Weselake, Eds. Cambridge: Elsevier Inc., 2016, pp. 75–112. | |
dc.identifier.citation | M. Ionescu, D. Radojčić, X. Wan, M. L. Shrestha, Z. S. Petrović, and T. Upshaw, “Highly functional polyols from castor oil for rigid polyurethanes,” Eur. Polym. J., vol. 84, pp. 736–749, 2016. | |
dc.identifier.citation | M. F. Valero, J. E. Pulido, A. Ramírez, and Z. Cheng, “Simultaneous interpenetrating polymer networks of polyurethane from pentaerythritolmodified castor oil and polystyrene: Structure-property relationships,” JAOCS, J. Am. Oil Chem. Soc., vol. 86, no. 4, pp. 383–392, 2009. | |
dc.identifier.citation | S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015. | |
dc.identifier.citation | L. P. Gabriel, C. A. C. Zavaglia, A. L. Jardini, C. G. B. T. Dias, and R. M. Filho, “Isocyanates as Precursors to Biomedical Polyurethanes,” Chem. Eng. Trans., vol. 38, pp. 253–258, 2014. | |
dc.identifier.citation | R. L. Prueitt, H. N. Lynch, K. Zu, L. Shi, and J. E. Goodman, “Dermal exposure to toluene diisocyanate and respiratory cancer risk,” Environ. Int., vol. 109, pp. 181–192, Dec. 2017 | |
dc.identifier.citation | K.-C. Hung, C.-S. Tseng, and S.-H. Hsu, “3D printing of polyurethane biomaterials,” in Advances in polyurethane biomaterials, S. L. Cooper and J. Guan, Eds. Elsevier, 2016, p. 691. | |
dc.identifier.citation | A. L. Silva and J. C. Bordado, “Recent developments in polyurethane catalysis: Catalytic mechanisms review,” Catal. Rev. Sci. Eng., vol. 46, no. 1, pp. 31–51, 54 2004. | |
dc.identifier.citation | N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in biomedical applications. Boca Raton: CRC Press, 1998 | |
dc.identifier.citation | J. Arias, M. Aller, E. Fernández, J. Arias, and L. Lorente, “Propedéutica quirúrgica: preoperatorio, operatorio, postoperatorio,” Tebar, 2004. [Online]. Available: https://books.google.com.co/books?id=4k3NZuoAKygC&printsec=frontcover &hl=es#v=onepage&q&f=false. | |
dc.identifier.citation | M. Sabino, “Modificación de superficies de biomateriales poliméricos y estudios de biocompatibilidad,” Rev. Iberoam. Polim., vol. 9, no. 3, pp. 206– 210, 2008 | |
dc.identifier.citation | B. D. Ratner, “Reducing capsular thickness and enhancing angiogenesis around implant drug release systems,” J. Control. Release, vol. 78, no. 1–3, pp. 211–218, 2002. | |
dc.identifier.citation | Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev., vol. 110, no. 6, pp. 3479–3500, Jun. 2010 | |
dc.identifier.citation | S. Oprea, V. O. Potolinca, P. Gradinariu, A. Joga, and V. Oprea, “Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents,” Cellulose, vol. 23, no. 4, pp. 2515–2526, 2016. | |
dc.identifier.citation | A. Dufresne, “Nanocellulose: Potential Reinforcement in Composites,” in Natural Polymers- Volume 2: Nanocomposites, J. Maya and T. Sabu, Eds. Cambridge: RSC, 2012, pp. 1–32 | |
dc.identifier.citation | D. Bondeson, A. Mathew, and K. Oksman, “Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis,” Cellulose, vol. 13, no. 2, pp. 171–180, 2006. | |
dc.identifier.citation | N. F. Vasconcelos, J. P. A. Feitosa, F. M. P. da Gama, J. P. S. Morais, F. K. Andrade, M. de S. M. de Souza Filho, and M. de F. Rosa, “Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features,” Carbohydr. Polym., vol. 155, pp. 425–431, 2017. | |
dc.identifier.citation | L. Rueda, A. Saralegui, B. Fernández D’Arlas, Q. Zhou, L. A. Berglund, M. A. Corcuera, I. Mondragon, and A. Eceiza, “Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure,” Carbohydr. Polym., vol. 92, no. 1, pp. 751–757, 2013. | |
dc.identifier.citation | L. P. Novo, J. Bras, A. García, N. Belgacem, and A. A. da S. Curvelo, “A study of the production of cellulose nanocrystals through subcritical water hydrolysis,” Ind. Crops Prod., vol. 93, pp. 88–95, Dec. 2016. | |
dc.identifier.citation | M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, and R. Davoodi, “Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review,” Cellulose, vol. 22, no. 2, pp. 935–969, Apr. 2015. | |
dc.identifier.citation | S. Gazzotti, H. Farina, G. Lesma, R. Rampazzo, L. Piergiovanni, M. A. Ortenzi, and A. Silvani, “Polylactide/cellulose nanocrystals: The in situ polymerization approach to improved nanocomposites,” Eur. Polym. J., vol. 94, no. July, pp. 173–184, 2017. | |
dc.identifier.citation | A. Dufresne, “Cellulose nanomaterial reinforced polymer nanocomposites,” Curr. Opin. Colloid Interface Sci., vol. 29, pp. 1–8, 2017. | |
dc.identifier.citation | F. A. dos Santos, G. C. V. Iulianelli, and M. I. B. Tavares, “The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications,” Mater. Sci. Appl., vol. 7, no. 5, pp. 257–294, May 2016 | |
dc.identifier.citation | M. Ardanuy Raso José Ignacio Velasco Perero, “SÍNTESIS Y CARACTERIZACIÓN DE NANOCOMPUESTOS DE POLIOLEFINAS E HIDRÓXIDOS DOBLES LAMINARES,” Universidad Politécnica de Catalunya , 2007 | |
dc.identifier.citation | D. Demircan and B. Zhang, “Facile synthesis of novel soluble cellulose-grafted hyperbranched polymers as potential natural antimicrobial materials,” Carbohydr. Polym., vol. 157, pp. 1913–1921, 2017 | |
dc.identifier.citation | L. Zhou, D. Liang, X. He, J. Li, H. Tan, J. Li, Q. Fu, and Q. Gu, “The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery,” Biomaterials, vol. 33, no. 9, pp. 2734–2745, 2012. | |
dc.identifier.citation | D. Pedrazzoli and I. Manas-Zloczower, “Understanding phase separation and morphology in thermoplastic polyurethanes nanocomposites,” Polym. (United Kingdom), vol. 90, pp. 256–263, 2016. | |
dc.identifier.citation | F. Hussain, “Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview,” J. Compos. Mater., vol. 40, no. 17, pp. 1511– 1575, 2006. | |
dc.identifier.citation | K. Tashiro and M. Kobayashi, “Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds,” Polymer (Guildf)., vol. 32, p. 1516, 1991. | |
dc.identifier.citation | A. Sturcova, G. R. Davies, and S. J. Eichhorn, “Elastic modulus and stresstransfer properties of tunicate cellulose whiskers.,” Biomacromolecules, vol. 6, p. 1055, 2005. | |
dc.identifier.citation | R. Rusli and S. J. Eichhorn, “Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman 56 spectroscopy,” Appl. Phys. A Mater. Sci. Process., vol. 93, p. 33111, 2008 | |
dc.identifier.citation | J. H. Park, J. Noh, C. Schütz, G. Salazar-Alvarez, G. Scalia, L. Bergström, and J. P. F. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem, vol. 15, no. 7, pp. 1477–1484, 2014. | |
dc.identifier.citation | H. A. Khalil, A. H. Bhat, A. A. Bakar, P. M. Tahir, I. S. M. Zaidul, and M. Jawaid, “Cellulosic nanocomposites from natural fibers for medical applications: A review,” in Handbook of Polymer Nanocomposites. Processing, Performance and Application, J. Pandey, H. Takagi, A. Nakagaito, and H. Kim, Eds. Berlin: Springer, 2015, pp. 475–511. | |
dc.identifier.citation | “Axcelon Biopolymers,” Axcelon Biopolymers Corporation, 2015. [Online]. Available: http://axcelonbp.com/. [Accessed: 15-Nov-2017] | |
dc.identifier.citation | S. Sultan, G. Siqueira, T. Zimmermann, and A. P. Mathew, “3D printing of nano-cellulosic biomaterials for medical applications,” Curr. Opin. Biomed. Eng., vol. 2, pp. 29–34, 2017. | |
dc.identifier.citation | L. Donaldson, “New process for 3D printing of cellulose,” Mater. Today, vol. 20, no. 5, pp. 224–225, 2017 | |
dc.identifier.citation | M. Märtson, J. Viljanto, T. Hurme, P. Laippala, and P. Saukko, “Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat,” Biomaterials, vol. 20, no. 21, pp. 1989–1995, 1999. | |
dc.identifier.citation | B. M. Cherian, A. L. Leão, S. F. De Souza, L. M. M. Costa, G. M. De Olyveira, M. Kottaisamy, E. R. Nagarajan, and S. Thomas, “Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications,” Carbohydr. Polym., vol. 86, no. 4, pp. 1790–1798, 2011 | |
dc.identifier.citation | A. Saralegi, M. L. Gonzalez, A. Valea, A. Eceiza, and M. A. Corcuera, “The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes,” Compos. Sci. Technol., vol. 92, pp. 27–33, 2014. | |
dc.identifier.citation | A. Kaushik and A. Garg, “Castor Oil Based Polyurethane Nanocomposites with Cellulose Nanocrystallites Fillers,” Adv. Mater. Res., vol. 856, pp. 309–313, 2013 | |
dc.identifier.citation | Z. Gao, J. Peng, T. Zhong, J. Sun, X. Wang, and C. Yue, “Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals,” Carbohydr. Polym., vol. 87, no. 3, pp. 2068–2075, 2012. | |
dc.identifier.citation | V. Wik, M. Aranguren, and M. Mosiewicki, “Castor Oil-based Polyurethanes Containing Cellulose Nanocrystals,” Polym. Eng. Sci. J., vol. 51, no. 7, pp. 57 1389–1396, 2010 | |
dc.identifier.citation | J. R. Capadona, O. Van Den Berg, L. a Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler, and C. Weder, “A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates,” Nat. Nanotechnol., vol. 2, no. 12, pp. 765–769, 2007. | |
dc.identifier.citation | P. Boloori Zadeh, S. C. Corbett, and H. Nayeb-Hashemi, “In-vitro calcification study of polyurethane heart valves,” Mater. Sci. Eng. C, vol. 35, no. 1, pp. 335– 340, 2014. | |
dc.identifier.citation | Y. Habibi and A. Dufresne, “Nanocrystals from natural polysaccharides,” in Handbook of Nanophysics: Nanoparticles and Quantum Dots, K. D. Sattler, Ed. Taylor & Francis, 2011, p. 718. | |
dc.identifier.citation | V. J. Dave and H. S. Patel, “Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene,” J. Saudi Chem. Soc., vol. 21, no. 1, pp. 18–24, 2017. | |
dc.identifier.citation | J. Datta and E. Głowińska, “Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized biopolyurethanes,” Ind. Crops Prod., vol. 61, pp. 84–91, 2014 | |
dc.identifier.citation | C. Prisacariu, “Structural studies on polyurethane elastomers,” in Polyurethane Elastomers, Vienna: Springer, 2011, pp. 23–60. | |
dc.identifier.citation | G. A. Senich and W. J. MacKnight, “Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane,” Macromolecules, vol. 13, no. 1, pp. 106–110, 1980 | |
dc.identifier.citation | K. Benhamou, H. Kaddami, A. Magnin, A. Dufresne, and A. Ahmad, “Biobased polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface,” Carbohydr. Polym., vol. 122, pp. 202– 211, 2015. | |
dc.identifier.citation | A. Santamaria-Echart, L. Ugarte, C. García-Astrain, A. Arbelaiz, M. A. Corcuera, and A. Eceiza, “Cellulose nanocrystals reinforced environmentallyfriendly waterborne polyurethane nanocomposites,” Carbohydr. Polym., vol. 151, pp. 1203–1209, 2016. | |
dc.identifier.citation | I. Yilgör, E. Yilgör, and G. L. Wilkes, “Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review,” Polymer (Guildf)., vol. 58, pp. A1–A36, 2015. | |
dc.identifier.citation | F. Namen, J. Galan Jr., J. F. de Oliveira, R. D. Cabreira, F. Costa e Silva Filho, A. B. Souza, and G. de Deus, “Surface properties of dental polymers: measurements of contact angles, roughness and fluoride release,” Mater. Res., vol. 11, no. 3, pp. 239–243, 2008. | |
dc.identifier.citation | I. Javni, Z. S. Petrović, A. Guo, and R. Fuller, “Thermal stability of 58 polyurethanes based on vegetable oils,” J. Appl. Polym. Sci., vol. 77, no. 8, pp. 1723–1734, 2000. | |
dc.identifier.citation | M. N. S. Kumar and Siddaramaiah, “Thermogravimetric Analysis and Morphological Behavior of Castor Oil Based Polyurethane–Polyester Nonwoven Fabric Composites,” J. Appl. Polym. Sci., vol. 106, pp. 3512–3528, 2007. | |
dc.identifier.citation | S. Oprea, A. Joga, B. Zorlescu, and V. Oprea, “Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers,” High Perform. Polym., vol. 26, no. 8, pp. 859–866, 2014. | |
dc.identifier.citation | S. S. Narine, X. Kong, L. Bouzidi, and P. Sporns, “Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers,” JAOCS, J. Am. Oil Chem. Soc., vol. 84, no. 1, pp. 55–63, 2007. | |
dc.identifier.citation | S. Lin, J. Huang, P. R. Chang, S. Wei, Y. Xu, and Q. Zhang, “Structure and mechanical properties of new biomass-based nanocomposite: Castor oilbased polyurethane reinforced with acetylated cellulose nanocrystal,” Carbohydr. Polym., vol. 95, no. 1, pp. 91–99, 2013. | |
dc.identifier.citation | Y. V. Yakovlev, Z. O. Gagolkina, E. V. Lobko, I. Khalakhan, and V. V. Klepko, “The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites,” Compos. Sci. Technol., vol. 144, pp. 208–214, 2017. | |
dc.identifier.citation | J. S. Chawla and M. M. Amiji, “Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen,” Int. J. Pharm., vol. 249, pp. 127–138, 2002. | |
dc.identifier.citation | H. Azevedo and R. Reis, “Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate,” in Biodegradable Systems in Tissue Engineering and Regenerative Medicine, R. Reis and J. San Román, Eds. Boca Raton: CRC Press, 2005, pp. 177–202. | |
dc.identifier.citation | S. Mondal and D. Martin, “Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications,” Polym. Degrad. Stab., vol. 97, no. 8, pp. 1553–1561, 2012. | |
dc.identifier.citation | S. J. A. Hocker, N. V. Hudson-Smith, P. T. Smith, C. H. Komatsu, L. R. Dickinson, H. C. Schniepp, and D. E. Kranbuehl, “Graphene oxide reduces the hydrolytic degradation in polyamide-11,” Polymer (Guildf)., vol. 126, pp. 248– 258, 2017. | |
dc.identifier.citation | M. Marzec, J. Kucińska-Lipka, I. Kalaszczyńska, and H. Janik, “Development of polyurethanes for bone repair,” Mater. Sci. Eng. C, vol. 80, pp. 736–747, 2017. | |
dc.identifier.citation | G. Golomb and D. Wagner, “Development of a new in vitro model for studying 59 implantable polyurethane calcification,” Biomaterials, vol. 12, no. 4, pp. 397– 405, 1991 | |
dc.identifier.citation | Z. G. Tang, S. H. Teoh, W. McFarlane, L. A. Poole-warren, and M. Umezu, “In vitro calcification of UHMWPE / PU composite membrane,” Mater. Sci. Eng. C, vol. 20, pp. 149–152, 2002 | |
dc.identifier.citation | M. Meskinfam, S. Bertoldi, N. Albanese, A. Cerri, M. C. Tanzi, R. Imani, N. Baheiraei, M. Farokhi, and S. Farè, “Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration,” Mater. Sci. Eng. C, vol. 82, pp. 130–140, 2018. | |
dc.identifier.citation | K. Gorna and S. Gogolewski, “Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes,” J. Biomed. Mater. Res., vol. 67A, no. 3, pp. 813–827, 2003 | |
dc.identifier.citation | J. G. Lundin, C. L. Mcgann, G. C. Daniels, B. C. Streifel, and J. H. Wynne, “Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications,” Mater. Sci. Eng. C, vol. 79, pp. 702–709, 2017 | |
dc.identifier.citation | J. G. Lundin, G. C. Daniels, C. L. Mcgann, J. Stanbro, C. Watters, M. Stockelman, and J. H. Wynne, “Multi-Functional Polyurethane Hydrogel Foams with Tunable Mechanical Properties for Wound Dressing Applications,” Macromol. Mater. Eng., vol. 302, no. 3, pp. 1–10, 2017. | |
dc.identifier.citation | International Organization for Standardization, “Tests for in vitro cytotoxicity,” in ISO 10993-5 Biological evaluation of medical devices, 2009, pp. 1–34. | |
dc.identifier.citation | G. Holzapfel, “Biomechanics of Soft Tissue,” in HANDBOOK OF MATERIAL BEHAVIOR- Nonlinear Models and Properties, J. Lemaitre, Ed. Graz: Academic Press, 2000, p. 13. | |
dc.identifier.citation | F. Schoen and R. Levy, “PATHOLOGICAL CALCIFICATION OF BIOMATERIALS,” in Biomaterials science : an introduction to materials in medicine, Third., B. Ratner, A. Hoffman, F. Schoen, and J. Lemons, Eds. Oxford: Academic Press, 2013, pp. 739–757. | |
dc.identifier.citation | S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials: a review,” Compos. Sci. Technol., vol. 61, no. 9, pp. 1189–1224, 2001. | |
dc.identifier.citation | S. Bose, S. Tarafder, and A. Bandyopadhyay, “Hydroxyapatite coatings for metallic implants,” in Hydroxyapatite (Hap) for Biomedical Applications, M. Mucalo, Ed. Cambridge: Elsevier Ltd., 2015, pp. 143–157 | |
dc.identifier.citation | M. Cieślik, S. Zimowski, M. Gołda, K. Engvall, J. Pan, W. Rakowski, and A. Kotarba, “Engineering of bone fixation metal implants biointerface - Application of parylene C as versatile protective coating,” Mater. Sci. Eng. C, vol. 32, no. 8, pp. 2431–2435, 2012. | |
dc.identifier.citation | ] S. M. Kim, M. H. Kang, H. E. Kim, H. K. Lim, S. H. Byun, J. H. Lee, and S. M. Lee, “Innovative micro-textured hydroxyapatite and poly(L-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants,” Mater. Sci. Eng. C, vol. 81, pp. 97–103, 2017 | |
dc.identifier.citation | V&P Scientific Inc., “Parylene Properties & Characteristics,” 2010. [Online]. Available: http://www.vp-scientific.com/parylene_properties.htm. [Accessed: 03-May-2018]. | |
dc.identifier.uri | http://hdl.handle.net/10818/34393 | |
dc.description | 62 Páginas | es_CO |
dc.description.abstract | Se sintetizaron materiales compuestos; poliuretano/celulosa a partir de polioles derivados de aceite de higuerilla y diisocianato de isoforona; usando dilaurato de dibutilestaño (DBTDL) como catalizador. Los materiales se obtuvieron mediante polimerización in situ, añadiendo 2% de celulosa en forma de microcristales (20 μm) o nanocristales obtenidos por hidrólisis ácida (294.07 ± 72.74 nm de largo y 29.26 ± 2.75 nm de ancho). La adición de catalizador resultó esencial para evitar la formación de agregados, logrando mejorar la resistencia a la tracción (112%) y el alargamiento a la rotura (79%) en los materiales en los que se empleó CNC, respecto a las muestras sintetizadas sin catalizador. El tamaño de partícula de la celulosa influyó en las propiedades de los materiales, ya que el uso de nanocristales aumentó las interacciones tipo puente de hidrógeno entre la superficie de la celulosa y los dominios de poliuretano, mejorando la estabilidad frente a la degradación hidrolítica. Todos los materiales sintetizados mantuvieron una viabilidad celular por encima del 70% frente a línea celular de ratón L929 en contacto directo por 24 h, y la adición de DBTDL no afectó su biocompatibilidad. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Nanocristales -- Células | es_CO |
dc.subject | Aceite de ricino | es_CO |
dc.subject | Polímeros | es_CO |
dc.subject | Catalizadores | es_CO |
dc.title | Efecto del uso de dbtdl (como catalizador órganometálico) en la síntesis de biomateriales tipo poliuretano a partir de aceite de higuerilla y nanocristales de celulosa | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |