Mostrar el registro sencillo del ítem

dc.contributor.advisorGómez Galindo, María Fernanda
dc.contributor.advisorFigueredo Medina, Manuel Alfredo
dc.contributor.authorMartínez Caballero, Laura Viviana
dc.date.accessioned2018-06-22T20:34:43Z
dc.date.available2018-06-22T20:34:43Z
dc.date.issued2017
dc.identifier.citationG. Marrugo, C. F. Valdés, and F. Chejne, “Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources,” Energy and Fuels, vol. 30, no. 10, pp. 8386– 8398, 2016.
dc.identifier.citationPNUD, NAM, and VELZEA, “Gestión de residuos orgánicos en las plazas de mercado de Bogotá,” pp. 1–76, 2011.
dc.identifier.citationR. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresour. Technol., vol. 103, no. 1, pp. 249–258, 2012.
dc.identifier.citationE. Biagini, F. Barontini, and L. Tognotti, “Gasification of agricultural residues in a demonstrative plant: Corn cobs,” Bioresour. Technol., vol. 173, pp. 110–116, 2015
dc.identifier.citationB. Fortunato, G. Brunetti, S. M. Camporeale, M. Torresi, and F. Fornarelli, “Thermodynamic model of a downdraft gasifier,” Energy Convers. Manag., vol. 140, pp. 281–294, 2017.
dc.identifier.citationE. Balu and J. N. Chung, “System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock,” Bioresour. Technol., vol. 108, pp. 264–273, 2012.
dc.identifier.citationP. C. Kuo, W. Wu, and W. H. Chen, “Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis,” Fuel, vol. 117, no. PARTB, pp. 1231–1241, 2014.
dc.identifier.citationY. Choi, T. Mun, M. Cho, and J. Kim, “Gasi fi cation of dried sewage sludge in a newly developed three-stage gasi fi er : Effect of each reactor temperature on the producer gas composition and impurity removal,” Energy, vol. 114, pp. 121–128, 2016.
dc.identifier.citationR. Yin, R. Liu, J. Wu, X. Wu, C. Sun, and C. Wu, “Influence of particle size on performance of a pilot-scale fixed-bed gasification system,” Bioresour. Technol., vol. 119, pp. 15–21, 2012.
dc.identifier.citationJ. F. Pérez, A. Melgar, and P. N. Benjumea, “Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study,” Fuel, vol. 96, pp. 487–496, 2012.
dc.identifier.citationK. Arun and M. V. Ramanan, “Experimental studies on gasification of corn cobs in a fixed bed system,” vol. 8, no. 7, pp. 667–676, 2016.
dc.identifier.citationC. Gai, Y. Dong, and T. Zhang, “The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions,” Bioresour. Technol., vol. 127, pp. 298–305, 2013.
dc.identifier.citationUpme, “Plan Energético Nacional Colombia: Ideario Energético 2015,” p. 184, 2015.
dc.identifier.citationM. de M. y E. MME, “Energía Eléctrica,” Memorias al Congr. la República Colomb. 2012- 2013, vol. 1, p. 48, 2012.
dc.identifier.citationUPME, “Informe Mensual De Variables De Generación Y Del Mercado Eléctrico Colombiano – Diciembre de 2016,” no. 69, pp. 1–16, 2016.
dc.identifier.citationXM, “Boletín de XM para los agentes del sector eléctrico Edición 17 - Marzo de 2017,” 2017. [Online]. Available: http://www.xm.com.co/EnMovimiento/Pages/Sostenibilidad-Mar2017.aspx. [Accessed: 10-Jul-2017]
dc.identifier.citationSistema Nacional para la Gestión del Riesgo de Desastres, “Fenómeno El niño Análisis Comparativo 1997-1998 // 2014-2016,” 2016.
dc.identifier.citationB. Mundial, “No Title,” Emisiones de CO2 (toneladas métricas per cápita), 2014. [Online]. Available: https://datos.bancomundial.org/indicador/EN.ATM.CO2E.PC.
dc.identifier.citationG. Gallagher, “Biomass for electricity generation,” Chem. Eng., no. 725, pp. 32–33, 2001.
dc.identifier.citationL. Jiang, S. Hu, Y. Wang, S. Su, L. Sun, B. Xu, L. He, and J. Xiang, “Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass,” Int. J. Hydrogen Energy, vol. 40, no. 45, pp. 15460–15469, 2015
dc.identifier.citationH. Escalante, J. Orduz, J. Zapata, M. Cardona, and M. Duarte, Atlas del potencial energético de la biomasa residual en Colombia. 2011.
dc.identifier.citationJ. Ospina and F. Villamizar, “Consumo En Centrales De Abastos En Colombia,” Asoc. Iberoam. Tecnol. Postcosecha, vol. 5, pp. 1–7, 2003
dc.identifier.citationS. R. Rubio, F. E. Sierra, and A. Guerrero, “Gasificación de materiales orgáni- cos residuales Gasification from waste organic materials,” vol. 31, no. 3, pp. 17–25, 2011.
dc.identifier.citationP. Basu, “Chapter 3 Biomass Characteristics,” Elsevier Inc., 2010, pp. 27–63.
dc.identifier.citationHEURA, “Heura Medio Ambiente,” 2012. [Online]. Available: https://heuramedioambiente.wordpress.com/2012/04/23/que-es-la-biomasa/.
dc.identifier.citationK. Arun, M. Venkata Ramanan, and S. Sai Ganesh, “Stoichiometric equilibrium modeling of corn cob gasification and validation using experimental analysis,” Energy and Fuels, vol. 30, no. 9, pp. 7435–7442, 2016
dc.identifier.citationY. Gao, X. H. Wang, H. P. Yang, and H. P. Chen, “Characterization of products from hydrothermal treatments of cellulose,” Energy, vol. 42, no. 1, pp. 457–465, 2012.
dc.identifier.citationD. L. Klass, “Chapter 3: Photosynthesis of Biomass and Its Conversion related Properties,” in Biomass for renewable energy, fuels, and chemicals, 1998, pp. 51–90
dc.identifier.citationV. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew. Energy, 2017.
dc.identifier.citationL. Burhenne, J. Messmer, T. Aicher, and M. P. Laborie, “The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 177–184, 2013.
dc.identifier.citationJ. Cai, Y. He, X. Yu, S. W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, and A. V. Bridgwater, “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, no. March, pp. 309–322, 2017.
dc.identifier.citationP. Mckendry, “Energy production from biomass ( part 2 ): conversion technologies,” vol. 83, no. July 2001, pp. 47–54, 2002
dc.identifier.citationP. Mckendry, “Energy production from biomass ( part 1 ): overview of biomass,” vol. 83, no. July 2001, pp. 37–46, 2002.
dc.identifier.citationP. Basu, Chapter 1 - Introduction. Elsevier Inc., 2010
dc.identifier.citationE. Pieratti, “Biomass gasification in small scale plants: experimental and modelling analysis,” Universita Degli Studi Di Trento, 2011
dc.identifier.citationH. J. García Patiño, “Modelación de la gasificación de biomasa en un reactor de lecho fijo,” 2011
dc.identifier.citationA. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renew. Sustain. Energy Rev., vol. 76, no. March, pp. 989–1003, 2017.
dc.identifier.citationA. Viviana and R. Salcedo, “Evaluación del Potencial Energético y Bioactivo de los Residuos Generados por la Producción y Transformación de la Uva Angela Viviana Ruales Salcedo,” 2015.
dc.identifier.citationC. Andrés and G. Velásquez, “Hydrogen production through gasification and dark fermentation,” 2016.
dc.identifier.citationP. Mckendry, “Energy production from biomass ( part 3 ): gasification technologies,” vol. 83, no. July 2001, pp. 55–63, 2002.
dc.identifier.citationA. M. L. Násner, E. E. S. Lora, J. C. E. Palacio, M. H. Rocha, J. C. Restrepo, O. J. Venturini, and A. Ratner, “Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plusTM modelling: Thermodynamic and economic viability,” Waste Manag., 2017.
dc.identifier.citationM. C. Torrente and M. A. Gala, “Kinetics of the thermal decomposition of oil shale from Puertollano ( Spain ),” vol. 80, pp. 0–7, 2001.
dc.identifier.citationT. Damartzis, D. Vamvuka, S. Sfakiotakis, and A. Zabaniotou, “Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA),” Bioresour. Technol., vol. 102, no. 10, pp. 6230– 6238, 2011.
dc.identifier.citationP. Basu, “Chapter 13 - Analytical Techniques,” Biomass Gasification, Pyrolysis and Torrefaction, pp. 439–455, 2013
dc.identifier.citationC. Zhou, G. Liu, S. Cheng, T. Fang, and P. K. S. Lam, “Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion,” Bioresour. Technol., vol. 166, pp. 243–251, 2014
dc.identifier.citationS. Niu, Y. Zhou, H. Yu, C. Lu, and K. Han, “Investigation on thermal degradation properties of oleic acid and its methyl and ethyl esters through TG-FTIR,” Energy Convers. Manag., vol. 149, no. 17923, pp. 495–504, 2017.
dc.identifier.citationA. A. Jain, A. Mehra, and V. V. Ranade, “Processing of TGA data: Analysis of isoconversional and model fitting methods,” Fuel, vol. 165, no. October, pp. 490–498, 2016.
dc.identifier.citationA. I. Mabuda, N. S. Mamphweli, and E. L. Meyer, “Model free kinetic analysis of biomass/sorbent blends for gasification purposes,” Renew. Sustain. Energy Rev., vol. 53, pp. 1656–1664, 2016.
dc.identifier.citationS. C. Capareda, Introduction to biomass energy conversions. 2013.
dc.identifier.citationL. Leng, X. Yuan, G. Zeng, H. Wang, H. Huang, and X. Chen, “The comparison of oxidative thermokinetics between emulsion and microemulsion diesel fuel,” Energy Convers. Manag., vol. 101, pp. 364–370, 2015.
dc.identifier.citationY. Lin, X. Ma, Z. Yu, and Y. Cao, “Investigation on thermochemical behavior of copyrolysis between oil-palm solid wastes and paper sludge,” Bioresour. Technol., vol. 166, pp. 444–450, 2014.
dc.identifier.citationS. L. Rincón, A. Gómez, and W. Klose, Gasificación de biomasa residual de procesamiento agroindustrial. 2011
dc.identifier.citationC. Eugenio and O. Tascón, “Evaluation of a gasifier using coffee wood,” pp. 0–44, 2015
dc.identifier.citationM. R. Rigotte, D. Secco, H. A. Rosa, S. N. M. de Souza, R. F. Santos, F. Gurgacz, and T. R. B. da Silva, “Energy efficiency of engine-generator set using biofuels under varied loads,” Renew. Sustain. Energy Rev., vol. 79, no. April, pp. 520–524, 2017.
dc.identifier.citationN. P. Pérez, E. B. Machin, D. T. Pedroso, J. J. Roberts, J. S. Antunes, and J. L. Silveira, “Biomass gasification for combined heat and power generation in the Cuban context: Energetic and economic analysis,” Appl. Therm. Eng., vol. 90, pp. 1–12, 2015
dc.identifier.citationT. Damartzis, S. Michailos, and A. Zabaniotou, “Energetic assessment of a combined heat and power integrated biomass gasification-internal combustion engine system by using Aspen Plus®,” Fuel Process. Technol., vol. 95, pp. 37–44, 2012.
dc.identifier.citationC. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5849–5864, 2017.
dc.identifier.citationN. Ramzan, A. Ashraf, S. Naveed, and A. Malik, “Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3962–3969, 2011.
dc.identifier.citationM. Formica, S. Frigo, and R. Gabbrielli, “Development of a new steady state zerodimensional simulation model for woody biomass gasification in a full scale plant,” Energy Convers. Manag., vol. 120, pp. 358–369, 2016.
dc.identifier.citationI. Adeyemi and I. Janajreh, “Modeling of the entrained fl ow gasification : Kineticsbased ASPEN Plus model,” pp. 1–8, 2014.
dc.identifier.citationD. Vera, B. De Mena, F. Jurado, and G. Schories, “Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 119–129, 2013
dc.identifier.citationC. Li and K. Suzuki, “Resources, properties and utilization of tar,” Resour. Conserv. Recycl., vol. 54, no. 11, pp. 905–915, 2010
dc.identifier.citationG. Araya, “Análisis, comparación y evaluación económica de tecnologías termosolares,” Universidad de Chile, 2013
dc.identifier.citationFededesarrollo, “Análisis costo beneficio de energías renovables no convencionales en Colombia.” 2013.
dc.identifier.citationB. Buragohain, P. Mahanta, and M. Vijayanand, “Biomass gasification for decentralized power generation: The Indian perspective,” Renew. Sustain. Energy Rev., 2009.
dc.identifier.citationY. Lu, L. Guo, X. Zhang, and C. Ji, “Hydrogen production by supercritical water gasification of biomass: Explore the way to maximum hydrogen yield and high carbon gasification efficiency,” Int. J. Hydrogen Energy, vol. 37, no. 4, pp. 3177–3185, 2012.
dc.identifier.citationW. van Swaaij, S. Kersten, and W. Palz, “Biomass Power for the World: Transformations to Effective Use,” in Pan Stanford Series on Renewable Energy, W. van Swaaij, S. Kersten, and W. Palz, Eds. PAN STANFORD PUBLISHING, 2015, pp. 199–202.
dc.identifier.citationR. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Spanish biofuels heating value estimation. Part I: Ultimate analysis data,” Fuel, vol. 117, no. PARTB, pp. 1130–1138, 2014.
dc.identifier.citationA. O. Aboyade, J. F. Gorgens, M. Carrier, E. L. Meyer, and J. H. Knoetze, “Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues,” Fuel Process. Technol., vol. 106, pp. 310–320, 2013.
dc.identifier.citationE. Biagini, F. Barontini, and L. Tognotti, “Gasification of agricultural residues in a demonstrative plant: Corn cobs,” Bioresour. Technol., vol. 173, pp. 110–116, 2015.
dc.identifier.citationJ. J. Hernández, G. Aranda-Almansa, and A. Bula, “Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time,” Fuel Process. Technol., vol. 91, no. 6, pp. 681–692, 2010.
dc.identifier.citationJ. A. Orrego-Ruiz, R. Cabanzo, and E. Mejía-Ospino, “Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy,” Int. J. Coal Geol., vol. 85, no. 3–4, pp. 307–310, 2011.
dc.identifier.citationM. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, and M. S. Mohamad Amran, “Gasification of oil palm empty fruit bunches: A characterization and kinetic study,” Bioresour. Technol., vol. 110, pp. 628–636, 2012.
dc.identifier.citationG. Wang, W. Li, B. Li, and H. Chen, “TG study on pyrolysis of biomass and its three components under syngas,” Fuel, vol. 87, no. 4–5, pp. 552–558, 2008.
dc.identifier.citationV. Volli and M. K. Purkait, “Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere,” Fuel, vol. 117, no. PARTB, pp. 1010–1019, 2014
dc.identifier.citationA. O. Aboyade, T. J. Hugo, M. Carrier, E. L. Meyer, R. Stahl, J. H. Knoetze, and J. F. G??rgens, “Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere,” Thermochim. Acta, vol. 517, no. 1–2, pp. 81–89, 2011.
dc.identifier.citationD. López González, M. Fernandez Lopez, J. L. Valverde, and L. Sanchez Silva, “Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass,” Bioresour. Technol., vol. 143, pp. 562–574, 2013.
dc.identifier.citationM. García-Pérez, A. Chaala, J. Yang, and C. Roy, “Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: Thermogravimetric analysis,” Fuel, vol. 80, no. 9, pp. 1245– 1258, 2001.
dc.identifier.citationW. H. Chen and P. C. Kuo, “Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass,” Energy, vol. 36, no. 2, pp. 803–811, 2011.
dc.identifier.citationV. R. Patel, D. S. Upadhyay, and R. N. Patel, “Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier,” Energy, vol. 78, pp. 323–332, 2014
dc.identifier.citationP. Raman and N. K. Ram, “Design improvements and performance testing of a biomass gasifier based electric power generation system,” Biomass and Bioenergy, vol. 56, pp. 555–571, 2013.
dc.identifier.citationA. Chaurasia, “Modeling , simulation and optimization of downdraft gasi fi er : Studies on chemical kinetics and operating conditions on the performance of the biomass gasi fi cation process,” Energy, vol. 116, pp. 1065–1076, 2016.
dc.identifier.citationA. Rakhshi and T. Wiltowski, “A framework for devolatilization breakdown in entrained flow gasification modeling,” Fuel, vol. 187, pp. 173–179, 2017.
dc.identifier.citationA. Shehzad, M. J. K. Bashir, and S. Sethupathi, “System analysis for synthesis gas (syngas) production in Pakistan from municipal solid waste gasification using a circulating fluidized bed gasifier,” Renew. Sustain. Energy Rev., vol. 60, pp. 1302–1311, 2016.
dc.identifier.citationN. P. G. Lumley, D. F. Ramey, A. L. Prieto, R. J. Braun, T. Y. Cath, and J. M. Porter, “Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective,” Bioresour. Technol., vol. 161, pp. 385–394, 2014.
dc.identifier.citationPSI, “3.0 L Industrial Engine Service Manual,” no. 36100010. 2002
dc.identifier.citationIRENA, “Renewable Energy Technologies: Cost Analysis Series,” Biomass Power Gener., vol. 1, no. 1/5, p. 60, 2012.
dc.identifier.citationCODENSA, “Tarifas de energía Codensa,” 2017. [Online]. Available: https://www.codensa.com.co/hogar/tarifas.
dc.identifier.citationALL POWER LABS, “Best Practice Update : NEW FILTER ­ PACKING SPECIFICATION ALL Power Labs Technical Bulletin : # TB ­795-000xx,” pp. 15–16, 2016.
dc.identifier.urihttp://hdl.handle.net/10818/33205
dc.description88 Páginases_CO
dc.description.abstractEn el presente trabajo, se estudió la producción de energía eléctrica a partir de la gasificación de raquis de maíz blanco (Zea Mayz) producidos en la Central de abastos de Bogotá – Corabastos. Una especie que genera alrededor de 9500 toneladas anuales de residuos cuya disposición principal se da en el relleno sanitario Doña Juana. Existe una necesidad identificada de diversificar las fuentes de biomasa que garanticen al menos una relación costo-beneficio similar a la de los procesos de gasificación de la madera y promover su implementación en distintas zonas a nivel nacional.es_CO
dc.formatapplication/pdfes_CO
dc.formatapplication/vnd.ms-exceles_CO
dc.formatapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentes_CO
dc.formatapplication/vnd.openxmlformats-officedocument.presentationml.presentationles_CO
dc.formattext/plaines_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectProducción de energía eléctricaes_CO
dc.subjectGasificación de biomasaes_CO
dc.subjectResiduos agrícolases_CO
dc.subjectRecursos energéticos renovableses_CO
dc.titleProducción de energía eléctrica partir de la gasificación de raquis de maíz blanco (Zea mayz) producidos en la Central de abastos de Bogotá – Corabastoses_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local268627
dc.identifier.localTE09613
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsRestrictedAccesses_CO
dc.creator.degreeMagister en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International