Mostrar el registro sencillo del ítem

dc.contributor.advisorJiménez Junca, Carlos Alberto
dc.contributor.advisorPrieto Correa, Rosa Erlide
dc.contributor.authorBeltrán Parada, Vivian Estefanía
dc.contributor.authorHuertas Beltrán, Mauricio Andrés
dc.date.accessioned2016-11-04T13:33:46Z
dc.date.available2016-11-04T13:33:46Z
dc.date.created2016
dc.date.issued2016
dc.identifier.citationAtanasova, L. (2014). Ecophysiology of Trichoderma in Genomic Perspective. In Biotechnology and biology of trichoderma (pp. 25–28).
dc.identifier.citationBasheva, E. S., Kralchevsky, P. a., Christov, N. C., Danov, K. D., Stoyanov, S. D., Blijdenstein, T. B. J., … Lips, A. (2011). Unique properties of bubbles and foam films stabilized by HFBII hydrophobin.
dc.identifier.citationBrown, D. E. (1975). The Effect of Acid pH on the Growth Kinetics of Trichoderma viride, XVII, 1199–1210.
dc.identifier.citationBureiko, A., Trybala, A., Kovalchuk, N., & Starov, V. (2015). Current applications of foams formed from mixed surfactant-polymer solutions. Advances in Colloid and Interface Science, 222, 670–677.
dc.identifier.citationBurghoff, B. (2012). Foam fractionation applications. Journal of Biotechnology, 161(2), 126–137
dc.identifier.citationCalonje, M., Bernardo, D., Novaes-Ledieu, M., & García Mendoza, C. (2002). Properties of a hydrophobin isolated from the mycoparasitic fungus Verticillium fungicola. Canadian Journal of Microbiology, 48(11), 1030– 1034.
dc.identifier.citationCepero de García, M. C., Restrepo R., S., Franco-Molano, A. E., Cárdenas T., M., & Vargas E., N. (2012). Biologia de Hongos (Primera Ed). Bogotá: Universidad de los Andes.
dc.identifier.citationCicatiello, P., Gravagnuolo, A. M., Gnavi, G., Varese, G. C., & Giardina, P. (2016). Marine fungi as source of new hydrophobins. International Journal of Biological Macromolecules, 92, 1229–1233.
dc.identifier.citationCox, A. R., Aldred, D. L., & Russell, A. B. (2009). Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocolloids, 23, 366–376.
dc.identifier.citationCox, A. R., Cagnol, F., Russell, A. B., & Izzard, M. J. (2007). Surface properties of class ii hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir : The ACS Journal of Surfaces and Colloids, 23(15), 7995–8002.
dc.identifier.citationDimitrova, L. M., Petkov, P. V., Kralchevsky, P. A., Stoyanov, S. D., & Pelan, E. G. (2016). Production and characterization of stable foams with fine bubbles from solutions of hydrophobin HFBII and its mixtures with other proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1–13
dc.identifier.citationEFE. (2014, December 10). Biotecnología en Colombia. El Tiempo.
dc.identifier.citationFameau, A.-L., & Salonen, A. (2014). Effect of particles and aggregated structures on the foam stability and aging. Comptes Rendus Physique, 15, 748–760.
dc.identifier.citationGil, J. A., Vargas M., L. J., Florez A., Ó. A., & Tobón Z., G. E. (2009). THE EFFECT OF THE SOLVENT RECRYSTALLIZATION AND PARTICLE SIZE ON WETTABILITY OF IBUPROFEN. Vitae, Revista de La Facultad de Química Farmacéutica, 16, 49–54.
dc.identifier.citationGreen, A. J., Littlejohn, K. a., Hooley, P., & Cox, P. W. (2013). Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid and Interface Science, 18(4), 292–301.
dc.identifier.citationHaas Jimoh Akanbi, M., Post, E., Meter-Arkema, A., Rink, R., Robillard, G. T., Wang, X., … Scholtmeijer, K. (2010). Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids and Surfaces. B, Biointerfaces, 75(2), 526–31.
dc.identifier.citationHakala, T. J., Metsäjoki, J., Granqvist, N., Milani, R., Szilvay, G. R., Elomaa, O., … Li, F. (2015). Adsorption and lubricating properties of HFBII hydrophobins and diblock copolymer poly(methyl methacrylate-b-sodium acrylate) additives in water-lubricated copper vs. a-C:H contacts. Tribology International, 90, 60–66.
dc.identifier.citationHektor, H. J., & Scholtmeijer, K. (2005). Hydrophobins: proteins with potential. Current Opinion in Biotechnology, 16(4), 434–439.
dc.identifier.citationHuang, Y., Mijiti, G., Wang, Z., Yu, W., Fan, H., Zhang, R., & Liu, Z. (2015). Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiological Research, 171, 8–20.
dc.identifier.citationIsraelichvili, J. (1991). Thermodynamic Principles of Self-Assembly - Chp. 19. Intermolecular & Surface Forces
dc.identifier.citationJackson, A. M., Whipps, J. M., & Lynch, J. M. (1991). Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World Journal of Microbiology & Biotechnology, 7(4), 494–501.
dc.identifier.citationJimenez-Junca, C., Sher, A., Gumy, J.-C., & Niranjan, K. (2015). Production of milk foams by steam injection: The effects of steam pressure and nozzle design. Journal of Food Engineering, 166, 247–254.
dc.identifier.citationKang, J., Hua, X., Yang, R., Chen, Y., & Yang, H. (2015). Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration. Food Chemistry, 180, 98–105.
dc.identifier.citationKhalesi, M., Gebruers, K., & Derdelinckx, G. (2015). Recent Advances in Fungal Hydrophobin Towards Using in Industry. The Protein Journal, 34(4), 243–255.
dc.identifier.citationKhalesi, M., Venken, T., Deckers, S., Winterburn, J., Shokribousjein, Z., Gebruers, K., … Derdelinckx, G. (2013). A novel method for hydrophobin extraction using CO2 foam fractionation system. Industrial Crops and Products, 43, 372–377.
dc.identifier.citationKhondee, N., Tathong, S., Pinyakong, O., Müller, R., Soonglerdsongpha, S., Ruangchainikom, C., … Luepromchai, E. (2015). Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochemical Engineering Journal, 93, 47–54.
dc.identifier.citationLee, S., Røn, T., Pakkanen, K. I., & Linder, M. (2015). Hydrophobins as aqueous lubricant additive for a soft sliding contact. Colloids and Surfaces. B, Biointerfaces, 125, 264–9.
dc.identifier.citationLi, X., & Stevenson, P. (2012). Foam fractionation. In Foam engineering (Primera, pp. 307–330). United Kingdom: John Wiley & Sons.
dc.identifier.urihttp://hdl.handle.net/10818/27994
dc.description50 Páginas.es_CO
dc.description.abstractLas hidrofobinas son proteínas anfipáticas producidas por hongos filamentosos y actualmente se reportan como biosurfactantes de elevado potencial industrial para aplicaciones en emulsiones, espumas, biosensores, bioremediación y otras más. Estos son péptidos de bajo peso molecular secretados durante la liberación de propágulos, la adhesión a superficies, interacciones con el hospedero y, en general, en procesos biológicos del hongo que involucran interacciones con interfases. En este proyecto se buscó utilizar hidrofobinas producidas por la cepa Trichoderma harzianum para ser evaluadas como agentes espumantes. Primero, se ajustó el crecimiento del hongo a un modelo logístico variando la concentración de la fuente de carbono y el pH inicial del medio. Con esto se determinó que a pH 7 y concentración de glucosa de 20 y 30 g/L fueron las condiciones más favorables para la esporulación del microorganismo, proceso relacionado a la producción de hidrofobinas clase II. Luego, la concentración de estas proteínas se realizó mediante fraccionamiento por espumado con CO2, seguido de loifilización. Mediante electroforesis SDS-PAGE tris-tricina, se detectaron bandas de proteínas de 7 y 14 kDa que presentan actividad en la interfase debido a que después del fraccionamiento se mantuvieron dichas bandas. Además, se presentó una mayor concentración de bandas en el medio con glucosa de 30 g/L.​​es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de la Sabana
dc.subjectEspuma
dc.subjectLiofilización
dc.subjectSoluciones (Química)
dc.subjectElectroforesis
dc.titleCaracterización de espumas acuosas estabilizadas con extracto rico en hidrofobinas extraídas de una cepa de Trichoderma harzianumes_CO
dc.typebachelorThesises_CO
dc.publisher.programIngeniería Química
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local262795
dc.identifier.localTE08639
dc.type.localTesis de pregrado
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsrestrictedAccess
dc.creator.degreeIngeniero Químico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International