Mostrar el registro sencillo del ítem
Producción de nanoemulsiones de aceite de palma alto-oleico mediante homogenización de alta cizalla
dc.contributor.advisor | Quintanilla Carvajal, María Ximena | |
dc.contributor.author | Ricaurte Puentes, Leidy Yineth | |
dc.date.accessioned | 2016-10-31T13:55:51Z | |
dc.date.available | 2016-10-31T13:55:51Z | |
dc.date.created | 2016 | |
dc.date.issued | 2016 | |
dc.identifier.citation | Adjonu, R., Doran, G., Torley, P., & Agboola, S. (2014a). Formation of whey protein isolate hydrolysate stabilised nanoemulsion. Food Hydrocolloids, 41, 169–177. http://doi.org/10.1016/j.foodhyd.2014.04.007 | |
dc.identifier.citation | Adjonu, R., Doran, G., Torley, P., & Agboola, S. (2014b). Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering, 122, 15–27. http://doi.org/10.1016/j.jfoodeng.2013.08.034 | |
dc.identifier.citation | Ahmed, M., & Youssef, M. S. (2014). Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics. Chemical Engineering Science, 107, 149–157. http://doi.org/http://dx.doi.org/10.1016/j.ces.2013.12.004 | |
dc.identifier.citation | Akoh, C. C. (2005). Handbook of Functional Lipids. CRC Press. Retrieved from https://books.google.com.co/books?id=BIjPC4xwBKsC | |
dc.identifier.citation | Anandharamakrishnan, C., & Ishwarya, P. (2015a). Spray Drying Techniques for Food Ingredient Encapsulation. Wiley. Retrieved from https://books.google.com.co/books?id=I_M-CgAAQBAJ | |
dc.identifier.citation | Anandharamakrishnan, C., & Ishwarya, P. S. (2015b). Functional properties of spray dried encapsulates. In Spray Drying Techniques for Food Ingredient Encapsulation (pp. 198–209). Wiley. Retrieved from https://books.google.com.co/books?id=I_M-CgAAQBAJ | |
dc.identifier.citation | AOF. (1997). Review of the High Oleic Oil Industry. Retrieved from http://www.australianoilseeds.com/__data/assets/file/0016/1177/Review_of_the_High_Oleic_Indu stry_1997.pdf | |
dc.identifier.citation | Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685–690. http://doi.org/http://dx.doi.org/10.1016/j.lwt.2015.03.034 | |
dc.identifier.citation | Atrux-Tallau, N., Lasselin, J., Han, S.-H., Delmas, T., & Bibette, J. (2014). Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids and Surfaces. B, Biointerfaces, 122C, 390–395. http://doi.org/10.1016/j.colsurfb.2014.07.021 | |
dc.identifier.citation | Audic, J.-L., Chaufer, B., & Daufin, G. (2003). Non-food applications of milk components and dairy coproducts: A review. Lait, 83(6), 417–438. Retrieved from http://dx.doi.org/10.1051/lait:2003027 | |
dc.identifier.citation | Azeredo, H. M. C., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends in Food Science & Technology, 52, 109–122. http://doi.org/http://dx.doi.org/10.1016/j.tifs.2016.04.008 | |
dc.identifier.citation | Bai, L., & McClements, D. J. (2016). Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 466, 206–212. http://doi.org/10.1016/j.jcis.2015.12.039 | |
dc.identifier.citation | Barbosa-Cánovas, G. V, & Vega-Mercado, H. (1996). Dehydration of Foods. Springer. Retrieved from http://books.google.com.co/books?id=nWbmRj7YbUcC | |
dc.identifier.citation | Barradas, T. N., de Campos, V. E. B., Senna, J. P., Coutinho, C. dos S. C., Tebaldi, B. S., Silva, K. G. de H. e, & Mansur, C. R. E. (2014). Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 214–221. http://doi.org/10.1016/j.colsurfa.2014.12.001 | |
dc.identifier.citation | Bazaria, B., & Kumar, P. (2016). Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Bioscience, 14, 21–27. http://doi.org/http://dx.doi.org/10.1016/j.fbio.2015.11.002 | |
dc.identifier.citation | Benita, S. (2005). Microencapsulation: Methods and Industrial Applications, Second Edition. CRC Press. Retrieved from https://books.google.com.co/books?id=sz-669oFo6AC | |
dc.identifier.citation | Bot, A., Duval, F. P., & Bouwman, W. G. (2007). Effect of processing on droplet cluster structure in emulsion gels. Food Hydrocolloids, 21(5-6), 844–854. http://doi.org/10.1016/j.foodhyd.2006.09.012 | |
dc.identifier.citation | Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., … Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology : RTP, 53(1), 52–62. http://doi.org/10.1016/j.yrtph.2008.10.008 | |
dc.identifier.citation | Bouyer, E., Mekhloufi, G., Rosilio, V., Grossiord, J.-L., & Agnely, F. (2012). Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, 436(1-2), 359–78. http://doi.org/10.1016/j.ijpharm.2012.06.052 | |
dc.identifier.citation | Bruschi, M. L. (2015). Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 63–86). Woodhead Publishing. http://doi.org/http://dx.doi.org/10.1016/B978-0-08-100092-2.00005-9 | |
dc.identifier.citation | Bunjes, H., & Siekmann, B. (2005). Manufacture, Characterization, and Applications of Solid Lipid Nanoparticles as Drug Delivery Systems. In Microencapsulation: Methods and Industrial Applications (Second Edi, pp. 213–269). CRC Press. Retrieved from https://books.google.com.co/books?id=sz-669oFo6AC | |
dc.identifier.citation | Çağlar, A., Toğrul, İ. T., & Toğrul, H. (2009). Moisture and thermal diffusivity of seedless grape under infrared drying. Food and Bioproducts Processing, 87(4), 292–300. http://doi.org/http://dx.doi.org/10.1016/j.fbp.2009.01.003 | |
dc.identifier.citation | Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. http://doi.org/http://dx.doi.org/10.1016/j.powtec.2015.10.019 | |
dc.identifier.citation | Chen, H., Khemtong, C., Yang, X., Chang, X., & Gao, J. (2011). Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today, 16(7-8), 354–60. http://doi.org/10.1016/j.drudis.2010.02.009 | |
dc.identifier.citation | Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821–1827. http://doi.org/10.1016/j.foodres.2013.09.025 | |
dc.identifier.citation | Chen, X. D., & Mujumdar, A. S. (2009). Drying Technologies in Food Processing. Wiley. Retrieved from http://books.google.com.co/books?id=yB-VhPpQxv0C | |
dc.identifier.citation | Clares, B., Calpena, A. C., Parra, A., Abrego, G., Alvarado, H., Fangueiro, J. F., & Souto, E. B. (2014). Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. International Journal of Pharmaceutics, 473(1-2), 591–8. http://doi.org/10.1016/j.ijpharm.2014.08.001 | |
dc.identifier.citation | Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2015). Recovery of whey proteins and lactose from dairy waste: a step towards green waste management. Process Safety and Environmental Protection, (0), In press, Accepted Manuscript. http://doi.org/http://dx.doi.org/10.1016/j.psep.2015.05.006 | |
dc.identifier.citation | de Cássia Ribeiro-Silva, R., Nunes, I. L., & Assis, A. M. O. (2014). Prevalence and factors associated with vitamin A deficiency in children and adolescents. Jornal de Pediatria, 90(5), 486–492. http://doi.org/10.1016/j.jped.2014.01.014 | |
dc.identifier.citation | Decagon Devices, I. (2016). Operator’s Manual for series 4, 4TE, 4TEV, DUO, and TEV DUO | |
dc.identifier.uri | http://hdl.handle.net/10818/27865 | |
dc.description | 111 Páginas. | es_CO |
dc.description.abstract | Colombia es el mayor productor en América Latina de aceite de palma, sin embargo, este se emplea en la producción de biodiesel desperdiciando el alto contenido nutricional que puede aportar a la industria de alimentos. El aceite de palma alto-oleico (HOPO, por sus siglas en inglés) contiene una alta concentración de ácido oleico, β-carotenos, tocoferoles y tocotrienoles, los cuales proveen al ser humano beneficios a la salud. En la actualidad, la incorporación de dicho aceite se ha convertido en un reto académico y tecnológico ya que algunos componentes del aceite, se degradan fácilmente en diversos ambientes de luz, pH, calor, oxidación, entre otras. Es por esto que se propuso la encapsulación de HOPO mediante nanoemulsiones como método de protección y aumento de la biodisponibilidad, en donde se obtuvo un intervalo de tamaño promedio de gota entre 163 a 2268 nm. Posteriormente, el sellado de la encapsulación se realizó empleando dos tipos de atomizadores (boquilla de dos-fluidos y disco rotatorio) en el secado por aspersión para la producción de polvos, con el fin de estudiar el efecto de la formulación y tipo de atomizador sobre las propiedades físicas y la liberación de aceite de palma alto-oleico. La concentración de HOPO y suero de leche ejercieron una influencia significativa en el tamaño de partícula (ya que se obtuvieron microesferas) y sobre las características físicas. Además, los porcentajes de liberación fueron de 83 y 76%, siendo mayor en el tiempo para la muestra secada con boquilla de dos-fluidos que para la de disco rotatorio | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de la Sabana | |
dc.subject | Aceite de palma | |
dc.subject | Biodiesel | |
dc.subject | Secado por aspersión | |
dc.title | Producción de nanoemulsiones de aceite de palma alto-oleico mediante homogenización de alta cizalla | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 262739 | |
dc.identifier.local | TE08613 | |
dc.type.local | Tesis de maestría | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | es_CO |