Mostrar el registro sencillo del ítem

dc.contributor.advisorPrieto Correa, Rosa Erlide
dc.contributor.authorAngulo de Castro, Ivonne
dc.date.accessioned2016-08-12T13:54:55Z
dc.date.available2016-08-12T13:54:55Z
dc.date.created2016
dc.date.issued2016-08-12
dc.identifier.citationAlarcon, A. V. (2010). Producción de bioetanol con Zymomonas mobilis. Instituto Politécnico Nacional. Retrieved from http://tesis.ipn.mx:8080/xmlui/handle/123456789/10599
dc.identifier.citationAlaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews, 51, 1446–1460. http://doi.org/10.1016/j.rser.2015.07.058
dc.identifier.citationAmerican Forest & Paper Association. (1994). AGENDA 2020. Retrieved from http://infohouse.p2ric.org/ref/29/28974.pdf
dc.identifier.citationANDI - Cámara de Pulpa Papel y Cartón. (2014). Reporte anual de consumo aparente papel de desperdicio en Colombia. Bogotá.
dc.identifier.citationArantes, V., & Saddler, J. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3, 1–11.
dc.identifier.citationArea, M., & Popa, V. (2014). Wood Fibres For Papermaking [e-book]. Shrewsbury: Smithers Pira.
dc.identifier.citationBahkali, A. H. (1995). Production of cellulase, xylanase and polygalacturonase by Verticillium tricorpus on different substrates. Bioresource Technology, 51(2-3), 171–174.
dc.identifier.citationBahkali, A. H. (1996). Influence of various carbohydrates on xylanase production in Verticillium tricorpus. Bioresource Technology, 57, 265–268
dc.identifier.citationBai, H., Wang, H., Sun, J., Irfan, M., Han, M., Huang, Y., … Yang, Q. (2013). Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H11 in submerged fermentation. EXCLI Journal, 12, 528–540.
dc.identifier.citationBéguin, P., & Aubert, J.-P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13, 25–58.
dc.identifier.citationBello, D., Carrera, E., & Díaz M, Y. (2006). Determinación de azúcares reductores totales en jugos mezclados de caña de azúcar utilizando el método del ácido 3,5 dinitrosalicílico. ICIDCA. Sobre Los Derivados de La Caña de Azúcar, XL(2), 45–50. Retrieved from http://www.redalyc.org/articulo.oa?id=223120664006
dc.identifier.citationBeltrán, P. A., & Leguizamón, J. L. (2012). Aislamiento y caracterización de microorganismos celulolíticos provenientes de los desechos sólidos agroindustriales para su utilización en la producción de celulasas. Universidad de La Sabana.
dc.identifier.citationBender, D. A., Datta, S. P., & Smith, A. D. (2000). Oxford Dictionary of Biochemistry and Molecular Biology (Revised ed). New York: Oxford University Press.
dc.identifier.citationBerlin, A., Gilkes, N., Kilburn, D., Maximenko, V., Bura, R., Markov, A., … Saddler, J. N. (2006). Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Applied Biochemistry and Biotechnology, 129-132, 528–545.
dc.identifier.citationBernardez, T. D., Lyford, K., Hogsett, D. A., & Lynd, L. R. (1993). Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood avicel and lignin. Biotechnology and Bioengineering, 42, 899–907.
dc.identifier.citationBezerra, R. M. F., & Dias, A. a. (2005). Enzymatic kinetic of cellulose hydrolysis. Applied Biochemistry and Biotechnology, 126(1), 49–59.
dc.identifier.citationBhat, K. M., McCrae, S. I., & Wood, T. M. (1989). The endo-(1→4)-β- d-glucanase system of Penicillium pinophilum cellulase: Isolation, purification, and characterization of five major endoglucanase components. Carbohydrate Research1, 190(2), 279–297.
dc.identifier.citationBhat, S. Bhat, K. M. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15(3/4), 583–620.
dc.identifier.citationBhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-Glucosidases: Cloning, Properties, and Applications. Critical Reviews in Biotechnology, 22(4), 375–407
dc.identifier.citationBhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Purification and biochemical charaBhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Purification and biochemical characterization of extracellular betaglucosidases from the hypercellulolytic Pol6 mutant of Penicillium occitanis. Ap. Applied Biochemistry and Biotechnology, 149(2), 169–182
dc.identifier.citationBiermann, C. J. (1996). Handbook of pulping and papermaking (2nd ed.). San Diego, CA.: Academic Press.
dc.identifier.citationBisaria, V. S., & Ghose, T. K. (1981). Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology, 3, 90–104.
dc.identifier.citationBNDES, CGEE, FAO, & CEPAL. (2008). Bioetanol de caña de azúcar: energía para el desarrollo sostenible (1ra Edició). Río de Janeiro: BNDES. Retrieved from http://www.bioetanoldecanadeazucar.org/es/download/resumo_executivo.pdf
dc.identifier.citationBrown, J. A., Collin, S. A., & Wood, T. M. (1987a). Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus Penicillium pinophilum. Enzyme and Microbial Technology, 9(6), 355–360
dc.identifier.citationBrown, J. A., Collin, S. A., & Wood, T. M. (1987b). Enhanced enzyme production by the cellulolytic fungus Penicillium pinophilum, mutant strain NTGIII/6. Enzyme Microb. Technol., 9, 176–180.
dc.identifier.citationBurkheisser, E. V. (2010). Biological Barriers to Cellulosic Ethanol. (E. V. Burkheisser, Ed.)In Renewable Energy: Research, Development and Policies Series (1st ed.). New York: Nova Science Publishers, Inc
dc.identifier.citationCabezas, M. J., Salvador, D., & Sinisterra, J. V. (1991). Stabilization‐ activation of pancreatic enzymes adsorbed on to a sepiolite clay. Of Chemical Technology and Biotechnology, 52(2), 265–274.
dc.identifier.citationCarder, J. H. (1989). Distinctions between cellulase isoenzyme patterns of five plant-pathogenic Verticillium species. Mycological Research, 92(3), 297–301. http://doi.org/10.1016/S0953- 7562(89)80069-3
dc.identifier.citationCastellanos, O. F., Sinitsyn, A. P., & Vlasenko Yu., E. (1995a). Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource Technology, 52(2), 119–124.
dc.identifier.citationCastellanos, O. F., Sinitsyn, A. P., & Vlasenko Yu., E. (1995b). Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase. Bioresource Technology, 52(2), 109–117.
dc.identifier.citationCastro, D., Peña, C., & Farrés, A. (2010). Producción y características de cutinasas: una alternativa interesante para biocatálisis a nivel industrial. Revista Especializada En Ciencias QuímicoBiológicas, 13(1), 16–25.
dc.identifier.citationCavaco-Paulo, A., & Almeida, L. (1994). Cellulase Hydrolysis of Cotton Cellulose: The Effects of Mechanical Action, Enzyme Concentration and Dyed Substrates. Biocatalysis and Biotransformation, 10(1-4), 353–360.
dc.identifier.citationCavaco-Paulo, A., & Almeida, L. (1996). Effects of agitation and endoclucanase pretreat on hydrolysis of cotton fabrics by a total cellulase. Textile Research Journal, 66(5), 287–294
dc.identifier.citationChaabouni, S. E., Hadj-Taieb, N., Mosrati, R., & Ellouz, R. (1994). Preliminary assessment of Penicillium occitanis cellulase: A further useful system. Enzyme and Microbial Technology, 16(6), 538–542.
dc.identifier.citationChandra, M., Kalra, A., Sharma, P. K., & Sangwan, R. S. (2009). Cellulase production by six Trichoderma spp. fermented on medicinal plant processings. Journal of Industrial Microbiology & Biotechnology, 36(4), 605–609.
dc.identifier.citationChaudhari, S. A., & Singhal, R. S. (2015). Cutin from watermelon peels: A novel inducer for cutinase production and its physicochemical characterization. International Journal of Biological Macromolecules, 79, 398–404
dc.identifier.citationChen, H., Han, Q., Daniel, K., Venditti, R., & Jameel, H. (2014). Conversion of Industrial Paper Sludge to Ethanol: Fractionation of Sludge and Its Impact. Applied Biochemistry and Biotechnology, 174, 2096–2113
dc.identifier.citationChen, H., & Jin, S. (2006). Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme and Microbial Technology, 39(7), 1430–1432. http://doi.org/10.1016/j.enzmictec.2006.03.027
dc.identifier.citationChen, H., Venditti, R., Gonzalez, R., Phillips, R., Jameel, H., & Park, S. (2014). Economic evaluation of the conversion of industrial paper sludge to ethanol. Energy Economics, 44, 281–290
dc.identifier.citationChen, H., Venditti, R., Jameel, H., & Park, S. (2012). Enzymatic Hydrolysis of Recovered Office Printing Paper with Low Enzyme Dosages to Produce Fermentable Sugars. Applied Biochemistry and Biotechnology, 166, 1121–1136. http://doi.org/10.1007/s12010-011-9498-2
dc.identifier.citationChen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., & Qu, Y. (2010). Isolation and characterization of a βglucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme and Microbial Technology, 46(6), 444–449
dc.identifier.citationCherry, J., & Fidantsef, A. (2003). Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14(4), 438–443.
dc.identifier.citationChu, J., Li, W.-F., Cheng, W., Lu, M., Zhou, K.-H., Zhu, H.-Q., … Zhou, C.-Z. (2015). Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.
dc.identifier.citationChu, K. H., & Feng, X. (2013). Enzymatic conversion of newspaper and office paper to fermentable sugars. Process Safety and Environmental Protection, 91(1-2), 123–130. http://doi.org/10.1016/j.psep.2011.12.003
dc.identifier.citationChulkin, A. M., Loginov, D. S., Vavilova, E. A., Abyanova1, A. R., Zorov, I. N., Kurzeev, S. A., … Benevolenskii, S. V. (2009). Enzymological Properties of Endo_(1–4)_β_Glucanase Eg12p of Penicillium canescens and Characteristics of Structural Gene egl2. Biokhimiya, 74(6), 805 – 813.
dc.identifier.citationCiolacu, D., Ciolacu, F., & Popa, V. I. (2008). Supramolecular structure - A key parameter for cellulose biodegradation. Macromolecular Symposia, 272(1), 136–142.
dc.identifier.citationCiolacu, D., Ciolacu, F., & Popa, V. I. (2011). Celluose Allomorphs : Structure and characterization. Cellulose Chemistry and Technology, 45(1-2), 13–21.
dc.identifier.citationCooper, R. (1978). Cell wall-degrading enzymes of vascular wilt fungi. II. Properties and modes of action of polysaccharidases of Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiologial Plant Pathology, 13, 101–134.
dc.identifier.citationCooper, R., & Wood, R. (1975). Regulation of synthesis of cell wall degrading enzymes by Verticillium albo-atrum and Fusarium oxysporum f . sp . lycopersici. Physiological Plant Pathology, 5, 135–156.
dc.identifier.citationCoughlan, M. (1992). Enzymic hydrolysis of cellulose: An overview. Bioresource Technology, 39(2), 107–115.
dc.identifier.citationCoughlan, M. P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology and Genetic Engineering Reviews, 3(1), 33–109
dc.identifier.citationCowling, E. (1975). Cellulose as a chemical and energy source. In Biotechnol. Bioeng. Symp. Conference Proceedings (p. 163)
dc.identifier.citationD. Humbird, R. Davis, L., Tao, C., Kinchin, D., Hsu, D., & Aden, A. (2011). Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Seattle
dc.identifier.citationDashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 30(May), 302–309.
dc.identifier.citationDies, G., Henrissat, B., Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure Cell Press, 3(9), 853–859
dc.identifier.citationDin, N., Gilkes, N., Tekant, B., Miller, R. J., Warren, R., & Kilburn, D. (1991). Non- hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nature Biotechnology, 9, 1096 – 1099.
dc.identifier.citationDivne, C., Stahlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J., … Jones, T. (1994). The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 265(5171), 524–528.
dc.identifier.citationDomke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Mixed acid fermentation of paper fines and industrial biosludge. Bioresource Technology, 91, 41–51
dc.identifier.citationDoran, P. M. (1995). Bioprocess Engineering Principles. Bioprocess Engineering Principles. San Diego, CA.: Academic Press.
dc.identifier.citationDowe, N., & Mcmillan, J. (2008). SSF Experimental Protocols — Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure ( LAP ) SSF Experimental Protocols — Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedures. Renewable Energy. Golden, Colorado. Retrieved from www.nrel.gov
dc.identifier.citationDuff, S. J. B., Moritz, J. W., & Andersen, K. L. (1994). Simultaneous Hydrolysis and Fermentation of Pulp Mill Primary Clarifier Sludge. The Canadian Journal of Chemical Engineering, 72(6), 1013– 1020.
dc.identifier.citationDuff, S. J. B., Moritz, J. W., & Casavant, T. (1995). Effect of surfactant and particle size reduction on hydrolysis of deinking sludge and nonrecyclable newsprint. Biotechnology and Bioengineering, 45(3), 239–244
dc.identifier.citationDuff, S. J. B., & Murrayh, W. D. (1996). Bioconversion of forest products industry Waste cellulosics to fuel ethanol : A review. Science And Technology, 55
dc.identifier.citationEspinoza, H. R., & Gómez, C. R. (2015). Abordaje metodológico para formulación participativa de planes de asistencia técnica agropecuaria con enfoque territorial. Acta Agronómica, 64(451-62)
dc.identifier.citationEsterbauera, H., Steinerb, W., Labudovaa, I., Hermanna, A., & Hayna, M. (1991). Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology, 36(1), 51–65.
dc.identifier.citationEveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2, 21.
dc.identifier.citationFan, Z., & Lynd, L. R. (2007a). Conversion of paper sludge to ethanol. I: Impact of feeding frequency and mixing energy characterization. Bioprocess and Biosystems Engineering, 30, 27–34
dc.identifier.citationFan, Z., & Lynd, L. R. (2007b). Conversion of paper sludge to ethanol. II: Process design and economics analysis. Bioprocess and Biosystems Engineering, 30, 35–45.
dc.identifier.citationFan, Z., South, C., Lyford, K., Munsie, J., Van Walsum, P., & Lynd, L. R. (2003). Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess and Biosystems Engineering, 26, 93–101.
dc.identifier.citationFarid, M. A., El-Enshasy, H. A., & Noor El-Deen, A. M. (2002). Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. Journal of Basic Microbiology, 42(3), 162–171.
dc.identifier.citationGao, L., Gao, F., Zhang, D., Zhang, C., Wu, G., & Chen, S. (2013). Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource Technology, 147, 658–661.
dc.identifier.citationGao, L., Wang, F., Gao, F., Wang, L., Zhao, J., & Qu, Y. (2011). Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Bioresource Technology, 102(17), 8339–8342
dc.identifier.citationGavrilescu, D. (2008). Energy From Biomass in Pulp and Paper Mills. Environmental Enginnering and Management Journal, 7(5), 537–546.
dc.identifier.citationGhose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.
dc.identifier.citationGlazer, A., & Nikaido, H. (1998). MICROBIAL BIOTECHNOLOGY: Fundamentals of applied microbiology (2nd ed.). New York: W.H. Freeman and Company
dc.identifier.citationGnanou, Y., & Fontanille, M. (2008). Organic and Physical Chemistry of Polymers. Hoboken, N.J.: Wiley-Interscience
dc.identifier.citationGolan, A. E. (2011). Cellulase : Types and Action, Mechanism, and Uses.
dc.identifier.citationGomes, D. S., Matamá, T., Cavaco-Paulo, A., Campos-Takaki, G. M., & Salgueiro, A. (2013). Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation. Electronic Journal of Biotechnology, 16(5), 3–3.
dc.identifier.citationGoyal, A., Ghosh, B., & Eveleigh, D. (1991). Characteristics of fungal cellulases. Bioresource Technology, 36(1), 37–50.
dc.identifier.citationGupta, D. P., & Heale, J. B. (1971). Induction of Cellulase (Cx) in Verticillium albo-atrum. Journal of General Microbiology, 63, 163–173.
dc.identifier.citationGupta, R., & Lee, Y. (2009). Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnology and Bioprocess Engineering, 102, 1570–1581
dc.identifier.citationHamzei, E., & Pflug, W. (2007). Sorption and binding mechanism of polysaccharide cleaving soil enzymes by clay minerals. Journal of Plant Nutrition and Soil Science, 144(5), 505–513.
dc.identifier.citationHaskå, G. (1981). Activity of bacteriolytic enzymes adsorbed to clays. Microbial Ecology, 7(4), 331–341.
dc.identifier.citationHelm, C. V, Magalhães, W. L. E., de Lima, E. a, Silva, P. R., Hoffmann, K., Higa, A., & Mendes, D. (2011). Time influence in the enzymatic saccharification of cellulose pulp samples. BMC Proceedings, 5(Suppl 7), P112. http://doi.org/10.1186/1753-6561-5-S7-P112
dc.identifier.citationHenriksson, G., Gellerstedt, G., & Ek, M. (2009a). Pulp and Paper Chemistry and Technology. In Wood Chemistry and Wood Technology. Berlin: De Gruyter.
dc.identifier.citationHenriksson, G., Gellerstedt, G., & Ek, M. (2009b). Pulping Chemistry and Technology. In Pulp and Paper Chemistry and Technology (p. 474). Berlin: De Gruyter
dc.identifier.citationHenriksson, H., Ståhlberg, J., Isaksson, R., & Pettersson, G. (1996). The active sites of cellulases are involved in chiral recognition: A comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Letters, 390(3), 339–344.
dc.identifier.citationHeredia, A., Jiménez, A., & Guillén, R. (1995). Composition of plant cell walls. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 200(1), 24–31.
dc.identifier.citationHildén, L., & Johansson, G. (2004). Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnology Letters, 26(22), 1683–1693.
dc.identifier.citationHuang, L. K., & Mahoney, R. R. (1999). Purification and characterization of an endo-polygalacturonase from Verticillium albo-atrum. Journal of Applied Microbiology, 86(1), 145–156. http://doi.org/10.1046/j.1365-2672.1999.00645.x
dc.identifier.citationIngesson, H., Zacchi, G., Yang, B., Esteghlalian, A. R., & Saddler, J. N. (2001). The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. Journal of Biotechnology, 88, 177–182.
dc.identifier.citationJäger, G., Girfoglio, M., Dollo, F., Rinaldi, R., Bongard, H., Commandeur, U., … Büchs, J. (2011). How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnology for Biofuels, 4(1), 33.
dc.identifier.citationJeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. H., & Lee, J. K. (2010). Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484.
dc.identifier.citationJoo, A.-R., Jeya, M., Lee, K.-M., Lee, K.-M., Moon, H.-J., Kim, Y.-S., & Lee, J.-K. (2010). Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochemistry, 45(6), 851–858.
dc.identifier.citationJørgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., & Olsson, L. (2003). Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 32, 851–861.
dc.identifier.citationJørgensen, H., Kutter, J. P., & Olsson, L. (2003). Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Analytical Biochemistry, 317, 85–93.
dc.identifier.citationJørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2004). Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 109, 309–313.
dc.identifier.citationJørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36, 42–48.
dc.identifier.citationJørgensen, H., & Olsson, L. (2006). Production of cellulases by Penicillium brasilianum IBT 20888 - Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 38, 381–390.
dc.identifier.citationJuturu, V., & Wu, J. C. (2012). Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances, 30(6), 1219–1227.
dc.identifier.citationJuturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203
dc.identifier.citationKang, K., Wang, S., Lai, G., Liu, G., & Xing, M. (2013). Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnology, 13(1), 42
dc.identifier.citationKang, L., Wang, W., & Lee, Y. Y. (2010). Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Applied Biochemistry and Biotechnology, 161(1-8), 53–66.
dc.identifier.citationKang, L., Wang, W., Pallapolu, V., & Lee, Y. (2011). Enhanced ethanol production from de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and cofermentation. BioResources, 6, 3791–3808.
dc.identifier.citationKarmakar, M., & Ray, R. r. (2011). Current trends in research and application of microbial cellulases. Journal of Microbiology, 6(1), 41–53.
dc.identifier.citationKaur, A., & Chadha, B. S. (2015). Penicillium janthinellum : a Source of Efficient and High Levels of βGlucosidase. Applied Biochemistry and Biotechnology, 175(2), 937–949.
dc.identifier.citationKemppainen, K., Ranta, L., Sipilä, E., Östman, A., Vehmaanperä, J., Puranen, T., … von Weymarn, N. (2012). Ethanol and biogas production from waste fibre and fibre sludge – The FibreEtOH concept. Biomass and Bioenergy, 46, 60–69.
dc.identifier.citationKim, I. J., Lee, H. J., Choi, I. G., & Kim, K. H. (2014). Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Applied Microbiology and Biotechnology, 8469–8480.
dc.identifier.citationKim, Y. H., Cho, N. C., Choi, W. K., Kim, K. H., Chun, S. B., Lee, Y. K., & Chung, K. C. (1992). Penicillium verruculosm Endo-β-1,4-Glucanase 의 정제 및 특성. Biochemistry and Molecular Biology Reports, 25(2), 95–100.
dc.identifier.citationKirk, O., Torben V., B., & Fuglsang, C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology2, 13(4), 345–351
dc.identifier.citationKo, J.-A., Ryu, Y. B., Kwon, H.-J., Jeong, H. J., Park, S.-J., Kim, C. Y., … Kim, Y.-M. (2013). Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and optimal production of the steviol. Applied Microbiology and Biotechnology, 97(18), 8151–8161
dc.identifier.citationKongruang, S., Han, M. J., Breton, C. I. G., & Penner, M. H. (2004). Quantitative Analysis of CelluloseReducing Ends. In M. Finkelstein & B. H. Davison (Eds.), Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO (Vol. 113–116, pp. 213–231). Breckenridge, CO: Humana Press.
dc.identifier.citationKrogh, K. B. R., Mørkeberg, A., Jørgensen, H., Frisvad, J. C., & Olsson, L. (2004). Screening Genus Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes. In M. Finkelstein, J. D. McMillan, B. H. Davison, & B. Evans (Eds.), Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 389–401). Breckenridge, CO: Humana Press.
dc.identifier.citationKuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 2011, 280696.
dc.identifier.citationLadisch, M. R., Lin, K. W., Voloch, M., & Tsao, G. T. (1983). Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology, 5, 82–102.
dc.identifier.citationLammirato, C., Miltner, A., Wick, L. Y., & Kästner, M. (2010). Hydrolysis of cellobiose by βglucosidase in the presence of soil minerals - Interactions at solid-liquid interfaces and effects on enzyme activity levels. Soil Biology and Biochemistry, 42(12), 2203–2210.
dc.identifier.citationLark, N., Xia, Y., Qin, C. G., Gong, C. S., & Tsao, G. T. (1997). Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass and Bioenergy, 12(2), 135–143.
dc.identifier.citationLee, K.-M., Jeya, M., Joo, A.-R., Singh, R., Kim, I.-W., & Lee, J.-K. (2010). Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme and Microbial Technology, 46(3), 206–211.
dc.identifier.citationLiao, H., Fan, X., Mei, X., Wei, Z., Raza, W., Shen, Q., & Xu, Y. (2015). Production and characterization of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose saccharification. Biomass and Bioenergy, 74, 122–134.
dc.identifier.citationLin, Y., Wang, D., & Wang, T. (2012). Ethanol production from pulp & paper sludge and monosodium glutamate waste liquor by simultaneous saccharification and fermentation in batch condition. Chemical Engineering Journal, 191, 31–37.
dc.identifier.citationLozzi, I., Pucci, a., Pantani, O. L., D’Acqui, L. P., & Calamai, L. (2008). Interferences of suspended clay fraction in protein quantitation by several determination methods. Analytical Biochemistry, 376(1), 108–114. http://doi.org/10.1016/j.ab.2008.01.040
dc.identifier.citationLu, J., Reye, J., & Banerjee, S. (2010). Temperature dependence of cellulase hydrolysis of paper fiber. Biomass and Bioenergy, 34(12), 1973–1977.
dc.identifier.citationLuciano S., M. H., Rau, M., Pinto da Silva Bon, E., & Andreaus, J. (2012). A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper. Enzyme and Microbial Technology, 51(5), 280–285.
dc.identifier.citationLynd, L. R., Lyford, K., South, C. R., Walsum, P. Van, & Levenson, K. (2001). Evaluation of paper sludge for amenability to enzymatic hydrolysis and conversion to ethanol. Tappi Journal Peer Reviewed Paper, 84(February), 50–55.
dc.identifier.citationMa, T., Kosa, M., & Sun, Q. (2014). Fermentation to bioethanol/biobutanol. In A. J. Ragauskas (Ed.), Materials for biofuels (pp. 155–190). Singapore: EBSCO Publishing
dc.identifier.citationMadrid, L. M., & Quintero, J. C. (2011). Ethanol production from paper sludge using Kluyveromyces marxianus Producción de etanol de lodos papeleros usando Kluyveromyces marxianus, 185–191
dc.identifier.citationMahmood, T., & Elliott, A. (2006). A review of secondary sludge reduction technologies for the pulp and paper industry. Water Research, 40, 2093–2112.
dc.identifier.citationMaki, M., Leung, K., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci, 5, 500–516.
dc.identifier.citationMandelc, S., & Javornik, B. (2015). The secretome of vascular wilt pathogen Verticillium albo-atrum in simulated xylem fluid. Proteomics, 15(4), 787–797.
dc.identifier.citationMarjamaa, K., Toth, K., Bromann, P. A., Szakacs, G., & Kruus, K. (2013). Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme and Microbial Technology, 52(6-7), 358–369.
dc.identifier.citationMarques, S., Alves, L., Roseiro, J. C., & Gírio, F. M. (2008). Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass and Bioenergy, 32(5), 400–406.
dc.identifier.citationMartins, L. F., Kolling, D., Camassola, M., Dillon, a. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99, 1417–1424
dc.identifier.citationMcQueen, S., Durachko, D., & Cosgrove, D. (1992). Two endogenous proteins that induce cell wall extension in plants. The Plant Cell Online, 4(11), 1425–1433.
dc.identifier.citationMendez, L. M. (2015). Obtención de hidrofobinas a partir de hongos filamentosos aislados de residuos agroindustriales de plátano (Musa AAB Simmonds). Proyecto de investigación. Universidad de La Sabana
dc.identifier.citationMerino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108(June), 95–120.
dc.identifier.citationMeyer, M. P., & Canevascini, G. (1981). Separation and some properties of two intracellular bglucosidase of Sporotrichum thermophile. Applied and Environmental Mircobiology, 41, 924–931.
dc.identifier.citationMiller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(lll), 426–428. http://doi.org/10.1021/ac60147a030
dc.identifier.citationMinisterio de protección social. (2006). Matrices de priorización. Retrieved from http://mps1.minproteccionsocial.gov.co/evtmedica/linea 3.1/2.4matrices.html
dc.identifier.citationMohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Applied Biochemistry and Biotechnology, 33(2), 67–81.
dc.identifier.citationMonte, M. C., Fuente, E., Blanco, A., & Negro, C. (2009). Waste management from pulp and paper production in the European Union. Waste Management (New York, N.Y.), 29(1), 293–308.
dc.identifier.citationMora, S., & Banerjee, S. (2013). Economics of the hydrolysis of cellulosic sludge to glucose. Bioprocess and Biosystems Engineering, 36(8), 1039–42.
dc.identifier.citationMoreno, M. L. O., & Vélez, D. U. (2010). Determinación De La Actividad Lignocelulolítica En Sustrato Natural De Aislamientos Fúngicos Obtenidos De Sabana De Pastoreo Y De Bosque Secundario De Sabana Inundable Tropical. Ciencia Del Suelo, 28(2), 169–180.
dc.identifier.citationMorozova, V. V., Gusakov, A. V., Andrianov, R. M., Pravilnikov, A. G., Osipov, D. O., & Sinitsyn, A. P. (2010). Cellulases of Penicillium verruculosum. Biotechnology Journal, 5(8), 871–880
dc.identifier.citationMosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. D. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.
dc.identifier.citationNevalainen, H., & Penttilä, M. (1995). Molecular Biology of Cellulolytic Fungi. In P. A. Lemke & K. Esser (Eds.), Genetics and Biotechnology (pp. 303–319). Springer-Verlag Berlin Heidelberg GmbH
dc.identifier.citationNieves, R. a, Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). Technical Communication: survey and analysis of commercial cellulase preparation suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology, 14, 301–304.
dc.identifier.citationNobel, P. S. (2005). Physicochemical and Environmental Plant Physiology. (D. Dreibelbis & K. Sonnack, Eds.) (3rd ed.). Amsterdam: Elsevier. Academic Press.
dc.identifier.citationNovo, M., Pomar, F., Gayoso, C., & Merino, F. (2006). Cellulase Activity in Isolates of Verticillium dahliae Differing in Aggressiveness. Plant Disease, 90(2), 155–160.
dc.identifier.citationNovozymes. (2010). Cellic CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic materials. Denmark.
dc.identifier.citationPallardy, S. G., & Kozlowski, T. T. (2008). Physiology of Woody Plants (3ra. ed.). Amsterdam: Elsevier.
dc.identifier.citationPan, X., Xie, D., Gilkes, N., Gregg, D., & Saddler, J. (2005). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Microbiology and Biotechnology, 1, 1069–1079
dc.identifier.citationPeng, L., & Chen, Y. (2011). Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass and Bioenergy, 35(4), 1600–1606.
dc.identifier.citationPhilippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnology and Bioengineering, 41(9), 846–853.
dc.identifier.citationPhilippidis, G. P., Spindler, D. D., & Wyman, C. W. (1992). Mathematical modeling of cellulose conversion to ethanol by the simultaneous saccharification and fermentation process. Applied Biochemistry and Biotechnology, 34/35, 543–556.
dc.identifier.citationPhitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K., & Ratanakhanokchai, K. (2013). Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiologica, 58(2), 163–176
dc.identifier.citationPicart, P., Diaz, P., & Pastor, F. I. J. (2007). Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: Production and characterization. Letters in Applied Microbiology, 45(1), 108–113.
dc.identifier.citationPol, D., Laxman, R. S., & Rao, M. (2012). Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20. Indian Journal of Biochemistry & Biophysics, 49, 189–194.
dc.identifier.citationPrasetyo, J., Naruse, K., Kato, T., Boonchird, C., Harashima, S., & Park, E. Y. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels, 4(1), 35
dc.identifier.citationPulido, C. (2013). Caracterización bioquímica del extracto de enzimas celulolíticas obtenidas a partir de microorganismos celulolíticos provenientes los desechos sólidos agroindustriales (cáscaras de banano y residuos de madera) para la producción de bioetanol. Universidad de La Sabana.
dc.identifier.citationRagauskas, A. J. (2014). Materials for biofuels. In Materials and Energy (p. 340). Singapore: World Scientific Publishing Co. Pte. Ltd.
dc.identifier.citationRamani, G., Meera, B., Vanitha, C., Rao, M., & Gunasekaran, P. (2012). Production, Purification, and Characterization of a β-Glucosidase of Penicillium funiculosum NCL1. Applied Biochemistry and Biotechnology, 167(5), 959–972.
dc.identifier.citationRamos, L., Breuil, C., & Saddler, J. (1993). The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial Technology, 15, 19–25.
dc.identifier.citationRoche, C. M., Dibble, C. J., Knutsen, J. S., Stickel, J. J., & Liberatore, M. W. (2009). Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnology and Bioengineering, 104(2), 290–300
dc.identifier.citationRunge, T., & Zhang, C. (2013). Hemicellulose extraction and its effect on pulping and bleaching. Tappi Journal, 12(10), 45–52
dc.identifier.citationSakata, M., Ooshima, H., & Harano, Y. (1985). Effects of agitation on enzymatic saccharification of cellulose. Biotechnology Letters, 7(9), 689–694.
dc.identifier.citationSaksirirat, W., & Hoppe, H. H. (1991). Secretion of Extracellular Enzymes By Verticillium-Psalliotae Treschow and Verticillium-Lecanii (Zimm) Viegas During Growth on Uredospores of the Soybean Rust Fungus (Phakopsora-Pachyrhizi Syd) in Liquid Cultures. Journal of PhytopathologyPhytopathologische Zeitschrift, 131(2), 161–173
dc.identifier.citationSaloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssonen, E., … Penttila, M. (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, ex- hibits disruption activity on cellulosic materials. European Journal of Biochemistry, 269(17), 4202–4211.
dc.identifier.citationSamaniuk, J. R., Tim Scott, C., Root, T. W., & Klingenberg, D. J. (2011). The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions. Bioresource Technology, 102(6), 4489–4494
dc.identifier.citationSantos, J. R. A., Lucena, M. S., Gusmão, N. B., & Gouveia, E. R. (2012). Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 36, 584–588.
dc.identifier.citationSchwarz, W. H. (2012). The cellulases and their application in degrading agro- industrial waste. Revista Colombiana de Biotecnología, 4(1), 6–13.
dc.identifier.citationSelby, K., & Maitland, G. C. (1965). Protein expression and purification. Biochemical Journal, 94, 578.
dc.identifier.citationShi, Y., Xu, X., & Zhu, Y. (2009). Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Applied Microbiology and Biotechnology, 82(5), 921–7.
dc.identifier.citationShuangqi, T., Zhenyu, W., Ziluan, F., Lili, Z., & Jichang, W. (2011). Determination methods of cellulase activity. African Journal of Biotechnology, 10(37), 7122–7125.
dc.identifier.citationSilva, P., Magalhães, W., Helm, C., Lima, E., Mendes, D., & Lima, T. (2011). Evaluation of the enzymatic digestibility of paper industry byproducts. BMC Proceedings (Vol. 5). BioMed Central Ltd.
dc.identifier.citationSims, R. E. H., Mabeeb, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.
dc.identifier.citationSinghania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved Cellulase Production by Trichoderma reesei RUT C30 under SSF Through Process Optimization. Applied Biochemistry and Biotechnology, 142(1), 60–70.
dc.identifier.citationSkomarovskiĭ, a a, Markov, a V, Gusakov, a V, Kondrat’eva, E. G., Okunev, O. N., Bekkerevich, a O., … Sinitsyn, a P. (2006). New cellulases efficiently hydrolyzing lignocellulose pulp. Prikladnaia Biokhimiia I Mikrobiologiia, 42(6), 674–680.
dc.identifier.citationSkomarovsky, a. a., Gusakov, a. V., Okunev, O. N., Solov’eva, I. V., Bubnova, T. V., Kondrat’eva, E. G., & Sinitsyn, a. P. (2005). Studies of hydrolytic activity of enzyme preparations of Penicillium and Trychoderma fungi. Applied Biochemistry and Microbiology, 41(2), 182–184.
dc.identifier.citationSoucy, J., Koubaa, A., Migneault, S., & Riedl, B. (2014). The potential of paper mill sludge for wood– plastic composites. Industrial Crops and Products, 54, 248–256.
dc.identifier.citationSouza, A. L. de, Pimentel, P. S. S. R., Andrade, E. V. de, Astolfi-Filho, S., & Nunes-Silva, C. G. (2013). Purification of endoglucanase produced by Penicillium citrinum isolated from Amazon. Florianópolis, Brazil.
dc.identifier.citationStålbrand, H., Mansfield, S. D., Saddler, J. N., Kilburn, D. G., Warren, R. a, & Gilkes, N. R. (1998). Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi beta-1,4-glucanases. Applied and Environmental Microbiology, 64(7), 2374–2379.
dc.identifier.citationStirling, D. (2000). Biometric CAST e-book. Retrieved March 10, 2016, from http://cast.massey.ac.nz/collection_public.html
dc.identifier.citationSun, Q. (2014). Enzymatic deconstruction of lignocellulose to fermentable sugars. In A. J. Ragauskas (Ed.), Materials for biofuels (pp. 127–154). Singapore: World Scientific Publishing Company.
dc.identifier.citationSun, X., Liu, Z., Zheng, K., Song, X., & Qu, Y. (2008). The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme and Microbial Technology, 42, 560–567.
dc.identifier.citationSun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.
dc.identifier.citationTaiz, L., Zeiger, E., Blat Egea, B., García Agustín, P., & González Nebauer, SergioFlors Herrero, V. (2006). Fisiología vegetal. Vol. 2. Castellón de la Plana: Universitat Jaume I.
dc.identifier.citationTeeri, T. T. (1997). Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends in Biotechnology, 15(5), 160–167.
dc.identifier.citationTeeri, T. T., Reinikainen, T., Ruohonena, L., Jonesb, T. A., & Knowlesa, J. (1992). Domain function in Trichoderma reesei cellobiohydrolases. Journal of Biotechnology, 24(2), 169–176
dc.identifier.citationTishkov, V. I., Gusakov, A. V., Cherkashina, A. S., & Sinitsyn, A. P. (2013). Engineering the pHoptimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie, 95, 1704–1710.
dc.identifier.citationVarga, E., Szengyel, Z., & Réczey, K. (2002). Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Applied Biochemistry and Biotechnology, 98-100(1), 73–87.
dc.identifier.citationVázquez, C., Sellek, R., & Fernández, N. (1992). Enzimas que degradan paredes vegetales en Fusarium oxysporum. Boletín de Sanidad Vegetal Plagas, 18, 693–698
dc.identifier.citationVelson, J. (2014). Biofuels. Retrieved November 15, 2015, from www.quora.com
dc.identifier.citationVilladsen, J., Nielsen, J., & Lidén, G. (2011). Bioreaction Engineering Principles (Third Edit). New York.
dc.identifier.citationVolkov, P. V., Rozhkova, A. M., Gusakov, A. V., & Sinitsyn, A. P. (2014). Homologous cloning, purification and characterization of highly active cellobiohydrolase I (Cel7A) from Penicillium canescens. Protein Expression and Purification, 103, 1–7
dc.identifier.citationWajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., … Rakovan, J. F. (2006). Zeolite synthesis from paper sludge ash at low temperature (90 degrees C) with addition of diatomite. Journal of Hazardous Materials, 132(2-3), 244–52.
dc.identifier.citationWalpole, R. (1999). Probabilidad y Estadística para ingenieros (6th ed.). Mexico: Prentice-Hall Hispanoamericana S.A
dc.identifier.citationWang, W., Kang, L., & Lee, Y. Y. (2010). Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Applied Biochemistry and Biotechnology, 161(1-8), 382–94.
dc.identifier.citationWang, W., Liu, J., Chen, G., Zhang, Y., & P., G. (2003). Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Current Microbiology, 46(5), 0371–0379
dc.identifier.citationWeitz, D. A., & Feldman, S. . (2012). Energías renovables para el desarrollo sostenible: Producción de Bioetanol a partir de biomasa lignocelulósica en ambiente rural. Revista Virtual Pro, 122(3), 19.
dc.identifier.citationWilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20(3), 295–299.
dc.identifier.citationWilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263. http://doi.org/10.1016/j.mib.2011.04.004
dc.identifier.citationWingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of Bottlenecks. Biotechnology Progress, 19, 1109–1117.
dc.identifier.citationWood, T. ., McCrae, S. I., & Macfarlane, C. C. (1980). The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochemical Journal, 189, 51– 65.
dc.identifier.citationWood, T. M. (1975). Properties and mode of action of cellulases. Biotechnol Bioeng Symp, 5, 111–133.
dc.identifier.citationWu, Z., & Lee, Y. Y. (1997). Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnology Letters, 19(10), 977–979
dc.identifier.citationYamashita, Y., Kurosumi, A., Sasaki, C., & Nakamura, Y. (2008). Ethanol production from paper sludge by immobilized Zymomonas mobilis. Biochemical Engineering Journal, 42(3), 314–319.
dc.identifier.citationYang, T., Liu, J., Lin, Q., & Jiang, X. (2009). Penicillium expansum YT01: A Lignocellulose-Degrading Fungal Strain Isolated from China Gaoligong Mountain Humus Soil. Journal of Biobased Materials and Bioenergy, 3(4), 348–353
dc.identifier.citationYoung, D., & Pegg, G. (1982). The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of V. albo-atrum. Physiologial Plant Pathology, 21(3), 411–423.
dc.identifier.citationYu, Z., Jameel, H., Chang, H.-M., & Park, S. (2011). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology, 102(19), 9083–9.
dc.identifier.citationZampieri, D., Guerra, L., Camassola, M., & Dillon, A. J. P. (2013). Secretion of endoglucanases and βglucosidases by Penicillium echinulatum 9A02S1 in presence of different carbon sources. Industrial Crops and Products, 50, 882–886.
dc.identifier.citationZhang, Y., Himmel, M., & Mielenz, J. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24(5), 452–481.
dc.identifier.citationZhang, Y., Hong, J., & Ye, X. (2009). Cellulase Assays. In J. Mielenz (Ed.), Methods in molecular biology (Vol. 581, pp. 213–231). Clifton, N.J.: Humana Press
dc.identifier.citationZhang, Y., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.
dc.identifier.citationZhang, Y., & Lynd, L. R. (2005). Determination of the Number-Average Degree of Polymerization of Cellodextrins and Cellulose with Application to Enzymatic Hydrolysis. Biomacromolecules, 6(3), 1510–1515.
dc.identifier.citationZhou, Q., Lv, X., Zhang, X., Meng, X., Chen, G., & Liu, W. (2011). Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings. World Journal of Microbiology and Biotechnology, 27(8), 1905–1910.
dc.identifier.citationZor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 236(236), 302–308.
dc.identifier.urihttp://hdl.handle.net/10818/26148
dc.description1 documento en PDF de 150 páginases_CO
dc.description.abstractEl lodo papelero ha sido considerado una biomasa atractiva para la producción de biocombustibles de segunda generación. Por otra parte, las enzimas son un factor crítico en la bioconversión de los residuos lignocelulósicos ya que debido a sus costos, son un cuello de botella económico en la producción de bioetanol (Machado et al., 2010). Se produjo un extracto enzimático a partir de los hongos filamentosos Verticillium sp. y Penicillium sp., compuesto por proteinas con pesos moleculares entre 11,62 y 107,6 kDa. El extracto fue usado para producir azúcares fermentables por hidrólisis enzimática y sus resultados fueron comparados con los azúcares producidos empleando la enzima comercial Cellic®, suministrada por Novozymes. Se evaluaron factores como tiempo de hidrólisis, temperatura, concentración de extracto enzimático o enzima comercial y carga de lodo. La hidrólisis con extracto enzimático produjo el 26% y 17% de los azúcares reductores producidos con Cellic® a 37°C y 45°C respectivamente, bajo las mismas condiciones (18,17% carga de lodo, 6% extracto o enzima, 150 rpm y 12 horas. Se observó un efecto buffer por las cenizas presentes en el lodo papelero. ​​es_CO
dc.formatapplication/pdfes_CO
dc.language.isodeues_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de la Sabana
dc.sourceIntellectum Repositorio Universidad de la Sabana
dc.subjectAlcohol
dc.subjectHongos filamentosos
dc.subjectPenicillium
dc.subjectVerticillium
dc.titleProducción de etanol a partir de lodos papeleros usando extracto enzimático producido por hongos filamentosos (Verticillium sp.y Penicillium sp.)es_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local262503
dc.identifier.localTE08457
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dc.identifier.repourlhttp://intellectum.unisabana.edu.co


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International