dc.contributor.advisor | Patarroyo Gutiérrez, Manuel Alfonso | |
dc.contributor.author | Curtidor Castellanos, Hernando | |
dc.date.accessioned | 4/5/2016 9:10 | |
dc.date.available | 4/5/2016 9:10 | |
dc.date.issued | 2014-03-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/22983 | |
dc.description | 87 páginas | es_CO |
dc.description.abstract | In this research, advanced control strategies were designed under the Active Disturbance Rejection Control (ADRC) approach to increase the biomass production in microalgae cultures. For the above, from a control frame of reference, the development was envisaged into two stages, control and optimization. The first stage resulted in three different controllers designs: two ADRC strategies assisted by observer and a Model-Free Control (MFC). In each case, the aim was to guarantee the tracking of the reference signal. In the second stage, the design of two optimization strategies were achieves to increase the biomass production, offline and on-line. Comparing, at a simulation level, these strategies with other existing proposals, the following was found: 1) the ADRC strategies assisted by observer had a few dependence on the model, letting us to work with an approximate model that only required knowing of the system order and the input gain; 2) the off-line optimization, despite maximizing the biomass production, required knowing the model and 3) the proposal that combines MFC with on-line optimization, may act on any microalgae culture since it does not need a model. All the proposals are robust front to disturbances and variation of parameters allowing to increase the biomass production when an optimization strategy is used. | en |
dc.description.abstract | La malaria es una de las enfermedades infecciosas más prevalentes y mortales a nivel mundial. Cinco especies de Plasmodium (protozoario intracelular obligado del filo Apicomplexa) infectan al humano, siendo Plasmodium falciparum la especie responsable de las manifestaciones clínicas más severas, con amplia distribución en las zonas tropicales y subtropicales del África Subsahariana. Según los estimados de la Organización Mundial de la Salud (OMS), en el año 2010 se presentaron alrededor de 216 millones de casos de malaria y cerca de un millón de muertes, principalmente de niños menores de 5 años. Esta cifra se ha incrementado en los últimos años, luego de la aparición de variantes del parásito que son resistentes a drogas antimaláricas y por la resistencia a los insectidas por parte del mosquito. Es por lo tanto urgente el desarrollo de medidas de control efectivas que permitan la erradicación de esta parasitosis. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Eritrocitos | es_CO |
dc.subject | Malaria -- Colombia | es_CO |
dc.subject | Plasmodium -- Malaria | es_CO |
dc.subject | Proteínas de la sangre -- Malaria | es_CO |
dc.subject | Parásitos -- Malaria | es_CO |
dc.subject | Medicamentos -- Malaria | es_CO |
dc.subject | Mosquitos -- Erradicación -- Malaria | es_CO |
dc.title | Identificación y caracterización de la proteína del cuello de las roptrias 5 (RON5) en Plasmodium falciparum y determinación de las regiones de unión a glóbulos rojos humanos | es_CO |
dc.type | doctoral thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | WHO, World Malaria Report 2009, W.H. Organization, Editor 2011, World Health
Organization. | en |
dcterms.references | Good, M.F., Towards a blood-stage vaccine for malaria: are we following all the leads?
Nat Rev Immunol, 2001. 1(2): p. 117-25. | en |
dcterms.references | Ridley, R.G., Malaria: to kill a parasite. Nature, 2003. 424(6951): p. 887-9. | en |
dcterms.references | Patarroyo, M.E., et al., A synthetic vaccine protects humans against challenge with
asexual blood stages of Plasmodium falciparum malaria. Nature, 1988. 332(6160): p.
158-61. | en |
dcterms.references | Patarroyo, M.E. and M.A. Patarroyo, Emerging rules for subunit-based, multiantigenic,
multistage chemically synthesized vaccines. Acc Chem Res, 2008. 41(3): p. 377-86. | en |
dcterms.references | Patarroyo, M.E., A. Bermudez, and M.A. Patarroyo, Structural and Immunological
Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal
Subunit-Based Vaccine Development. Chem Rev, 2011. | en |
dcterms.references | Tsuji, M. and F. Zavala, Peptide-based subunit vaccines against pre-erythrocytic stages
of malaria parasites. Mol Immunol, 2001. 38(6): p. 433-42. | en |
dcterms.references | Matuschewski, K., Vaccine development against malaria. Curr Opin Immunol, 2006.
18(4): p. 449-57. | en |
dcterms.references | Gardner, M.J., et al., Genome sequence of the human malaria parasite Plasmodium
falciparum. Nature, 2002. 419(6906): p. 498-511. | en |
dcterms.references | Foth, B.J., et al., Quantitative time-course profiling of parasite and host cell proteins in
the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics, 2011. | en |
dcterms.references | Sims, P.F. and J.E. Hyde, Proteomics of the human malaria parasite Plasmodium
falciparum. Expert Rev Proteomics, 2006. 3(1): p. 87-95. | en |
dcterms.references | Bozdech, Z., et al., The transcriptome of the intraerythrocytic developmental cycle of
Plasmodium falciparum. PLoS Biol, 2003. 1(1): p. E5. | en |
dcterms.references | Proellocks, N.I., R.L. Coppel, and K.L. Waller, Dissecting the apicomplexan rhoptry neck
proteins. Trends Parasitol, 2010. 26(6): p. 297-304. | en |
dcterms.references | Cowman, A.F., et al., Functional analysis of Plasmodium falciparum merozoite antigens:
implications for erythrocyte invasion and vaccine development. Philos Trans R Soc Lond
B Biol Sci, 2002. 357(1417): p. 25-33. | en |
dcterms.references | Alexander, D.L., et al., Identification of the moving junction complex of Toxoplasma
gondii: a collaboration between distinct secretory organelles. PLoS Pathog, 2005. 1(2):
p. e17. | en |
dcterms.references | Baum, J., et al., Host-cell invasion by malaria parasites: insights from Plasmodium and
Toxoplasma. Trends Parasitol, 2008. 24(12): p. 557-63. | en |
dcterms.references | Straub, K.W., et al., Novel components of the Apicomplexan moving junction reveal
conserved and coccidia-restricted elements. Cell Microbiol, 2009. 11(4): p. 590-603. | en |
dcterms.references | Kaneko, O., Erythrocyte invasion: vocabulary and grammar of the Plasmodium rhoptry.
Parasitol Int, 2007. 56(4): p. 255-62. | en |
dcterms.references | Alexander, D.L., et al., Plasmodium falciparum AMA1 binds a rhoptry neck protein
homologous to TgRON4, a component of the moving junction in Toxoplasma gondii.
Eukaryot Cell, 2006. 5(7): p. 1169-73. | en |
dcterms.references | Cao, J., et al., Rhoptry neck protein RON2 forms a complex with microneme protein
AMA1 in Plasmodium falciparum merozoites. Parasitol Int, 2009. 58(1): p. 29-35. | en |
dcterms.references | Morahan, B.J., et al., Plasmodium falciparum: genetic and immunogenic characterisation
of the rhoptry neck protein PfRON4. Exp Parasitol, 2009. 122(4): p. 280-8. | en |
dcterms.references | Proellocks, N.I., et al., Characterisation of PfRON6, a Plasmodium falciparum rhoptry
neck protein with a novel cysteine-rich domain. Int J Parasitol, 2009. 39(6): p. 683-92. | en |
dcterms.references | Collins, C.R., et al., An inhibitory antibody blocks interactions between components of the
malarial invasion machinery. PLoS Pathog, 2009. 5(1): p. e1000273. | en |
dcterms.references | WHO, World Malaria Report 2012, W.H. Organization, Editor 2012, World Health
Organization. | en |
dcterms.references | Rowe, J.A., et al., Adhesion of Plasmodium falciparum-infected erythrocytes to human
cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med, 2009.
11: p. e16. | en |
dcterms.references | Liu, L., et al., Global, regional, and national causes of child mortality: an updated
systematic analysis for 2010 with time trends since 2000. Lancet, 2012. 379(9832): p.
2151-61. | en |
dcterms.references | Murray, C.J., et al., Global malaria mortality between 1980 and 2010: a systematic
analysis. Lancet, 2012. 379(9814): p. 413-31. | en |
dcterms.references | Cogswell, F.B., The hypnozoite and relapse in primate malaria. Clin Microbiol Rev,
1992. 5(1): p. 26-35. | en |
dcterms.references | Sabbatani, S., S. Fiorino, and R. Manfredi, The emerging of the fifth malaria parasite
(Plasmodium knowlesi): a public health concern? Braz J Infect Dis, 2010. 14(3): p. 299-
309 | en |
dcterms.references | Antinori, S., et al., Plasmodium knowlesi: the emerging zoonotic malaria parasite. Acta
Trop, 2013. 125(2): p. 191-201. | en |
dcterms.references | Grupo ETV - INS, Semana Epidemiológica 31 (28 de julio – 3 de agosto de 2013). 2013.
10 201 | en |
dcterms.references | Feachem, R.G., et al., Shrinking the malaria map: progress and prospects. Lancet, 2010.
376(9752): p. 1566-78 | en |
dcterms.references | Gamble, C., et al., Insecticide-treated nets for the prevention of malaria in pregnancy: a
systematic review of randomised controlled trials. PLoS Med, 2007. 4(3): p. e107. | en |
dcterms.references | Miller, L.H., et al., Malaria biology and disease pathogenesis: insights for new
treatments. Nat Med, 2013. 19(2): p. 156-67. | en |
dcterms.references | Schwartz, L., et al., A review of malaria vaccine clinical projects based on the WHO
rainbow table. Malar J, 2012. 11: p. 11. | en |
dcterms.references | Tyagi, R.K., N.K. Garg, and T. Sahu, Vaccination Strategies against Malaria: novel
carrier(s) more than a tour de force. J Control Release, 2012. 162(1): p. 242-54. | en |
dcterms.references | Patarroyo, M.E., A. Bermudez, and M.A. Patarroyo, Structural and immunological
principles leading to chemically synthesized, multiantigenic, multistage, minimal subunitbased vaccine development. Chem Rev, 2011. 111(5): p. 3459-507. | en |
dcterms.references | Rodriguez, L.E., et al., Intimate molecular interactions of P. falciparum merozoite
proteins involved in invasion of red blood cells and their implications for vaccine design.
Chem Rev, 2008. 108(9): p. 3656-705. | en |
dcterms.references | Curtidor, H., et al., Functional, immunological and three-dimensional analysis of
chemically synthesised sporozoite peptides as components of a fully-effective antimalarial
vaccine. Curr Med Chem, 2011. 18(29): p. 4470-502. | en |
dcterms.references | Curtidor, H., et al., Plasmodium falciparum acid basic repeat antigen (ABRA) peptides:
erythrocyte binding and biological activity. Vaccine, 2001. 19(31): p. 4496-504. | en |
dcterms.references | Patarroyo, M.A., et al., 3D analysis of the TCR/pMHCII complex formation in monkeys
vaccinated with the first peptide inducing sterilizing immunity against human malaria.
PLoS One, 2010. 5(3): p. e9771 | en |
dcterms.references | Gonzalez, V., et al., Host cell entry by apicomplexa parasites requires actin
polymerization in the host cell. Cell Host Microbe, 2009. 5(3): p. 259-72. | en |
dcterms.references | Plattner, F. and D. Soldati-Favre, Hijacking of host cellular functions by the Apicomplexa.
Annu Rev Microbiol, 2008. 62: p. 471-87. | en |
dcterms.references | Prudencio, M., A. Rodriguez, and M.M. Mota, The silent path to thousands of merozoites:
the Plasmodium liver stage. Nat Rev Microbiol, 2006. 4(11): p. 849-56. | en |
dcterms.references | Gueirard, P., et al., Development of the malaria parasite in the skin of the mammalian
host. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18640-5. | en |
dcterms.references | Pradel, G. and U. Frevert, Malaria sporozoites actively enter and pass through rat
Kupffer cells prior to hepatocyte invasion. Hepatology, 2001. 33(5): p. 1154-65. | en |
dcterms.references | Mota, M.M., J.C. Hafalla, and A. Rodriguez, Migration through host cells activates
Plasmodium sporozoites for infection. Nat Med, 2002. 8(11): p. 1318-22. | en |
dcterms.references | Frevert, U., et al., Malaria circumsporozoite protein binds to heparan sulfate
proteoglycans associated with the surface membrane of hepatocytes. J Exp Med, 1993.
177(5): p. 1287-98. | en |
dcterms.references | Muller, H.M., E. Scarselli, and A. Crisanti, Thrombospondin related anonymous protein
(TRAP) of Plasmodium falciparum in parasite-host cell interactions. Parassitologia, 1993.
35 Suppl: p. 69-72. | en |
dcterms.references | Kappe, S.H., K. Kaiser, and K. Matuschewski, The Plasmodium sporozoite journey: a rite
of passage. Trends Parasitol, 2003. 19(3): p. 135-43. | en |
dcterms.references | Ishino, T., et al., Cell-passage activity is required for the malarial parasite to cross the
liver sinusoidal cell layer. PLoS Biol, 2004. 2(1): p. E4. | en |
dcterms.references | Ishino, T., Y. Chinzei, and M. Yuda, A Plasmodium sporozoite protein with a membrane
attack complex domain is required for breaching the liver sinusoidal cell layer prior to
hepatocyte infection. Cell Microbiol, 2005. 7(2): p. 199-208. | en |
dcterms.references | Kariu, T., et al., CelTOS, a novel malarial protein that mediates transmission to mosquito
and vertebrate hosts. Mol Microbiol, 2006. 59(5): p. 1369-79 | en |
dcterms.references | Moreira, C.K., et al., The Plasmodium TRAP/MIC2 family member, TRAP-Like Protein
(TLP), is involved in tissue traversal by sporozoites. Cell Microbiol, 2008. 10(7): p. 1505-
16 | en |
dcterms.references | Bhanot, P., et al., A surface phospholipase is involved in the migration of plasmodium
sporozoites through cells. J Biol Chem, 2005. 280(8): p. 6752-60. | en |
dcterms.references | Sultan, A.A., et al., TRAP is necessary for gliding motility and infectivity of plasmodium
sporozoites. Cell, 1997. 90(3): p. 511-22. | en |
dcterms.references | Silvie, O., et al., A role for apical membrane antigen 1 during invasion of hepatocytes by
Plasmodium falciparum sporozoites. J Biol Chem, 2004. 279(10): p. 9490-6. | en |
dcterms.references | Jethwaney, D., et al., Fetuin-A, a hepatocyte-specific protein that binds Plasmodium
berghei thrombospondin-related adhesive protein: a potential role in infectivity. Infect
Immun, 2005. 73(9): p. 5883-91 | en |
dcterms.references | Silvie, O., et al., Hepatocyte CD81 is required for Plasmodium falciparum and
Plasmodium yoelii sporozoite infectivity. Nat Med, 2003. 9(1): p. 93-6. | en |
dcterms.references | Ghosh, A., M.J. Edwards, and M. Jacobs-Lorena, The journey of the malaria parasite in
the mosquito: hopes for the new century. Parasitol Today, 2000. 16(5): p. 196-201. | en |
dcterms.references | Fujioka, H. and M. Aikawa, Structure and life cycle. Chem Immunol, 2002. 80: p. 1-26 | en |
dcterms.references | Cowman, A.F., D. Berry, and J. Baum, The cellular and molecular basis for malaria
parasite invasion of the human red blood cell. J Cell Biol, 2012. 198(6): p. 961-71 | en |
dcterms.references | Bannister, L.H. and I.W. Sherman, Plasmodium. eLS. John Wiley & Sons Ltd,
Chichester, 2009. | en |
dcterms.references | Good, M.F., D.C. Kaslow, and L.H. Miller, Pathways and strategies for developing a
malaria blood-stage vaccine. Annu Rev Immunol, 1998. 16: p. 57-87. | en |
dcterms.references | Sturm, A., et al., Manipulation of host hepatocytes by the malaria parasite for delivery
into liver sinusoids. Science, 2006. 313(5791): p. 1287-90. | en |
dcterms.references | Baer, K., et al., Release of hepatic Plasmodium yoelii merozoites into the pulmonary
microvasculature. PLoS Pathog, 2007. 3(11): p. e171. | en |
dcterms.references | Trager, W. and J.B. Jensen, Human malaria parasites in continuous culture. Science,
1976. 193(4254): p. 673-5. | en |
dcterms.references | Oakley, M.S., et al., Clinical and molecular aspects of malaria fever. Trends Parasitol,
2011. 27(10): p. 442-9. | en |
dcterms.references | Bannister, L.H., et al., A brief illustrated guide to the ultrastructure of Plasmodium
falciparum asexual blood stages. Parasitol Today, 2000. 16(10): p. 427-33. | en |
dcterms.references | Stevenson, M.M. and E.M. Riley, Innate immunity to malaria. Nat Rev Immunol, 2004.
4(3): p. 169-80 | en |
dcterms.references | Cowman, A.F. and B.S. Crabb, Invasion of red blood cells by malaria parasites. Cell,
2006. 124(4): p. 755-66. | en |
dcterms.references | Barnwell, J.W.y.G., M.R., Invasion of Vertebrate Cells: Erythrocytes. In: Malaria:
Parasite Biology, Pathogenesis and Protection. 1998: p. 93-120. | en |
dcterms.references | Aikawa, M., et al., Erythrocyte entry by malarial parasites. A moving junction between
erythrocyte and parasite. J Cell Biol, 1978. 77(1): p. 72-82. | en |
dcterms.references | Bannister, L.H., et al., Structure and invasive behaviour of Plasmodium knowlesi
merozoites in vitro. Parasitology, 1975. 71(3): p. 483-91. | en |
dcterms.references | Ladda, R., M. Aikawa, and H. Sprinz, Penetration of erythrocytes by merozoites of
mammalian and avian malarial parasites. J Parasitol, 1969. 55(3): p. 633-44. | en |
dcterms.references | Preiser, P., et al., The apical organelles of malaria merozoites: host cell selection,
invasion, host immunity and immune evasion. Microbes Infect, 2000. 2(12): p. 1461-77. | en |
dcterms.references | Yeoh, S., et al., Subcellular discharge of a serine protease mediates release of invasive
malaria parasites from host erythrocytes. Cell, 2007. 131(6): p. 1072-83. | en |
dcterms.references | Langreth, S.G., et al., Fine structure of human malaria in vitro. J Protozool, 1978. 25(4):
p. 443-52. | en |
dcterms.references | Bannister, L.H., et al., Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is
translocated within micronemes along subpellicular microtubules during merozoite
development. J Cell Sci, 2003. 116(Pt 18): p. 3825-34. | en |
dcterms.references | Kats, L.M., et al., Plasmodium rhoptries: how things went pear-shaped. Trends Parasitol,
2006. 22(6): p. 269-76 | en |
dcterms.references | Bannister, L.H., et al., Ultrastructure of rhoptry development in Plasmodium falciparum
erythrocytic schizonts. Parasitology, 2000. 121 ( Pt 3): p. 273-87. | en |
dcterms.references | Speer, C.A., et al., Comparative ultrastructure of tachyzoites, bradyzoites, and tissue
cysts of Neospora caninum and Toxoplasma gondii. Int J Parasitol, 1999. 29(10): p. 1509-
19 | en |
dcterms.references | Blackman, M.J. and L.H. Bannister, Apical organelles of Apicomplexa: biology and
isolation by subcellular fractionation. Mol Biochem Parasitol, 2001. 117(1): p. 11-25 | en |
dcterms.references | Bradley, P.J., et al., Proteomic analysis of rhoptry organelles reveals many novel
constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem, 2005.
280(40): p. 34245-58. | en |
dcterms.references | Curtidor, H., et al., Identification of the Plasmodium falciparum rhoptry neck protein 5
(PfRON5). Gene, 2011. 474(1-2): p. 22-8. | en |
dcterms.references | Ito, D., et al., Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is
localized to the rhoptry body. Parasitol Int, 2011. 60(2): p. 132-8. | en |
dcterms.references | O'Keeffe, A.H., et al., A novel Sushi domain-containing protein of Plasmodium
falciparum. Mol Biochem Parasitol, 2005. 140(1): p. 61-8. | en |
dcterms.references | Srivastava, A., et al., Localization of apical sushi protein in Plasmodium falciparum
merozoites. Mol Biochem Parasitol, 2010. 174(1): p. 66-9. | en |
dcterms.references | Galinski, M.R., et al., A reticulocyte-binding protein complex of Plasmodium vivax
merozoites. Cell, 1992. 69(7): p. 1213-26. | en |
dcterms.references | Rayner, J.C., et al., A Plasmodium falciparum homologue of Plasmodium vivax
reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion
pathway. J Exp Med, 2001. 194(11): p. 1571-81. | en |
dcterms.references | Triglia, T., et al., Identification of proteins from Plasmodium falciparum that are
homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun, 2001.
69(2): p. 1084-92 | en |
dcterms.references | Kaneko, O., et al., Gene structure and expression of a Plasmodium falciparum 220-kDa
protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol Biochem
Parasitol, 2002. 121(2): p. 275-8. | en |
dcterms.references | Baum, J., et al., Reticulocyte-binding protein homologue 5 - an essential adhesin involved
in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol, 2009. 39(3):
p. 371-80. | en |
dcterms.references | Crosnier, C., et al., Basigin is a receptor essential for erythrocyte invasion by
Plasmodium falciparum. Nature, 2011. 480(7378): p. 534-7 | en |
dcterms.references | Spadafora, C., et al., Complement receptor 1 is a sialic acid-independent erythrocyte
receptor of Plasmodium falciparum. PLoS Pathog, 2010. 6(6): p. e1000968. | en |
dcterms.references | Tham, W.H., et al., Complement receptor 1 is the host erythrocyte receptor for
Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci U S A, 2010.
107(40): p. 17327-32. | en |
dcterms.references | Adams, J.H., et al., A family of erythrocyte binding proteins of malaria parasites. Proc
Natl Acad Sci U S A, 1992. 89(15): p. 7085-9. | en |
dcterms.references | Sim, B.K., et al., Receptor and ligand domains for invasion of erythrocytes by
Plasmodium falciparum. Science, 1994. 264(5167): p. 1941-4 | en |
dcterms.references | Sim, B.K., et al., Primary structure of the 175K Plasmodium falciparum erythrocyte
binding antigen and identification of a peptide which elicits antibodies that inhibit
malaria merozoite invasion. J Cell Biol, 1990. 111(5 Pt 1): p. 1877-84. | en |
dcterms.references | Mayer, D.C., et al., Characterization of a Plasmodium falciparum erythrocyte-binding
protein paralogous to EBA-175. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5222-7. | en |
dcterms.references | Thompson, J.K., et al., A novel ligand from Plasmodium falciparum that binds to a sialic
acid-containing receptor on the surface of human erythrocytes. Mol Microbiol, 2001.
41(1): p. 47-58. | en |
dcterms.references | Gilberger, T.W., et al., A novel erythrocyte binding antigen-175 paralogue from
Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J
Biol Chem, 2003. 278(16): p. 14480-6. | en |
dcterms.references | Peterson, D.S. and T.E. Wellems, EBL-1, a putative erythrocyte binding protein of
Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol
Biochem Parasitol, 2000. 105(1): p. 105-13. | en |
dcterms.references | Peterson, M.G., et al., Integral membrane protein located in the apical complex of
Plasmodium falciparum. Mol Cell Biol, 1989. 9(7): p. 3151-4. | en |
dcterms.references | Bei, A.K. and M.T. Duraisingh, Functional analysis of erythrocyte determinants of
Plasmodium infection. Int J Parasitol, 2012. 42(6): p. 575-82. | en |
dcterms.references | Kato, K., et al., Domain III of Plasmodium falciparum apical membrane antigen 1 binds
to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A, 2005. 102(15): p.
5552-7 | en |
dcterms.references | Srinivasan, P., et al., Binding of Plasmodium merozoite proteins RON2 and AMA1
triggers commitment to invasion. Proc Natl Acad Sci U S A, 2011. 108(32): p. 13275-80. | en |
dcterms.references | Lamarque, M., et al., The RON2-AMA1 interaction is a critical step in moving junctiondependent invasion by apicomplexan parasites. PLoS Pathog, 2011. 7(2): p. e1001276. | en |
dcterms.references | Lamarque, M., et al., The RON2-AMA1 interaction is a critical step in moving junctiondependent invasion by apicomplexan parasites. PLoS Pathog, 2011. 7(2): p. e1001276. | en |
dcterms.references | Besteiro, S., et al., Export of a Toxoplasma gondii rhoptry neck protein complex at the
host cell membrane to form the moving junction during invasion. PLoS Pathog, 2009.
5(2): p. e1000309. | en |
dcterms.references | Trager, W., et al., Transfer of a dense granule protein of Plasmodium falciparum to the
membrane of ring stages and isolation of dense granules. Infect Immun, 1992. 60(11): p.
4656-61. | en |
dcterms.references | Koussis, K., et al., A multifunctional serine protease primes the malaria parasite for red
blood cell invasion. EMBO J, 2009. 28(6): p. 725-35 | en |
dcterms.references | Dvorak, J.A., et al., Invasion of erythrocytes by malaria merozoites. Science, 1975.
187(4178): p. 748-50 | en |
dcterms.references | Singh, S., et al., Distinct external signals trigger sequential release of apical organelles
during erythrocyte invasion by malaria parasites. PLoS Pathog, 2010. 6(2): p. e1000746. | en |
dcterms.references | Carruthers, V.B. and L.D. Sibley, Sequential protein secretion from three distinct
organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell
Biol, 1997. 73(2): p. 114-23. | en |
dcterms.references | Boothroyd, J.C. and J.F. Dubremetz, Kiss and spit: the dual roles of Toxoplasma
rhoptries. Nat Rev Microbiol, 2008. 6(1): p. 79-88. | en |
dcterms.references | Harvey, K.L., P.R. Gilson, and B.S. Crabb, A model for the progression of receptorligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J
Parasitol, 2012. 42(6): p. 567-73. | en |
dcterms.references | Miller, L.H., et al., Interaction between cytochalasin B-treated malarial parasites and
erythrocytes. Attachment and junction formation. J Exp Med, 1979. 149(1): p. 172-84. | en |
dcterms.references | Kauth, C.W., et al., Interactions between merozoite surface proteins 1, 6, and 7 of the
malaria parasite Plasmodium falciparum. J Biol Chem, 2006. 281(42): p. 31517-27. | en |
dcterms.references | Li, X., et al., A co-ligand complex anchors Plasmodium falciparum merozoites to the
erythrocyte invasion receptor band 3. J Biol Chem, 2004. 279(7): p. 5765-71. | en |
dcterms.references | Ranjan, R., et al., Proteome analysis reveals a large merozoite surface protein-1
associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res,
2011. 10(2): p. 680-91. | en |
dcterms.references | Lew, V.L. and T. Tiffert, Is invasion efficiency in malaria controlled by pre-invasion
events? Trends Parasitol, 2007. 23(10): p. 481-4. | en |
dcterms.references | McCallum-Deighton, N. and A.A. Holder, The role of calcium in the invasion of human
erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol, 1992. 50(2): p. 317-23. | en |
dcterms.references | Treeck, M., et al., Caught in action: mechanistic insights into antibody-mediated
inhibition of Plasmodium merozoite invasion. Trends Parasitol, 2009. 25(11): p. 494-7 | en |
dcterms.references | Mitchell, G.H., et al., Apical membrane antigen 1, a major malaria vaccine candidate,
mediates the close attachment of invasive merozoites to host red blood cells. Infect
Immun, 2004. 72(1): p. 154-8. | en |
dcterms.references | Triglia, T., et al., Apical membrane antigen 1 plays a central role in erythrocyte invasion
by Plasmodium species. Mol Microbiol, 2000. 38(4): p. 706-18. | en |
dcterms.references | Li, J. and E.T. Han, Dissection of the Plasmodium vivax reticulocyte binding-like proteins
(PvRBPs). Biochem Biophys Res Commun, 2012. 426(1): p. 1-6. | en |
dcterms.references | Kappe, S.H., et al., That was then but this is now: malaria research in the time of an
eradication agenda. Science, 2010. 328(5980): p. 862-6. | en |
dcterms.references | Mital, J., et al., Conditional expression of Toxoplasma gondii apical membrane antigen-1
(TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol
Cell, 2005. 16(9): p. 4341-9. | en |
dcterms.references | Howell, S.A., et al., Proteolytic processing and primary structure of Plasmodium
falciparum apical membrane antigen-1. J Biol Chem, 2001. 276(33): p. 31311-20 | en |
dcterms.references | Healer, J., et al., Independent translocation of two micronemal proteins in developing
Plasmodium falciparum merozoites. Infect Immun, 2002. 70(10): p. 5751-8. | en |
dcterms.references | Srinivasan, P., et al., Disrupting malaria parasite AMA1-RON2 interaction with a small
molecule prevents erythrocyte invasion. Nat Commun, 2013. 4: p. 2261. | en |
dcterms.references | Chitnis, C.E., et al., The domain on the Duffy blood group antigen for binding
Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med, 1996.
184(4): p. 1531-6. | en |
dcterms.references | Gaur, D., D.C. Mayer, and L.H. Miller, Parasite ligand-host receptor interactions during
invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol, 2004. 34(13-14): p.
1413-29 | en |
dcterms.references | Taylor, H.M., M. Grainger, and A.A. Holder, Variation in the expression of a
Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun,
2002. 70(10): p. 5779-89. | en |
dcterms.references | Duraisingh, M.T., et al., Phenotypic variation of Plasmodium falciparum merozoite
proteins directs receptor targeting for invasion of human erythrocytes. EMBO J, 2003.
22(5): p. 1047-57. | en |
dcterms.references | Gaur, D., et al., Plasmodium falciparum is able to invade erythrocytes through a trypsinresistant pathway independent of glycophorin B. Infect Immun, 2003. 71(12): p. 6742-6. | en |
dcterms.references | Pasvol, G., J.S. Wainscoat, and D.J. Weatherall, Erythrocytes deficiency in glycophorin
resist invasion by the malarial parasite Plasmodium falciparum. Nature, 1982.
297(5861): p. 64-6. | en |
dcterms.references | Iyer, J., et al., Invasion of host cells by malaria parasites: a tale of two protein families.
Mol Microbiol, 2007. 65(2): p. 231-49 | en |
dcterms.references | Gunalan, K., et al., The role of the reticulocyte-binding-like protein homologues of
Plasmodium in erythrocyte sensing and invasion. Cell Microbiol, 2013. 15(1): p. 35-44. | en |
dcterms.references | Blackman, M.J., et al., A single fragment of a malaria merozoite surface protein remains
on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies.
J Exp Med, 1990. 172(1): p. 379-82 | en |
dcterms.references | Baker, R.P., R. Wijetilaka, and S. Urban, Two Plasmodium rhomboid proteases
preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS
Pathog, 2006. 2(10): p. e113. | en |
dcterms.references | Bannister, L.H. and G.H. Mitchell, The fine structure of secretion by Plasmodium
knowlesi merozoites during red cell invasion. J Protozool, 1989. 36(4): p. 362-7 | en |
dcterms.references | Klotz, F.W., et al., A 60-kDa Plasmodium falciparum protein at the moving junction
formed between merozoite and erythrocyte during invasion. Mol Biochem Parasitol,
1989. 36(2): p. 177-85 | en |
dcterms.references | Lebrun, M., et al., The rhoptry neck protein RON4 re-localizes at the moving junction
during Toxoplasma gondii invasion. Cell Microbiol, 2005. 7(12): p. 1823-33. | en |
dcterms.references | Straub, K.W., et al., The moving junction protein RON8 facilitates firm attachment and
host cell invasion in Toxoplasma gondii. PLoS Pathog, 2011. 7(3): p. e1002007. | en |
dcterms.references | Carruthers, V. and J.C. Boothroyd, Pulling together: an integrated model of Toxoplasma
cell invasion. Curr Opin Microbiol, 2007. 10(1): p. 83-9. | en |
dcterms.references | Richard, D., et al., Interaction between Plasmodium falciparum apical membrane antigen
1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion
process of malaria parasites. J Biol Chem, 2010. 285(19): p. 14815-22 | en |
dcterms.references | Knuepfer, E., et al., RON12, a novel Plasmodium-specific rhoptry neck protein important
for parasite proliferation. Cell Microbiol, 2013. | en |
dcterms.references | Hans, N., et al., Identification of novel rhoptry neck protein of Plasmodium falciparum.
Mol Biochem Parasitol, 2013. 188(1): p. 34-9. | en |
dcterms.references | Tyler, J.S. and J.C. Boothroyd, The C-terminus of Toxoplasma RON2 provides the crucial
link between AMA1 and the host-associated invasion complex. PLoS Pathog, 2011. 7(2):
p. e1001282. | en |
dcterms.references | Vulliez-Le Normand, B., et al., Structural and functional insights into the malaria
parasite moving junction complex. PLoS Pathog, 2012. 8(6): p. e1002755 | en |
dcterms.references | Hossain, M.E., S. Dhawan, and A. Mohmmed, The cysteine-rich regions of Plasmodium
falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion.
Parasitol Res, 2012. 110(5): p. 1711-21. | en |
dcterms.references | Tonkin, M.L., et al., Host cell invasion by apicomplexan parasites: insights from the costructure of AMA1 with a RON2 peptide. Science, 2011. 333(6041): p. 463-7. | en |
dcterms.references | Giovannini, D., et al., Independent roles of apical membrane antigen 1 and rhoptry neck
proteins during host cell invasion by apicomplexa. Cell Host Microbe, 2011. 10(6): p.
591-602 | en |
dcterms.references | Wheelan, S.J., D.M. Church, and J.M. Ostell, Spidey: a tool for mRNA-to-genomic
alignments. Genome Res, 2001. 11(11): p. 1952-7. | en |
dcterms.references | Aurrecoechea, C., et al., PlasmoDB: a functional genomic database for malaria parasites.
Nucleic Acids Res, 2009. 37(Database issue): p. D539-43. | en |
dcterms.references | Chomczynski, P., A reagent for the single-step simultaneous isolation of RNA, DNA and
proteins from cell and tissue samples. Biotechniques, 1993. 15(3): p. 532-4, 536-7 | en |
dcterms.references | Kall, L., A. Krogh, and E.L. Sonnhammer, An HMM posterior decoder for sequence
feature prediction that includes homology information. Bioinformatics, 2005. 21 Suppl 1:
p. i251-7. | en |
dcterms.references | Quevillon, E., et al., InterProScan: protein domains identifier. Nucleic Acids Res, 2005.
33(Web Server issue): p. W116-20. | en |
dcterms.references | Kall, L., A. Krogh, and E.L. Sonnhammer, A combined transmembrane topology and
signal peptide prediction method. J Mol Biol, 2004. 338(5): p. 1027-36. | en |
dcterms.references | Hofmann K and W. Stoffel, TMbase - a database of membrane spanning proteins
segments. Biol Chem Hoppe-Seyler, 1993. 374: p. 166 | en |
dcterms.references | Krogh, A., et al., Predicting transmembrane protein topology with a hidden Markov
model: application to complete genomes. J Mol Biol, 2001. 305(3): p. 567-80. | en |
dcterms.references | Arai, M., et al., ConPred II: a consensus prediction method for obtaining transmembrane
topology models with high reliability. Nucleic Acids Res, 2004. 32(Web Server issue): p.
W390-3. | en |
dcterms.references | Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res, 1994. 22(22): p. 4673-80. | en |
dcterms.references | Deleage, G., et al., ANTHEPROT: an integrated protein sequence analysis software with
client/server capabilities. Comput Biol Med, 2001. 31(4): p. 259-67. | en |
dcterms.references | Larsen, J.E., O. Lund, and M. Nielsen, Improved method for predicting linear B-cell
epitopes. Immunome Res, 2006. 2: p. 2. | en |
dcterms.references | Merrifield, R.B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am.
Chem. Soc., 1963. 85: p. 2149–2154. | en |
dcterms.references | Houghten, R.A., General method for the rapid solid-phase synthesis of large numbers of
peptides: specificity of antigen-antibody interaction at the level of individual amino acids.
Proc Natl Acad Sci U S A, 1985. 82(15): p. 5131-5 | en |
dcterms.references | Lioy, E., et al., Synthesis, Biological, and Immunological Properties of Cyclic Peptides
from Plasmodium Falciparum Merozoite Surface Protein-1 This work was supported by a
long-term fellowship of the Human Frontier Science Program Organization (HFSPO-LT
25/97) and by a Research Grant from the Roche Research Foundation. Angew Chem Int
Ed Engl, 2001. 40(14): p. 2631-2635. | en |
dcterms.references | Patarroyo, M.E., et al., Induction of protective immunity against experimental infection
with malaria using synthetic peptides. Nature, 1987. 328(6131): p. 629-32. | en |
dcterms.references | Urquiza, M., et al., Identification of Plasmodium falciparum MSP-1 peptides able to bind
to human red blood cells. Parasite Immunol, 1996. 18(10): p. 515-26. | en |
dcterms.references | Torres, M.H., et al., Modified merozoite surface protein-1 peptides with short alpha
helical regions are associated with inducing protection against malaria. Eur J Biochem,
2003. 270(19): p. 3946-52. | en |
dcterms.references | Pinzon, C.G., et al., Studies of Plasmodium falciparum rhoptry-associated membrane
antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine, 2008.
26(6): p. 853-62. | en |
dcterms.references | Wilcoxon, F., Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1945. 1:
p. 80-83. | en |
dcterms.references | Merrifield, R., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am
Chem Soc, 1963. 85: p. 2149 | en |
dcterms.references | Tam, J.P., W.F. Heath, and R.B. Merrifield, SN 1 and SN 2 mechanisms for the
deprotection of synthetic peptides by hydrogen fluoride. Studies to minimize the tyrosine
alkylation side reaction. Int J Pept Protein Res, 1983. 21(1): p. 57-65. | en |
dcterms.references | Stothard, P., The sequence manipulation suite: JavaScript programs for analyzing and
formatting protein and DNA sequences. Biotechniques, 2000. 28(6): p. 1102, 1104. | en |
dcterms.references | Roccatano, D., et al., Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize
secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad
Sci U S A, 2002. 99(19): p. 12179-84. | en |
dcterms.references | Sreerama, N., S.Y. Venyaminov, and R.W. Woody, Estimation of the number of alphahelical and beta-strand segments in proteins using circular dichroism spectroscopy.
Protein Sci, 1999. 8(2): p. 370-80. | en |
dcterms.references | Compton, L.A. and W.C. Johnson, Jr., Analysis of protein circular dichroism spectra for
secondary structure using a simple matrix multiplication. Anal Biochem, 1986. 155(1): p.
155-67 | en |
dcterms.references | Lambros, C. and J.P. Vanderberg, Synchronization of Plasmodium falciparum
erythrocytic stages in culture. J Parasitol, 1979. 65(3): p. 418-20. | en |
dcterms.references | van der Heyde, H.C., et al., Use of hydroethidine and flow cytometry to assess the effects
of leukocytes on the malarial parasite Plasmodium falciparum. Clin Diagn Lab Immunol,
1995. 2(4): p. 417-25 | en |
dcterms.references | Wyatt, C.R., W. Goff, and W.C. Davis, A flow cytometric method for assessing viability
of intraerythrocytic hemoparasites. J Immunol Methods, 1991. 140(1): p. 23-30. | en |
dcterms.references | Manske, M., et al., Analysis of Plasmodium falciparum diversity in natural infections by
deep sequencing. Nature, 2012. 487(7407): p. 375-9. | en |
dcterms.references | Takala, S.L. and C.V. Plowe, Genetic diversity and malaria vaccine design, testing and
efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol, 2009.
31(9): p. 560-73 | en |
dcterms.references | Escalante, A.A., A.A. Lal, and F.J. Ayala, Genetic polymorphism and natural selection in
the malaria parasite Plasmodium falciparum. Genetics, 1998. 149(1): p. 189-202. | en |
dcterms.references | Nicholas, K.B. and J. Nicholas, H.B., GeneDoc: a tool for editing and annotating
multiple sequence alignments. Distributed by the author.
http://www.psc.edu/biomed/genedoc[Online.], 1997 | en |
dcterms.references | Ogun, S.A. and A.A. Holder, Plasmodium yoelii: brefeldin A-sensitive processing of
proteins targeted to the rhoptries. Exp Parasitol, 1994. 79(3): p. 270-8 | en |
dcterms.references | Topolska, A.E., et al., Characterization of a membrane-associated rhoptry protein of
Plasmodium falciparum. J Biol Chem, 2004. 279(6): p. 4648-56. | en |
dcterms.references | Stewart, M.J., S. Schulman, and J.P. Vanderberg, Rhoptry secretion of membranous
whorls by Plasmodium falciparum merozoites. Am J Trop Med Hyg, 1986. 35(1): p. 37-
44. | en |
dcterms.references | Cooper, J.A., et al., The 140/130/105 kilodalton protein complex in the rhoptries of
Plasmodium falciparum consists of discrete polypeptides. Mol Biochem Parasitol, 1988.
29(2-3): p. 251-60. | en |
dcterms.references | Zuccala, E.S., et al., Subcompartmentalisation of proteins in the rhoptries correlates with
ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One,
2012. 7(9): p. e46160 | en |
dcterms.references | Counihan, N.A., et al., Plasmodium rhoptry proteins: why order is important. Trends
Parasitol, 2013. 29(5): p. 228-36. | en |
dcterms.references | Arevalo-Pinzon, G., et al., A single amino acid change in the Plasmodium falciparum
RH5 (PfRH5) human RBC binding sequence modifies its structure and determines
species-specific binding activity. Vaccine, 2012. 30(3): p. 637-46. | en |
dcterms.references | Garcia, J., et al., Conserved regions of the Plasmodium falciparum rhoptry-associated
protein 3 mediate specific host-pathogen interactions during invasion of red blood cells.
Peptides, 2010. 31(12): p. 2165-72. | en |
dcterms.references | Harrison, T., et al., Erythrocyte G protein-coupled receptor signaling in malarial
infection. Science, 2003. 301(5640): p. 1734-6. | en |
dcterms.references | Attie, A.D. and R.T. | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |