Mostrar el registro sencillo del ítem

dc.contributor.advisorRaventós Santamaría, Mercé
dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.authorMoreno Moreno, Fabián Leonardo
dc.date.accessioned12/11/2015 10:50
dc.date.available12/11/2015 10:50
dc.date.issued2015-12-11
dc.identifier.urihttp://hdl.handle.net/10818/20898
dc.description203 páginases_CO
dc.description.abstractCoffee is the most traded food in the world. The sensory and functional properties of the product are highly important for the consumers, and therefore, technologies that promote quality preservation are highly valued in coffee processing. In the production of freeze-dried coffee, freeze concentration is used to remove water from the extract. Water removal in freeze concentration is achieved by cooling the solution until ice crystals form and separate. Freeze concentration is a technology known for its ability to preserve the quality of the product thanks to low processing temperatures. Three techniques are used according to ice crystal growth: suspension, film (progressive or falling-film) and block (total or partial). Suspension freeze concentration is the most implemented technique at the industrial level, however, it requires complex systems for ice separation and many moving parts, which increases the initial and operating costs. For this reason, other techniques such as falling-film freeze concentration, and block freeze concentration are being developed seeking to reduce operational costs. In the present work, block and falling-film freeze concentration techniques used to concentrate aqueous coffee extract were studied. Equipment to study those techniques was designed and implemented. The effect of the operational variables of block and falling-film freeze concentration on separation efficiency was established. Preservation of bioactive compounds, volatile compounds, antioxidant activity, and sensory quality of the coffee extract when using freeze concentration was demonstrated. Finally, an operational strategy was proposed to integrate the studied techniques. Separation efficiency obtained with this process was comparable to industrial standards.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectCafé -- Comercioes_CO
dc.subjectProcesos de manufactura -- Café --- Investigaciones -- Colombiaes_CO
dc.subjectTecnología agrícola -- Cafées_CO
dc.titleFreeze concentration of coffee extract: study of block and falling-film techniquesen
dc.typedoctoral thesises_CO
dc.identifier.local260030
dc.identifier.localTE07003
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dcterms.referencesCheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P. and Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Research International 2013, 51, 388–396.en
dcterms.referencesEsquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Research International 2012, 46, 488–495.en
dcterms.referencesMacLeod, C.S.; McKittrick, J.A.; Hindmarsh, J.P.; Johns, M.L.; Wilson, D.I. Fundamentals of spray freezing of instant coffee. Journal of Food Engineering 2006, 74, 451–461.en
dcterms.referencesMiyawaki, O.; Liu, L.; Shirai, Y.; Sakashita, S.; Kagitani, K. Tubular ice system for scale-up of progressive freezeconcentration. Journal of Food Engineering 2005, 69, 107–113en
dcterms.referencesSánchez, J.; Ruiz, Y.; Auleda, J.M.; Hernandez, E.; Raventos, M. Review. Freeze concentration in the fruit juices industry. Food Science and Technology International 2009, 15, 303–315.en
dcterms.referencesRahman, M.S. State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science & Technology 2006, 17, 129–141.en
dcterms.referencesChin, N.L.; Chan, S.M.; Yusof, Y.; Chuah, T.G.; Talib, R. Modelling of rheological behaviour of pummelo juice concentrates using master-curve. Journal of Food Engineering 2009, 93, 134–140.en
dcterms.referencesAuleda, J.; Raventós, M.; Hernández, E. Calculation method for designing a multi-plate freeze-concentrator for concentration of fruit juices. Journal of Food Engineering 2011, 107, 27–35en
dcterms.referencesIbarz, A.; Gonzalez, C.; Esplugas, S.; Vicente, M. Rheology of clarified fruit juices. I: Peach juices. Journal of Food Engineering 1992, 15, 49–61.en
dcterms.referencesLonginotti, M.P.; Corti, H.R. Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime. Journal of Physical and Chemical Reference Data 2008, 37, 1503–1515.en
dcterms.referencesTelis, V.R.N.; Telis-Romero, V.; Mazzotti, H.B.; Gabas, L. Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. International Journal of Food Properties 2007, 10, 185–195en
dcterms.referencesFalguera, V.; Ibarz, A. A new model to describe flow behaviour of concentrated orange juice. Food Biophisycs 2010, 5, 114–119en
dcterms.referencesFalguera, V.; Vélez-Ruiz, J.F.; Alins, V.; Ibarz, A. Rheological behaviour of concentrated mandarin juice at low temperatures. International Journal of Food Science and Technology 2010, 10, 2194–2200.en
dcterms.referencesIbarz, R.; Falguera, V.; Garvín, A.; Garza, S.; Pagán, J.; Ibarz, A. Flow behavior of clarified orange juice at low temperatures. Journal of Texture Studies 2009, 40, 445–456.en
dcterms.referencesRuiz, Y.; Sánchez, J.; Hernández, E.; Auleda, J.M.; Raventós, M. Viscosidad de zumos comerciales de melocotón, manzana y pera a temperaturas cercanas a la congelación. Afinidad 2010, 66, 114–118.en
dcterms.referencesTavares, D.; Alcantara, M.; Tadini, C.; Telis-Romero, J. Rheological properties of frozen concentrated orange juice (FCOJ) as a function of concentration and subzero temperatures. International Journal of Food Properties 2007, 10, 829–839.en
dcterms.referencesGabriele, D.; Migliori, M.; Baldino, N.; Di Sanzo, R.; de Cindio, B.; Vuozzo, D. Rheological characterisation of dairy emulsions for cold foam applications. International Journal of Food Properties 2011, 14 (4), 786–798.en
dcterms.referencesSobolík, V.; Zitny, R.; Tovcigrecko, V.; Delgado, M.; Allaf, K. Viscosity and electrical conductivity of concentrated solutions of soluble coffee. Journal of Food Engineering 2002, 51, 93–98.en
dcterms.referencesTelis-Romero, J.; Ferreira, R.; Gabas, A.; Niccoletti, V. Rheological properties and fluid dynamics of coffee extract. Journal of Food Process Engineering 2001, 24, 217–230en
dcterms.referencesThijssen, H.A.C. Freeze concentration of food liquids. Food Manufacture 1969, 44, 49–53.en
dcterms.referencesPardo, J.M.; Suess, F.; Niranjan, K. An investigation into the relationship between freezing rate and mean ice crystal size of coffee extracts. Transactions of the Institution of Chemical Engineers 2002, 80, 176–182en
dcterms.referencesTelis-Romero, J.; Gabas, A.L.; Polizelli, M.A.; Telis, V.R.N. Temperature and water content influence on thermophysical properties of coffee extract. International Journal of Food Properties 2000, 3 (3), 375–384.en
dcterms.referencesIcontec Standard. Determination of extraction yield and soluble solids in coffee beverage. NTC 4602-1, Colombia, 2009en
dcterms.referencesAuleda, J.M.; Raventós, M.; Sánchez, J.; Hernández, E. Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. Journal of Food Engineering 2011, 105, 289–294en
dcterms.referencesAyel, V.; Lottin, O.; Popa, E.; Peerhossaini, H. Using undercooling to measure the freezing points of aqueous solutions. International Journal of Thermal Sciences 2005, 44, 11–20.en
dcterms.referencesJie, W.; Lite, L.; Yang, D. The correlation between freezing point and soluble solids of fruits. Journal of Food Engineering 2003, 60, 481–484.en
dcterms.referencesChen, X.D.; Chen, P. Freezing of aqueous solution in a simple apparatus designed for measuring freezing point. Food Research International 1996, 29, 723–729.en
dcterms.referencesMoreno, F.L.; Robles, C.M.; Sarmiento, Z.; Ruiz, Y.; Pardo, J.M. Effect of separation and thawing mode on block freeze-concentration of coffee brews. Food and Bioproducts Processing 2013. DOI:10.1016/j.fbp.2013.02.007.en
dcterms.referencesThaler, H. The chemistry of coffee extraction in relation to polysaccharides. Food Chemistry 1978, 4, 13–22en
dcterms.referencesFranca, A.S.; Mendonça, J.C.F.; Oliveira, S.D. Composition of green and roasted coffees of different cup qualities. LWT–Food Science and Technology 2005, 38, 709–715.en
dcterms.referencesDe Maria, C.A.B.D.; Trugo, L.C.; Neto, F.R.A.; Moreira, R.F.A.; and Alviano, C.S. Composition of green coffee watersoluble fractions and identification of volatiles formed during roasting. Food Chemistry 1996, 55, 203–207.en
dcterms.referencesMagerramov, M.A.; Abdulagatov, A.L.; Azizov, N.D.; Abdulagatov, I.M. Effect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. Journal of Food Engineering 2007, 80, 476–489.en
dcterms.referencesGalmarini, M.V.; Baeza, R.; Sanchez, V.; Zamora, M.C.; Chirife, J. Comparison of the viscosity of trehalose and sucrose solutions at various temperatures: Effect of guar gum addition. LWT–Food Science and Technology 2011, 44, 186–190en
dcterms.referencesAstolfi-Filho, Z.; Telis, V.R.N.; de Oliveira, E.B.; Coimbra, J.S.D.R.; Telis-Romero, J. Rheology and fluid dynamics properties of sugarcane juice. Biochemical Engineering Journal 2011, 53, 260–265en
dcterms.referencesSaravacos, G.; Maroulis, Z. Food Process Engineering Operations; CRC Press: Boca Raton, FL, 2011; 94.en
dcterms.referencesDíaz-Ocampo, R.; Sánchez, R.; Franco, J.M. Rheology of commercial and model borojo jam formulations. International Journal of Food Properties 2013 (In press). DOI:10.1080/10942912.2012.665406.en
dcterms.referencesGundurao, A.; Ramaswamy, H.; Ahmed, J. Effect of soluble solids concentration and temperature on thermo-physical and rheological properties of mango puree. International Journal of Food Properties 2011, 14 (5), 1018–1036.en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International