dc.contributor.advisor | Raventós Santamaría, Mercé | |
dc.contributor.advisor | Ruiz Pardo, Ruth Yolanda | |
dc.contributor.author | Moreno Moreno, Fabián Leonardo | |
dc.date.accessioned | 12/11/2015 10:50 | |
dc.date.available | 12/11/2015 10:50 | |
dc.date.issued | 2015-12-11 | |
dc.identifier.uri | http://hdl.handle.net/10818/20898 | |
dc.description | 203 páginas | es_CO |
dc.description.abstract | Coffee is the most traded food in the world. The sensory and functional properties of the product are highly important for the consumers, and therefore, technologies that promote quality preservation are highly valued in coffee processing. In the production of freeze-dried coffee, freeze concentration is used to remove water from the extract. Water removal in freeze concentration is achieved by cooling the solution until ice crystals form and separate. Freeze concentration is a technology known for its ability to preserve the quality of the product thanks to low processing temperatures. Three techniques are used according to ice crystal growth: suspension, film (progressive or falling-film) and block (total or partial). Suspension freeze concentration is the most implemented technique at the industrial level, however, it requires complex systems for ice separation and many moving parts, which increases the initial and operating costs. For this reason, other techniques such as falling-film freeze concentration, and block freeze concentration are being developed seeking to reduce operational costs. In the present work, block and falling-film freeze concentration techniques used to concentrate aqueous coffee extract were studied. Equipment to study those techniques was designed and implemented. The effect of the operational variables of block and falling-film freeze concentration on separation efficiency was established. Preservation of bioactive compounds, volatile compounds, antioxidant activity, and sensory quality of the coffee extract when using freeze concentration was demonstrated. Finally, an operational strategy was proposed to integrate the studied techniques. Separation efficiency obtained with this process was comparable to industrial standards. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Café -- Comercio | es_CO |
dc.subject | Procesos de manufactura -- Café --- Investigaciones -- Colombia | es_CO |
dc.subject | Tecnología agrícola -- Café | es_CO |
dc.title | Freeze concentration of coffee extract: study of block and falling-film techniques | en |
dc.type | doctoral thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | Cheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P. and Yu, B. Volatile composition and antioxidant capacity
of Arabica coffee. Food Research International 2013, 51, 388–396. | en |
dcterms.references | Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Research International 2012,
46, 488–495. | en |
dcterms.references | MacLeod, C.S.; McKittrick, J.A.; Hindmarsh, J.P.; Johns, M.L.; Wilson, D.I. Fundamentals of spray freezing of instant
coffee. Journal of Food Engineering 2006, 74, 451–461. | en |
dcterms.references | Miyawaki, O.; Liu, L.; Shirai, Y.; Sakashita, S.; Kagitani, K. Tubular ice system for scale-up of progressive freezeconcentration. Journal of Food Engineering 2005, 69, 107–113 | en |
dcterms.references | Sánchez, J.; Ruiz, Y.; Auleda, J.M.; Hernandez, E.; Raventos, M. Review. Freeze concentration in the fruit juices
industry. Food Science and Technology International 2009, 15, 303–315. | en |
dcterms.references | Rahman, M.S. State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science
& Technology 2006, 17, 129–141. | en |
dcterms.references | Chin, N.L.; Chan, S.M.; Yusof, Y.; Chuah, T.G.; Talib, R. Modelling of rheological behaviour of pummelo juice
concentrates using master-curve. Journal of Food Engineering 2009, 93, 134–140. | en |
dcterms.references | Auleda, J.; Raventós, M.; Hernández, E. Calculation method for designing a multi-plate freeze-concentrator for
concentration of fruit juices. Journal of Food Engineering 2011, 107, 27–35 | en |
dcterms.references | Ibarz, A.; Gonzalez, C.; Esplugas, S.; Vicente, M. Rheology of clarified fruit juices. I: Peach juices. Journal of Food
Engineering 1992, 15, 49–61. | en |
dcterms.references | Longinotti, M.P.; Corti, H.R. Viscosity of concentrated sucrose and trehalose aqueous solutions including the
supercooled regime. Journal of Physical and Chemical Reference Data 2008, 37, 1503–1515. | en |
dcterms.references | Telis, V.R.N.; Telis-Romero, V.; Mazzotti, H.B.; Gabas, L. Viscosity of aqueous carbohydrate solutions at different
temperatures and concentrations. International Journal of Food Properties 2007, 10, 185–195 | en |
dcterms.references | Falguera, V.; Ibarz, A. A new model to describe flow behaviour of concentrated orange juice. Food Biophisycs 2010, 5,
114–119 | en |
dcterms.references | Falguera, V.; Vélez-Ruiz, J.F.; Alins, V.; Ibarz, A. Rheological behaviour of concentrated mandarin juice at low
temperatures. International Journal of Food Science and Technology 2010, 10, 2194–2200. | en |
dcterms.references | Ibarz, R.; Falguera, V.; Garvín, A.; Garza, S.; Pagán, J.; Ibarz, A. Flow behavior of clarified orange juice at low
temperatures. Journal of Texture Studies 2009, 40, 445–456. | en |
dcterms.references | Ruiz, Y.; Sánchez, J.; Hernández, E.; Auleda, J.M.; Raventós, M. Viscosidad de zumos comerciales de melocotón,
manzana y pera a temperaturas cercanas a la congelación. Afinidad 2010, 66, 114–118. | en |
dcterms.references | Tavares, D.; Alcantara, M.; Tadini, C.; Telis-Romero, J. Rheological properties of frozen concentrated orange juice
(FCOJ) as a function of concentration and subzero temperatures. International Journal of Food Properties 2007, 10,
829–839. | en |
dcterms.references | Gabriele, D.; Migliori, M.; Baldino, N.; Di Sanzo, R.; de Cindio, B.; Vuozzo, D. Rheological characterisation of dairy
emulsions for cold foam applications. International Journal of Food Properties 2011, 14 (4), 786–798. | en |
dcterms.references | Sobolík, V.; Zitny, R.; Tovcigrecko, V.; Delgado, M.; Allaf, K. Viscosity and electrical conductivity of concentrated
solutions of soluble coffee. Journal of Food Engineering 2002, 51, 93–98. | en |
dcterms.references | Telis-Romero, J.; Ferreira, R.; Gabas, A.; Niccoletti, V. Rheological properties and fluid dynamics of coffee extract.
Journal of Food Process Engineering 2001, 24, 217–230 | en |
dcterms.references | Thijssen, H.A.C. Freeze concentration of food liquids. Food Manufacture 1969, 44, 49–53. | en |
dcterms.references | Pardo, J.M.; Suess, F.; Niranjan, K. An investigation into the relationship between freezing rate and mean ice crystal size
of coffee extracts. Transactions of the Institution of Chemical Engineers 2002, 80, 176–182 | en |
dcterms.references | Telis-Romero, J.; Gabas, A.L.; Polizelli, M.A.; Telis, V.R.N. Temperature and water content influence on thermophysical
properties of coffee extract. International Journal of Food Properties 2000, 3 (3), 375–384. | en |
dcterms.references | Icontec Standard. Determination of extraction yield and soluble solids in coffee beverage. NTC 4602-1, Colombia, 2009 | en |
dcterms.references | Auleda, J.M.; Raventós, M.; Sánchez, J.; Hernández, E. Estimation of the freezing point of concentrated fruit juices for
application in freeze concentration. Journal of Food Engineering 2011, 105, 289–294 | en |
dcterms.references | Ayel, V.; Lottin, O.; Popa, E.; Peerhossaini, H. Using undercooling to measure the freezing points of aqueous solutions.
International Journal of Thermal Sciences 2005, 44, 11–20. | en |
dcterms.references | Jie, W.; Lite, L.; Yang, D. The correlation between freezing point and soluble solids of fruits. Journal of Food Engineering
2003, 60, 481–484. | en |
dcterms.references | Chen, X.D.; Chen, P. Freezing of aqueous solution in a simple apparatus designed for measuring freezing point. Food
Research International 1996, 29, 723–729. | en |
dcterms.references | Moreno, F.L.; Robles, C.M.; Sarmiento, Z.; Ruiz, Y.; Pardo, J.M. Effect of separation and thawing mode on block
freeze-concentration of coffee brews. Food and Bioproducts Processing 2013. DOI:10.1016/j.fbp.2013.02.007. | en |
dcterms.references | Thaler, H. The chemistry of coffee extraction in relation to polysaccharides. Food Chemistry 1978, 4, 13–22 | en |
dcterms.references | Franca, A.S.; Mendonça, J.C.F.; Oliveira, S.D. Composition of green and roasted coffees of different cup qualities.
LWT–Food Science and Technology 2005, 38, 709–715. | en |
dcterms.references | De Maria, C.A.B.D.; Trugo, L.C.; Neto, F.R.A.; Moreira, R.F.A.; and Alviano, C.S. Composition of green coffee watersoluble fractions and identification of volatiles formed during roasting. Food Chemistry 1996, 55, 203–207. | en |
dcterms.references | Magerramov, M.A.; Abdulagatov, A.L.; Azizov, N.D.; Abdulagatov, I.M. Effect of temperature, concentration, and
pressure on the viscosity of pomegranate and pear juice concentrates. Journal of Food Engineering 2007, 80, 476–489. | en |
dcterms.references | Galmarini, M.V.; Baeza, R.; Sanchez, V.; Zamora, M.C.; Chirife, J. Comparison of the viscosity of trehalose and sucrose
solutions at various temperatures: Effect of guar gum addition. LWT–Food Science and Technology 2011, 44, 186–190 | en |
dcterms.references | Astolfi-Filho, Z.; Telis, V.R.N.; de Oliveira, E.B.; Coimbra, J.S.D.R.; Telis-Romero, J. Rheology and fluid dynamics
properties of sugarcane juice. Biochemical Engineering Journal 2011, 53, 260–265 | en |
dcterms.references | Saravacos, G.; Maroulis, Z. Food Process Engineering Operations; CRC Press: Boca Raton, FL, 2011; 94. | en |
dcterms.references | Díaz-Ocampo, R.; Sánchez, R.; Franco, J.M. Rheology of commercial and model borojo jam formulations. International
Journal of Food Properties 2013 (In press). DOI:10.1080/10942912.2012.665406. | en |
dcterms.references | Gundurao, A.; Ramaswamy, H.; Ahmed, J. Effect of soluble solids concentration and temperature on thermo-physical
and rheological properties of mango puree. International Journal of Food Properties 2011, 14 (5), 1018–1036. | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |