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ABSTRACT 

 

Coffee is the most traded food in the world. The coffee industry has a great economic and 

social relevance worldwide. The sensory and functional properties of the product are 

highly important for the consumers, and therefore, technologies that promote quality 

preservation are highly valued in coffee processing. In the production of freeze-dried 

coffee, freeze concentration is used to remove water from the extract. Water removal in 

freeze concentration is achieved by cooling the solution until ice crystals form and 

separate. Freeze concentration is a technology known for its ability to preserve the quality 

of the product thanks to low processing temperatures.  

 

Three techniques are used according to ice crystal growth: suspension, film (progressive 

or falling-film) and block (total or partial). Suspension freeze concentration is the most 

implemented technique at the industrial level. This is an efficient technique in terms of ice 

purity and increased concentration; however, it requires complex systems for ice 

separation and many moving parts, which increases the initial and operating costs. For this 

reason, other freeze concentration techniques have been studied. Different techniques, 

such as falling-film freeze concentration, and block freeze concentration are being 

developed seeking to reduce operational costs. 

 

In the present work, block and falling-film freeze concentration techniques used to 

concentrate aqueous coffee extract were studied. Equipment to study those techniques 

was designed and implemented. The effect of the operational variables of block and 

falling-film freeze concentration on separation efficiency was established. Preservation of 

bioactive compounds, volatile compounds, antioxidant activity, and sensory quality of the 

coffee extract when using freeze concentration was demonstrated. Finally, an operational 

strategy was proposed to integrate the studied techniques. Separation efficiency obtained 

with this process was comparable to industrial standards.  

 

The project was developed as a doctoral thesis under joint supervision by the Ph.D. in 

Biosciences of the University of La Sabana in Bogotá, Colombia and the Agribusiness 

Technology and Biotechnology Doctorate of the Technical University of Catalonia in 

Barcelona, Spain. Five papers were published as a result of the present work.  
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RESUMEN 

 

El café es el alimento más comercializado en el mundo y por esto es alta su importancia 

económica y social. En la industria del café, la calidad sensorial y funcional de la bebida 

es un parámetro de alta importancia, por lo cual se promueve el uso de tecnologías de 

proceso que permitan su preservación. En el proceso de obtención de café soluble 

liofilizado se utiliza la crioconcentración como una etapa para la eliminación parcial del 

agua del extracto.  

 

La crioconcentración es una tecnología para la eliminación de agua de soluciones 

mediante su enfriamiento hasta la formación y separación de  cristales de hielo. Es una 

técnica que puede preservar la calidad del producto debido a las bajas temperaturas que 

maneja.  

 

Existen tres técnicas de crioconcentración: suspensión, película y bloque. La única técnica 

disponible comercialmente a nivel mundial es la crioconcentración en suspensión. Esta es 

una técnica que logra altas eficiencias de separación pero los equipos requieren gran 

número de partes móviles por lo cual es relativamente costosa. Debido a esto se busca el 

desarrollo de técnicas más simples que a la vez consigan una alta eficiencia en la 

separación. La crioconcentración en película descendente y en bloque son nuevas 

técnicas que se han propuesto como alternativas más simples que pueden reducir costos 

operacionales.  

 

En el presente proyecto se estudió la crioconcentración en bloque total y en película 

descendente para  la obtención de extractos concentrados de café. Se realizó el diseñó 

de una unidad de estudios para la crioconentración. Igualmente, se estableció el efecto de 

las variables operativas de la crioconcentración en bloque y en película sobre  la eficiencia 

de la separación y se demostró la preservación de los componentes bioactivos, la 

preservación de los componentes volátiles y de la calidad sensorial del extracto de café. 

Se obtuvieron modelos matemáticos para la predicción del coeficiente de distribución en 

el hielo que permite predecir el comportamiento de la crioconcentración. Finalmente, se 

propuso una estrategia operativa para integración de las técnicas estudiadas que permite 

obtener eficiencias de separación acordes con los estándares industriales.  

 

El proyecto se desarrolló bajo la modalidad de Cotutela de Tesis Doctoral en forma 

conjunta entre el Doctorado en Biociencias de la Universidad de La Sabana en Bogotá, 

Colombia y el Doctorado en Tecnología Agroalimentaria y Biotecnología de la Universidad 

Politécnica de Cataluña en Barcelona, España. Como resultado del proyecto se 

publicaron cinco artículos en revistas indexadas.  
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RESUM 

 

El cafè és l'aliment més comercialitzat del món i té una gran importància econòmica i 

social. En la indústria del cafè, la qualitat sensorial i funcional de la beguda és un 

paràmetre important la qual cosa incentiva l'ús de tecnologies de procés que permetin 

mantenir-ne la qualitat. Durant el procés d'obtenció de cafè liofilitzat s'utilitza la 

crioconcentració com etapa prèvia d'eliminació de part de l'aigua continguda en la solució. 

 

La crioconcentració és una tecnologia que permet l'eliminació d'aigua d'una solució a 

través del seu refredament fins a la formació i la separació dels cristalls de gel. Es tracta 

d'una tècnica que pot preservar la qualitat del producte a causa de les baixes 

temperatures utilitzades. 

 

Hi ha tres tècniques de crioconcentració: suspensió, pel·lícula i bloc. La única tècnica 

disponible comercialment arreu del món és la crioconcentració en suspensió. Aquesta és 

una tècnica que aconsegueix una gran eficiència en la separació, però és relativament 

cara per la qual cosa es busca el desenvolupament de tècniques més senzilles que al 

mateix temps aconsegueixin una alta eficiència de separació. La crioconcentració de 

pel·lícula descendent i en bloc es mostren com a alternatives. 

 

En aquest projecte hem estudiat la crioconcentració en bloc total i en pel·lícula 

descendent per a la producció d'extractes concentrats de cafè. S'ha dissenyat una unitat 

d'estudi per a la crioconcentracio. També s'ha establert l'efecte de les variables operatives 

de la crioconcentració en bloc i pel·lícula sobre l'eficàcia de la separació i s'ha demostrat 

la preservació de compostos bioactius, la preservació dels components volàtils i  de la 

qualitat sensorial de l'extracte de cafè. S’han obtingut models matemàtics per a la 

predicció del coeficient de distribució en el gel que li permeten predir el comportament de 

la crioconcentració. Finalment, es proposa una estratègia operativa per a la integració de 

les tècniques estudiades permetent obtenir eficiències de separació coherents amb 

estàndards de la indústria. 

 

El projecte s’ha desenvolupat en forma de tesi cotutelada conjuntament entre el doctorat 

en Biociències de la Universidad de La Sabana de Bogotà, Colòmbia i el doctorat en 

Tecnologia dels aliments i Biotecnologia de la Universitat Politècnica de Catalunya a 

Barcelona, Espanya. Arran del projecte hi ha cinc articles publicats en revistes indexades. 
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1. INTRODUCTION  

 

 

This chapter offers a brief introduction of this thesis. The chapter describes the state of the 

art of freeze concentration research, the motivations of conducting this study and the 

research question. Then the objectives of the study are presented. Finally, the chapter 

introduces the overall structure of the document.  

 

1.1. State of the art 

1.1.1. Coffee 

 

Coffee is the second most traded commodity in the world after petroleum and the most 

traded food worldwide (Esquivel and Jiménez, 2012; Vignoli et al., 2011). Current 

competition in the coffee industry focuses on product quality. Soluble coffee is a processed 

product created to facilitate beverage preparation, while preserving product quality 

(Cheong et al., 2013; Farah et al., 2006).  

 

Two value parameters are recognized in soluble coffee: sensory quality and functional 

quality. Coffee has more than 800 compounds responsible for its aroma, but few impact 

compounds are particularly important (Franca et al., 2005; Sarrazin and Que, 2000). The 

sensory evaluation and volatile compounds determinations are parameters of sensory 

quality evaluation (Farah et al., 2006). On the other hand, several studies report the health 

benefits of consuming coffee beverages. Compounds with antioxidant activity have been 

identified in coffee extract, including those of the chlorogenic acid group: chlorogenic acid 

(CGA) (3-caffeoylquinic acid), crypto-chlorogenic acid (cCGA) (4-caffeoylquinic acid), neo 

chlorogenic acid (n-CGA) (5-caffeoylquinic acid), and caffeine (Fujioka and Shibamoto, 

2008; Sopelana et al., 2013; Vignoli et al., 2011). Functional quality and organoleptic 

quality are common parameters used in the evaluation of soluble coffee production. 

 

Fig. 1.1 shows the process used to obtain soluble coffee. The process begins with the 

roasting and grinding of green coffee beans. After that, the soluble fraction is extracted by 

percolation. Finally, the extract has to be dried. Two technologies can be used for this 

purpose: spray-drying and freeze-drying. A previous stage of concentration is needed to 

reduce the amount of water in the extract before the drying stage in order to reduce 

processing costs and time (Boss et al., 2004). This concentration stage can be performed 

by evaporation, microfiltration, or freeze concentration. When freeze-drying is used, the 

concentration stage is achieved by freeze concentration.  
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Figure 1.1. Process used to obtain soluble coffee  

1.1.1. Freeze Concentration 

 

Freeze Concentration (FC) is a technology used to remove water at low temperatures, 

preserving the quality of the original material. Water removal in FC is achieved by cooling 

the solution until ice crystals form and separate, producing a more concentrated fluid 

(Sánchez et al., 2009). Several industries use freeze concentration technology, including 

the food industry −fruit juices, dairy products, wine, and beer−, biotechnology and waste 

water treatment (Aider and de Halleux, 2009b; Sánchez et al., 2009).  

 

Two phases are obtained when the temperature of an aqueous solution is decreased 

below the freezing point: a liquid phase with higher solute concentration than the initial 

solution, and a solid phase composed by pure ice in the ideal situation or ice with trapped 

solutes in the practical situation (Rahman, 2006). This phenomenon is known as solute 

occlusion (Aider and de Halleux, 2009b; Sánchez et al., 2009). Heat and mass transfer are 

implied in this phenomenon (Petzold and Aguilera, 2009).  

 

The freezing process involves the crystallization of water contained in the solution. 

Crystallization is the formation of solid particles from a homogenous phase (Chen et al., 

1998). This process involves three steps. First, the solution must be subjected to 

supersaturation or supercooling. Second, a nucleation or production of the first stable 

particles is needed. Finally, crystal particles grow to their final size depending on 

temperature conditions (Sánchez et al., 2009). Primary heterogeneous nucleation occurs 

on surfaces different than the crystal itself, such as the container wall or impurities (Mullin, 

2001). Once the ice seeds are produced, they grow through a process known as Ostwald 

ripening (Aider et al., 2009a). Crystallization plays an important role on the behaviour of 

freeze concentration technology. Separation is determined by freezing and thawing 

stages. Research usually focuses on these stages, as well as on the type of solution and 

the operational variables that have an effect on separation.  

 

As shown in Fig. 1.2, there are three freeze concentration techniques according to ice 

crystal growth: suspension FC, film FC (progressive or falling-film FC) and block FC (total 

or partial) (Aider & de Halleux, 2009b; Sánchez et al., 2009). A brief description of each 

technique is presented in the following paragraphs.  
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Extraction  

Crioconcentración 

• (evaporation, freeze 
concenrtation) 
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Figure 1.2. Freeze concentration techniques. Source: The author. 

 

1.1.1. Suspension Freeze Concentration 

 

Suspension FC is the most implemented technique at the industrial level. This technique 

was developed by Niro Process Technology B.V. It comprises three stages (Sánchez et 

al., 2009): crystallization, ripening, and separation of ice crystals. First, the solution enters 

into a scraped surface heat exchanger. Then, small crystals are used to form a suspension 

and these crystals grow in the ripening stage. Finally, ice crystals are separated through 

filtrating and washing columns.  

 

This technique was first studied by Huige and Thijssen (1972). Production of ice crystals 

was studied and the freeze concentration technique was subsequently developed and 

patented. There has been extensive research on the nucleation mechanism (Shirai et al., 

1987), washing columns (Quin et al, 2008), and the scraped heat exchanger (Habib and 

Farid, 2006).  

 

Suspension freeze concentration is an efficient technique in terms of ice purity and 

increased concentration (Qin et al., 2007, 2006; van der Ham et al., 2004). This technique 

allows to concentrate coffee extract up to 32–35% solids and to obtain a high-purity 

effluent with 0.1% solids (Van Mil and Bouman, 1990; Van Pelt and Bassoli, 1990). 

However, this technique requires complex systems for ice separation and many moving 

parts, which increases the initial and operating costs (Aider and de Halleux, 2009b; 

Miyawaki et al., 2005; Sánchez et al., 2009). Recent developments have focused on 

minimizing moving parts, replacing the scrapped surface heat exchanger, and improving 

washing columns (Petzold and Aguilera, 2013; Sánchez et al., 2009; Van der Ham et al., 

2004).  

Techniques 

Suspension 

Film 

Falling-Film 

Progressive 

Tubular 

Vertical 

Block 

Partial 

Total 
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1.1.1. Film Freeze Concentration 

 

Film freeze concentration consists in the formation of a single ice film on a cooling surface. 

Separation of the ice is easier than in the suspension technique as the film remains 

adhered to the surface. Ice growing and separation stages are carried out using the same 

equipment. Heat transfer is achieved across the ice layer. Two different options have been 

developed for film freeze concentration: falling-film freeze concentration and progressive 

freeze concentration.  

 

Progressive Freeze Concentration 

 

In progressive freeze concentration, an ice film is produced on a cooling surface while the 

fluid is moving on the growing ice layer (Miyawaki et al., 2005). Progressive freeze 

concentration can be performed in vertical or tubular equipment.  

 

Tubular progressive freeze concentration was proposed by Shirai et al. (1998) and it 

consists of two concentric tubes that are connected. The solution to be concentrated and 

the refrigerant fluid circulate through the inner and the external tube, respectively. Ice is 

produced on the internal wall of the inner tube. The velocity of the fluid reduces solute 

occlusion on the ice layer. Relevant operational variables include initial concentration and 

type of solution, cooling temperature, and flow rate of the solution (Miyawaki et al., 2005; 

Shirai et al., 1998; Wakisaka et al., 2001). 

 

On the other hand, the vertical system is composed by a cylindrical agitated tank equipped 

with a cooling jacket. Ice grows on the cooling wall. Agitation is applied to reduce solute 

occlusion. Operational variables in this technique are cooling rate, agitation rate, and type 

and initial concentration of the solution. (Liu et al., 1998) 

 

Falling-Film Freeze Concentration 

 

Falling-film freeze concentration is carried out in a plate equipment. In this technique, the 

solution to be concentrated re-circulates on a cooled vertical plate. Fluid descends down a 

film, and an ice sheet is produced by freezing. Ice forms a single layer on the cold surface. 

The solution is collected and re-circulated continuously (Sánchez et al., 2011b). The 

process is performed in batch operation. The simplicity of ice separation is an advantage 

of this technique. Current studies of this technique focus on how to increase the 

concentration level of the solution and the purity of ice. Table 1.1 shows the main research 

on falling-film freeze concentration.  

 

 

 

 

 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

5 

 

Table 1.1. Main researches on falling-film freeze concentration 

Author, year Fluid Main results 

(Chen et al., 1998) Sucrose 

solutions 

Solute occlusion on the ice depends on freezing rate, fluid 

velocity and concentration of the fluid. 

 

(Chen and Chen, 

2000) 

Sucrose 

solutions, 

milk 

A general correlation to predict the distribution coefficient of 

falling-film freeze concentration was generated. 

 

(Peters-Erjawetz et 

al., 2007) 

Milk Concentrated milk fat was obtained through falling-film 

freeze concentration with the same characteristics of the 

suspension technique. A method to improve nucleation 

through the formation of a primary layer was identified. 

  

(Raventós et al., 

2007) 

Sugar 

solutions 

The greatest purity level of the ice was found at low initial 

solute concentration. A better result was achieved for 

sucrose solutions than fructose and glucose solutions. 

  

(Hernández et al., 

2009)  

Apple and 

pear juices 

Fruit juices were freeze-concentrated in a pilot. 

Concentration rates of 1.4°Brix each hour were obtained. 

The ice production rate decreased with juice concentration.  

 

(Hernández et al., 

2010) 

 

Must Concentrated grape must was obtained in a multiplate 

freeze concentrator. A must with 30 °Brix was obtained.  

(Sánchez et al., 

2010) 

Orange juice Juice concentration was increased to 28 °Brix. Solute 

occlusion in the ice increased exponentially. 

 

(Auleda et al., 2011) Sugar 

solutions, 

and fruit 

juices  

A calculation method for designing and sizing equipment for 

falling-film freeze concentration of fruit juices was 

developed.  

 

(Sánchez et al., 

2011a) 

Whey Whey concentration increased linearly in multiple stages of 

falling-film freeze concentration. Concentration efficiency 

decreased, and protein and carbohydrates concentration 

increased with the concentration stages. 

  

 (Belen et al, 2012) 

 

Tofu whey  Tofu whey concentration was increased eight times in eight 

stages of falling-film freeze concentration. Isoflavon 

concentration was increased 1.5 times.  
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1.1.1. Block Freeze Concentration 

 

The block freeze concentration method, also known as freeze-thaw concentration, can be 

performed through partial or total freezing. In the total block freeze concentration 

technique, the solution to be concentrated is completely frozen and then partially thawed 

to recover a fraction of liquid with a higher concentration (Aider & de Halleux, 2009; 

Nakagawa et al., 2010b). In the partial technique, ice grows partially and it is then 

separated from the remaining liquid. Block freeze concentration consists of three stages: 

freezing, thawing, and separation of the concentrated liquid fraction. These stages define 

separation efficiency (Nakagawa et al., 2009). Additionally, and the process can be 

repeated in successive cycles to increase the concentration index (Aider & Ounis, 2012).  

 

The advantage of this technique is that the fluid remains static, and consequently there is 

no need for complex equipment. In addition, the three stages can be performed in the 

same unit. However, it imposes research challenges associated to the ability to decrease 

solute occlusion and to achieve an industrial viable operation. The research on this 

technique has increased in recent years. Table 1.2 shows the main research on block 

freeze-concentration. 

 

Table 1.2. Main researches on block freeze concentration 

Author, year Fluid Main results 

(Chen et al., 2001) Protein and salt 

solutions 

Solute concentration depended on freezing rate, 

operational protocol, and molecular size of the 

solutes. Movement of solutes during freezing was 

demonstrated.  

(Yee et al., 2003) Milk protein, 

sugar and salt 

solutions 

The concentration was successful. The three first 

fractions showed the highest concentrations. 

Supercooling affected the concentration level.  

(Ayel et al., 2006) Antifreezing 

solution 

Dendrite growth rate increases with supercooling 

degree and decreases with solute concentration.  

(Aider et al., 2008)  Fruit juice Cooling temperature did not affect the concentration 

level. The type of juice and the number of stages 

were highly significant for the separation. 

(Aider and de 

Halleux , 2008a)  

Maple syrup The separation level was not affected by the 

microwave-assisted thawing. Thawing time was 

reduced by the microwave energy. The technique 

was viable and economic.  

(Aider and de 

Halleux , 2008c)  

Whey The separation was not affected by the thawing 

method. A negative effect on protein denaturation 

was identified.  
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(Burdo et al., 2008)  Grape juice Application of ultrasound in the freezing stage was 

tested. Ice porosity increased with oscillation 

frequency.  

(Nakagawa et al., 

2009)  

Binary model 

solutions 

The freeze concentration phenomenon was 

governed by the water drop thawing rate during the 

thawing stage.  

(Aider et al., 2009)  Acidified milk 

whey  

A highly concentrated liquid was obtained. However, 

the level of solute occlusion was high. Foam capacity 

decreased and foam stability of the whey increased 

with freeze concentration. 

(Gao et al., 2009)  Waste water The partial block technique was tested. A good level 

of impurity removal was achieved. Separation was 

increased by applying agitation. Freezing 

temperature did not have any effect on separation.  

(Nakagawa et al., 

2010a) 

Apple juice The level of concentration was affected by the 

thawing temperature. Separation efficiency is 

determined by solute elution in the thawing stage. 

Solute concentration increased with time and low 

thawing temperatures.  

(Nakagawa et al., 

2010b)  

Ternary model 

solutions 

The separation was controlled by the thawing stage.  

(Aider and Ounis, 

2012)  

Milk whey Successive stages were proposed for the block 

technique. The thawing method did not affect 

separation but decreased processing time.  

(Petzold et al., 

2013)  

Sucrose solution Separation efficiency was increased by vacuum 

separation of the liquid fraction. Processing time was 

also reduced through this technique.  

(Petzold and 

Aguilera, 2013) 

Sucrose solution A centrifugal force is proposed to separate the 

concentrated fraction from the ice matrix. Solute 

recovery was increased through this technique.  

 

The state of the art of freeze concentration was supplemented by five papers published as 

a result of the research herein. These publications will be presented in the following 

chapters.  
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1.2. Research question 

 

Freeze concentration is a technology used to eliminate water from aqueous solutions, 

preserving quality through low processing temperatures. This technology is used in the 

food, pharmaceutical, and biotechnological industries. Freeze concentration is used in the 

process to obtain freeze-dried coffee. The most implemented technique is suspension 

freeze concentration, which is effective for separation; however, this technique requires 

systems of ice separation and many moving parts, which increases initial and operating 

costs. For this reason, other freeze concentration techniques have been studied. Different 

techniques, such as falling-film, and block freeze-concentration are being developed 

seeking to reduce operational costs. The operational conditions of these new techniques 

have not been defined, hindering their industrial implementation. The use of these 

techniques in coffee extraction through concentration has not been tested yet.  

 

A key problem for researchers is to establish the relationship between the operational 

variables and the phenomena required to reduce solute occlusion and to increase 

separation efficiency of block and falling-film freeze concentration. In addition, the 

functional quality and sensory quality of the product are highly important in the coffee 

industry. For this reason, the effect of freeze concentration on the organoleptic quality and 

functional quality of coffee extract should be studied. From this context, the following 

research questions can be formulated: 

 

¿What is the effect of the operational variables of block and falling-film freeze 

concentration on separation efficiency and quality of coffee extract?  
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1.2. Objectives 

 

1.2.1. General Objective 

 

The main objective of the present study was to establish the effect of the operational 

variables of block and falling-film freeze concentration on separation efficiency and quality 

of coffee extract.  

 

1.2.1.1. Specific Objectives 

 

1. Design and implement an equipment to study block and falling-film freeze 

concentration. 

 

2. Determine the effect of operational variables of freeze concentration on 

separation efficiency. 

 

3. Assess the effect of freeze concentration on volatile and bioactive compounds 

of coffee extract.  

 

4. Propose operative strategies to integrate block and falling-film freeze 

concentration of coffee extract in order to increase solute recovery. 
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1.3. Structure of the document 

 

The present thesis document is organized in ten chapters.  

 

The first chapter offers a brief presentation of the state of the art, the research question, 

and the objectives of the study. The second chapter presents the design of a test unit for 

studying block and falling-film freeze concentration.  

 

Chapter three presents the characterization of the main physical properties of coffee 

extract at temperatures close to freezing. The relations between coffee mass fraction and 

Brix degrees, freezing curve, rheological behaviour, and density of coffee solutions at 

temperatures close to the freezing point were measured and modelled mathematically.  

  

Chapter four focuses on the study of the effect of the operational variables of block and 

falling-film freeze concentration on separation efficiency. This chapter presents the 

evaluation of the effect of the initial coffee mass fraction, the cooling temperature, the 

heating temperature, and the freezing direction on the solute yield and concentration index 

of block freeze-concentrated coffee extracts. In addition, it discusses the impact of the 

technique on the bioactive compound concentration and antioxidant activity of the coffee 

extract. 

 

The effect of different separation and thawing methods in block freeze-concentration is 

provided in chapter five.  The effect of gravitational and vacuum assisted separation, 

thawing temperature, and thawing method on solute yield is also studied.  

 

The effect of the operational variables on solute occlusion in falling-film freeze 

concentration is studied in chapter six. The aim of this chapter is to evaluate the behaviour 

of coffee extract during falling-film freeze concentration at different coffee mass fractions, 

ice growth rates, and film velocities on the plate, and to obtain the parameters for average 

distribution coefficient modelling.  

 

A comparison of solute retention, productivity, ice morphology, volatile compounds 

preservation and sensory quality between block and falling-film freeze concentration of 

coffee extract is presented in chapter seven.  

 

Chapter eight proposes a process for integrating block and falling-film freeze concentration 

seeking to increase separation efficiency. The process presented in chapter eight includes 

recovery of coffee solids by fractionated thawing and block freeze-concentration 

techniques.  

 

The main results of the study are summarized in chapter nine. Finally, conclusions and 

suggestions for future work are provided in chapter ten.  
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This document of doctoral thesis, the published papers derived from this work, and its 

relationship with the objectives of the thesis are presented according to the structure 

shown in Fig 1.3. 
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Figure 1.3. Structure of the document. 
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1.4. Published papers 

The following research papers were published as a result of the present work: 

 

1. Moreno F.L., Raventós M., Hernández E., Santamaría N., Acosta J., Pirachican O., Torres L. 

and Ruiz Y. (2014) Rheological behaviour, freezing curve and density of coffee solutions at 

temperatures close to freezing. International Journal of Food Properties. DOI: 

10.1080/10942912.2013.833221 

 

2. Moreno, F.L., Raventós, M., Hernández, E., & Ruiz, Y. (2014). Block freeze-concentration of 

coffee extract: effect of freezing and thawing stages on solute recovery and bioactive 

compounds. Journal of Food Engineering, 120, 158-166 

 

3. Moreno, F.L., Robles, C. M., Sarmiento, Z., Ruiz, Y., & Pardo, J. M. (2013). Effect of separation 

and thawing mode on block freeze-concentration of coffee brews. Food and Bioproducts 

Processing, 91(4), 396-402 

 

4. Moreno, F.L., Raventós, M., Hernández, E., Ruiz, Y. (2014). Behaviour of falling-film freeze 

concentration of coffee extract. Journal of Food Engineering 141, 20-26. 

 

5. Moreno, F.L., Hernández, E., Raventós, M., Robles, C., & Ruiz, Y. (2014). A process to 

concentrate coffee extract by the integration of falling film and block freeze-concentration. 

Journal of Food Engineering, 128, 88-95. 
 

In addition, the following works were presented in scientific congresses:  

1. Moreno, F.L., Hernández, E., Raventós, M., Robles, C., & Ruiz, Y. (2012). Mathematical 

modelling of rheological behaviour of coffee extract at temperatures close to freezing. In: 

Congreso Español de Ingeniería de Alimentos CESIA VII. Ciudad Real, España.  

 

2. Ramírez, A. Moreno, F.L. Ruiz, Y. Block freeze concentration of coffee extract. (2012). Revista 

Vitae 19, (1). In: I Congreso Internacional de investigación e innovación en ciencia y tecnología 

de alimentos IICTA. Bogotá, Colombia. 

 

3. Moreno, F. L., Raventós, M., Hernández E., Gulfo R., Ruiz, Y. (2014) Technical, energetic and 

economic comparative of three concentration systems in a fruit juice industry: Case of study. In: 

Congreso Iberoamericano de Ingeniería de Alimentos CIBIA 9. Valencia, España. 

 

4. Moreno, F. L., Raventós, M., Hernández E., Gulfo R., Robles, C., Ruiz, Y. (2014) Integration of 

block and falling-film freeze concentration applied to concentrate sucrose solutions. In: 

Congreso Iberoamericano de Ingeniería de Alimentos CIBIA 9. Valencia, España. 

 

5. Moreno, F. L., Hernández A.J., Moreno Y., Ruiz, Y. (2014). Soluble solids and sediments 

determination during block freeze concentration of coffee extract. In: II Congreso Internacional 

de investigación e innovación en ciencia y tecnología de alimentos IICTA. Medellín, Colombia. 
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2. DESIGN OF AN EQUIPMENT FOR THE STUDY OF BLOCK AND FALLING-FILM 

FREEZE CONCENTRATION  

 

A unit for the study of block and falling-film freeze concentration was designed to develop 

the present research. The main results of the design process are presented in this chapter.   

2.1. Systems of the Test Unit 

 

The unit for the study of freeze concentration must control the main operational variables 

of freeze concentration required to develop the tests. Firstly, the unit should provide 

cooling and heating fluids with the possibility of temperature and freezing direction 

controlling. Secondly, the temperature and concentration of the solution should be 

measured during the tests. In addition, the equipment should be able to couple a block or 

a falling-film freeze concentration device. For these reasons, the freeze concentration unit 

is composed by the systems shown in Table 2.1.  

 

Table 2.1 Systems of the concentration unit. 

SYSTEM DESCRIPTION 

Cooling system 
Thermostatic bath to provide a cooling fluid (ethylene glycol-water 50% 

m/m). The fluid is pumped to the freeze concentration device. 

 Heating system

In block freeze concentration a thawing stage is needed. For this reason a 

thermostatic bath to provide a heating fluid (ethylene glycol-water 50% 

m/m) was used. The fluid is pumped to the block freeze-concentration 

device during the thawing stage.  

Block freeze-

concentration 

 device

The block freeze-concentration device is a cylindrical container. The 

container consists in a double jacket device for the circulation of cooling 

and heating fluids. The device has thermal insulation and exit valves to 

 collect the thawing fraction. 

Falling-film 

freeze 

concentration 

device 

The falling-film freeze concentration device is a chamber with an internal 

cooling plate to freeze the solution. The cooling fluid circulates inside the 

plate. The fluid flows through a descending film over the cooling plate, 

and it is collected in a tank and re-circulated by peristaltic pump. Ice 

grows on the surface of the plate.  

Valves and 

 connexions

It consists in a system of flexible hosepipe that conducts cooling and 

heating fluids to the block device and the plate of the falling-film chamber. 

A set of valves is provided to control freezing and thawing direction 

 according to experimental requirements. 

Support 

 structure

It consists in a structure that supports the freezing container, the falling-

 film chamber, the hosepipe, and the valves.
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2.2. Structure of the Freeze Concentration Unit  

 

The structure of the equipment is represented by the piping and instrumentation diagram 

(P&ID) shown in Fig 2.2 and 2.3. Freezing devices, connexions, valves, sensors, and 

control systems are also shown in these figures. The P&ID of the block freeze 

concentrator is shown in Fig 2.2.The P&ID of the falling-film freeze concentrator is shown 

in Fig 2.3. 

  

 
 

Figure 2.1. Piping and instrumentation diagram of block freeze concentrator. 
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Figure 2.2. Piping and instrumentation diagram of falling-film freeze concentrator. 
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Fig. 2.3 shows the overall setup of the freeze concentration unit. It includes the cooling 

system, the heating system, the block freeze-concentration device, the falling-film freeze 

concentration device, valves, and connexions.  

 

 

 

 

 

a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

Figure 2.3. Overall setup of the freeze concentration unit.  

a) Block freeze concentrator. b) Falling-film freeze concentrator. 

 

The mechanical drawings of the equipment were generated using the Autodesk-Inventor 

software. A sample of the planes shows the isometric projection, the overall scheme and 

the exploded view are shown in Figures 2.4 and 2.5.  

 
Figure 2.4. Mechanical planes of freeze concentrator. Isometric projection. 
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Figure 2.5. Mechanical planes of freeze concentrator.  

a) Explosion drawing of block freeze concentrator; b) Explosion drawing of falling-film 

chamber 

 

2.3. Design Parameters and Operational Intervals. 

 

The following design parameters were established according to the identified functions: 

 

- Heating and cooling system: Thermostatic baths CP12122-58 (Cole Parmer, USA); 

temperature interval: -35°C to 150°C +/- 0.01°C; dimensions: W 14.6" H 27.8" L 20.8"; 

temperature sensor stability: ±0.025°C; cooling power: 800W; pumping head at zero 

pressure 10.8 psi (750mbar); heating power: 2 kW; maximum flow rate: 21 L/min.  

 

- Block freeze concentrator: Cylindrical container made of stainless steel 304, with 

double jacket for the circulation of refrigerant fluids. It has a capacity of 160 mL, 52.5 mm 

in diameter, and 85 mm in height. Insulation is provided at the bottom, the top, and the 

external side of the container to ensure unidirectional freezing. Two valves are located at 

the bottom, near the internal and external walls, to separate the concentrated liquid 

 A digital scale PA3102 (Ohaus, USA) of 3100 g * 0.01 g is located behind the fraction.

valves to collect and weight the samples.  

 

- Falling film freeze concentrator: Chamber made of stainless steel 304. A rectangular 

cooling plate can be located inside the chamber. A dispersion tube is located in front of the 

plate to disperse the solution to be concentrated. A storage tank is located at the bottom of 

the chamber. The plate has dimensions of 25-cm width and 20-cm height. Cooling fluid 

from the cooling bath flows inside the plate.  
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- Structure, valves and connexions: The structure made of stainless steel supports the 

freezing container, the falling film chamber, the hosepipe, and the valves. A polyethylene 

flexible hosepipe is used to conduct cooling and heating fluids. A set of 12 ball valves, 8 

mm in diameter, is provided to control freezing and thawing direction.  

 

 
 

Figure 2.6. Block freeze concentrator.  

1) Heating thermostatic bath; 2) Cooling thermostatic bath; 3) Block freeze concentrator 

container; 4) Thawed sample collecting system; 5) Scale; 6) Valves to control freezing and 

cooling direction; 7) Hosepipe for heat transfer fluid flow.; 8) Support structure. 

 

 

 

 

Figure 2.7. Cooling container 
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Figure 2.8. Falling-film freeze concentrator.  

1) Freezing chamber; 2) Cooling plate; 3) Peristaltic pump; 4) Thermostatic bath. 

 

 

 
 

Figure 2.9. Freezing chamber. 
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3. RHEOLOGICAL BEHAVIOUR, FREEZING CURVE, AND DENSITY OF COFFEE 

SOLUTIONS AT TEMPERATURES CLOSE TO FREEZING 

3.1. Abstract 

 

The physical properties of coffee solutions were determined for temperatures close to the 

freezing point. Rheological behaviour, freezing curve, density and their relationship 

between coffee mass fraction and brix degrees were determined for coffee mass fractions 

between 5 and 50% (wet basis) in the -6°C to 20°C temperature interval. Values of 

viscosity varied from 1.99 to 1037 mPa·s and values of density from 1000 to 1236 kg·m-3. 

The freezing curve was generated using the undercooling method, giving values within 

freezing curves for food fluids. The results were used to generate mathematical models to 

predict viscosity, freezing point depression, and density as a function of coffee mass 

fraction and temperature. 

 

Keywords: Coffee; Properties; Rheology; Freezing; Modelling; Freeze-Concentration 

 

Nomenclature 

°Brix   Brix degrees 

a, b, c, d  parameters of Eq. 3 and Eq. 4 

a1, a2, b1, b2, c1 parameters of Eq. 5 

a3, a4, a5, a6 a7 parameters of Eq. 7 

Ea    Activation energy (kJ•mol-1) 

FPD   Freezing point depression 

γ   Shear rate (s-1) 

K   Consistency coefficient (Pa•sn) 

k0   Frequency factor (mPa•s) 

n   Flow behaviour index 

nD   Refractive index 

R \  Universal gas constant (8.314 kJ•mol-1•K-1) 

R2    Coefficient of determination 

T   Temperature (°C) 

Xs   Coffee mass fraction (g coffee/ g solution) 

ρ   Density 

ρc   Density of coffee solids 

ρw   Density of water 

σ   Shear stress (Pa) 

Φ   Temperature correction 

ω   Rotational speed (rpm) 

𝜼   Viscosity (mPa•s) 

𝜼*   Standard reference Viscosity (1 mPa•s) 
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3.2. Introduction 

 

Coffee is the second traded commodity in the world after petroleum and one of the most 

consumed food beverage worldwide (Cheong et al., 2013; Esquivel y Jiménez, 2012). In 

the coffee industry, preservation of quality is highly important; for this reason, low 

temperature technologies are commonly implemented. Technologies such as freeze-

concentration and freeze-drying are used to produce soluble coffee thanks to the flavour 

preservation promoted for the low temperatures using (McLeod et al., 2016; Miyawaki et 

al., 2005; Sánchez et al., 2009). 

 

The measurement of physical properties of food fluids at low temperatures is relevant in 

the designing of processes and equipment for freezing technologies. The freezing curve of 

food fluids represents the state of food as a function of solid concentration and 

temperature. The state diagram is useful for process conditions selection in freezing 

technologies (Rahman, 2006). Flux behaviour comprehension at temperatures just above 

the freezing point of fluids is required for sizing freeze-concentration equipment, such as 

falling film or tubular systems. In a similar way, determining of the viscosity and density is 

important to establish the power requirements for pumping during fluid processing (Chin et 

al., 2009). Determining of mathematical models for physical properties and rheological 

behaviour at low temperatures and at different mass fractions allows applying calculation 

methods for designing and sizing equipment for freeze concentration (Auleda et al., 2011). 

 

The coffee mass fraction or solid content can be measured by gravimetric techniques; 

however, Brix degrees determination can be a faster technique. There is no coincidence 

between Brix degrees and solid content because the darker colour of coffee solutions and 

the minimum fraction of sediments of coffee extract can affect the diffraction of light. A 

relationship between Brix degree and coffee mass fraction has not been described. 

 

There are several mathematical models for viscosity prediction of food fluids (Ibarz et al., 

1992; Longinotty and Corti ,2008; Falguera and Ibarz, 2010). However, few studies report 

mathematical modelling of food fluids viscosity at low temperatures. In this sense, 

viscosities for sugar solutions, fruit juices, and dairy emulsions at low temperatures were 

reported by (Falguera et al.,2010; Ibarz et al., 2009; Ruiz et al., 2010;Tavares et al., 2007; 

Gabriele et al., 2011). In the case of coffee solutions, viscosity and some physical 

properties have been reported by (Sobolik et al., 2002; Telis-Romero et al., 2001) for 

temperatures ranging from 20 to 80°C. The freezing curve of coffee extract was obtained 

by Thijssen (1969) and Pardo et al. (2002); nevertheless, the authors report the 

dependence of data on the type of coffee and extraction methods. Additionally, telis-

Romero et al. (2000) studied the physical properties of coffee extract. However, there are 

no reports of coffee solutions viscosity and physical properties for temperatures below 

0°C. The modelling of viscosity and other physical properties at temperatures close to the 

freezing point could contribute to the design of processes and equipment for freezing 

technologies such as freeze concentration, freeze drying, and coffee extract handling in 
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the coffee industry. The aim of the present work was to measure and model the relation of 

coffee mass fraction and Brix degrees, freezing curve, rheological behaviour, and density 

of coffee solutions at temperatures close to the freezing point.  

3.3. Materials and methods 

 

Materials 

 

Colombian freeze-dried coffee (Buencafé, Buencafé Liofilizado de Colombia) provided by 

the Colombian Coffee Growers Federation was used to prepare aqueous solutions at 

different coffee mass fraction. Soluble coffee granules were dissolved in distilled water at 

30°C to obtain samples at different concentrations.  

 

Relationship between Coffee Mass Fraction and Brix Degrees 

 

Coffee solutions were prepared at different coffee mass fraction: Xs= 0.10, 0.20, 0.30, 

0.40, and 0.50. The solutions were stored at 20°C. Brix degrees and index refraction were 

measured by refractometry (Atago Pal 100, Japan) at 20°C ±1°C. The total dry matter was 

measured by weight-loss after oven drying at 103 °C +/- 1°C for four hours according to 

technical standards (Icontec, 2009). Measurements were performed in quadruplicate.  

 

Freezing Curve 

 

The method of undercooling reported by (Auleda et al, 2011; Ayel et al.,  2005; Jie et al.,  

2003) was used to determine the freezing point of coffee solutions. Coffee solutions at Xs= 

0.10, 0.20, 0.30, 0.40 and 0.50 were tested. The method consisted of cooling the sample 

by immersion in a cooling bath. Four test tubes with 10 mL of the sample were immersed 

in a cooling bath (Polystat, Cole Parmer, USA). The cooling fluid was a mixture of ethylene 

glycol and water (53% w/w). The bath was temperature controlled at an interval from -35 

°C to 150 °C +/- 0.01 °C. The temperature of the bath was settled at -13°C +/- 0.01 °C. 

The test tubes were immersed after the bath reached the temperature. The test tubes 

contained inside a PT100-IP65 temperature sensor (Testo, Germany) located in the centre 

of the sample. The sensor had a 2 mm diameter and a precision of ±0.01 °C, and it was 

connected to a 176 T2 datalogger (Testo, Germany). The temperature profile was stored 

in a PC. The freezing points were determined based on the cooling curves. The highest 

temperature reached after the undercooling due to nucleation corresponded to the freezing 

point. All the experiments were performed in quadruplicate.  

  

The method was previously standardized by measuring the freezing curve of sucrose 

solutions and comparing it with reported data (Auleda et al., 2011; Longinotti y Corti, 

2008). The solutions were prepared with sucrose analytic grade (Panreac Química, 

Colombia) at solid concentrations of 10-50% w/w and distilled water at 40°C. The solutions 

were stored and then freezing points were determined.  The technique was accepted when 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

22 

 

the difference between experimental and theoretical data was within 5%. This difference 

may be attributed to the solute inclusion in ice (Chen and Chen, 1996). 

 

Rheological Measurements 

 

Coffee solutions were prepared at Xs= 0.05, 0.20, 0.35 and 0.50. The solid content was 

verified by refractometry (Atago Pal 100, Japan) at 20°C+/-0.05°C using the equation 

obtained in the Brix degrees and coffee mass fraction measurements. The rheological 

behaviour of the samples was determined using a viscometer of coaxial cylinders 

(FungiLab Viscostar L, Barcelona) equipped with a device for low viscosity measurements, 

which is able to measure viscosities from 0 to 2000 mPa•s. The sample of 18 mL of coffee 

solution was placed on the device with a concentric inside spindle. The device was 

immersed in a cryostat (Polysience Model 9505, USA, temperature range: -30 to 150°C; 

temperature stability +/-0.5°C; readout accuracy: +/-0.5°C). The viscometer was connected 

to a PC for data storing. The sample temperature was verified using a thermocouple type 

K (Precision +/-0.5°C; measurement range: -50 to 1000°C) connected to a Datalogger 

(Testo 174 T4, Spain). Viscosity was measured after the sample reached the desired 

temperature.  

 

The measurements were performed varying shear rate, sample temperature, and coffee 

mass fraction. Four shear rates were adjusted for each sample, from 5 to 120 s-1, 

depending on the solution’s viscosity. The limit was established by the maximum torque of 

the viscometer. Shear rates were calculated using an equation given by the viscometer to 

convert rotational speed into shear rate, ɣ=1.2236*ω. Different temperatures above 

freezing point were tested (-6, -4, -2, 0, 2, and 4°C) depending on Xs, such that the 

solution remained in liquid state. Four different coffee mass fractions (0.05, 0.20, 0.35, and 

0.50) were tested. Experiments were performed in triplicate. The rheological behaviour of 

coffee solutions was modelled using the power law shown in Eq. 1.  

 

𝜎 = 𝐾 ∙ ɣ𝑛  (1) 

An Arrhenius type equation (Eq. 2) was used to describe the effect of temperature on the 

viscosity of coffee solutions (Ibarz et al., 2009).  

 

𝜂 = 𝑘0 exp (
𝐸𝑎

𝑅𝑇
)   (2) 

Activation energy and frequency factor were fitted to the Xs dependent model (Ibarz et al.,  

1992) shown in Eq. 3 and Eq. 4. 

 
𝑘0 = 𝑎 exp(𝑏 ∗ 𝑥𝑠) (3) 

𝐸𝑎 = 𝑐 exp(𝑑 ∗ 𝑥𝑠) (4) 

Two general models to predict viscosity of coffee solutions as a function of temperature 

and coffee mass fraction simultaneously were fitted. Mathlouli and Genotelle, (1995  cited 
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by Longinotti and Corti, 2008) proposed a general model for sucrose solutions shown in 

Eq. 5. 

 

log10
𝜂

𝜂∗ = 𝑎1 + 𝑎2𝑥 + 𝜑(𝑏1 + 𝑏2𝑥𝑠
𝑐1) (5) 

Where: 

 φ=(30-T)/(91+T) (6) 

Moreover, Sobolik et al. (2002) proposed a model applied to coffee solutions at room 

temperatures and higher, shown in Eq. 7.  

 

𝜂 = 𝑒𝑥𝑝 (𝑎3 + 𝑎4𝑥 + 𝑎5𝑥𝑠
2 +

𝑎6+𝑎7𝑥𝑠
2

𝑇+273.15
) (7) 

 

Density 

 

The density of coffee solutions at Xs= 0.10, 0.20, 0.30, 0.40, and 0.50 was determined by 

using a pycnometer at temperatures of 0, 5, 10, 15, 20 and 25 °C ± 0.01°C. The 

pycnometers with the samples were immersed in a cooling bath at the settled temperature 

(Polystat Cole Parmer, USA). One blank sample had a PT100-IP65 temperature sensor 

(Testo, Germany) immersed to check temperature. After the sample reached the 

temperature, the pycnometers were closed and weighed in an analytical scale (Mettler 

Toledo, USA). The measures were performed in triplicate. 

 

Statistical Analysis  

  

The average and the standard deviation of all data were calculated by SPSS 20.0 

software. The unknown parameters of the models showed in Eq. 1 to 10 were adjusted 

from experimental results using a linear regression fitting procedure with SPSS 20.0 for 

Eq. 2 to 4 and a non-linear regression procedure for the other intrinsically non-linear 

models. The goodness of model fit was based on coefficient of determination (R2), defined 

by the ratio between the regression sum of square and the total sum of squares. For the 

best fit, the R2 value should be high. 

3.4. Results and discussion  

 

Relationship between Coffee Mass Fraction and Brix Degrees 

The Brix degrees are a measure of the soluble solid content of sugar solutions. The 

relationship between Brix degrees and coffee mass fraction is presented in Table 3.1. A 

linear relation was obtained as seen in Eq. 8. The equation allows measuring coffee mass 

fraction by refractometry. The equation can be modified to %Solids=0.87•°Brix, in order to 

obtain solid percentage.  Similar relationships are used in the coffee industry (Moreno et 

al., 2013). The refractive index was also measured and its relation with Xs is presented in 
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Table 3.1. The relationship was fitted in the Eq. 9. The models allowed calculating coffee 

mass fraction using a quick technique such as refractometry. 

 
Xs= 0.0087·°Brix    (8);     R2=0.991 

nD = 1.334 +0.155Xs + 0.092Xs2    (9);    R2=0.984 

Table 3.1 Xs and refractive index as a function of brix degrees for coffee solutions 

Brix degrees Xs Refractive index 

11.3 0.094 1.3500 

10.7 0.095 1.3488 

11.4 0.103 1.3499 

11.4 0.100 1.3499 

22.8 0.183 1.3685 

23.0 0.204 1.3661 

21.3 0.191 1.3674 

22.0 0.154 1.3680 

33.2 0.305 1.3870 

33.7 0.308 1.3890 

34.3 0.297 1.3864 

32.9 0.303 1.3870 

41.3 0.381 1.4024 

45.3 0.396 1.4087 

44.5 0.393 1.4112 

45.7 0.396 1.4080 

55.4 0.494 1.4317 

56.2 0.496 1.4428 

60.3 0.493 1.4241 

51.9 0.459 1.4290 

 

Freezing Curve 

 

The cooling curves of coffee solutions were determined in quadruplicate as shown in Fig. 

3.1. The super-cooling can be observed by the temperature decrease until the nucleation 

process begins. Subsequently, a temperature increase was produced due to the latent 

heat of the phase change. The highest temperature reached corresponded to the freezing 

point of the sample (Auleda et al., 2011). From the cooling curves at different Xs, an 

average freezing point was calculated and the freezing curve for coffee solutions was 

obtained (Table 3.2.).  Data correspond to average and standard deviation. The values are 

comparable to those reported by Thijsenn (1969) and Thaler (1978) for different types of 

coffee. The difference with the freezing point of water (0°C) corresponded to the freezing 

point depression. Data were fitted to Eq. 10 for freezing point depression prediction as a 

function of coffee mass fraction. The regression coefficient obtained was 0.998, showing a 

good fitness.  

 
FPD = 35.01•Xs2 + 2.05•Xs    (10)     R2=0.998 
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Figure 3.1 Cooling curves of coffee solutions. Xs=0.40 

 

Table 3.2. Freezing point of coffee solutions as a function of coffee mass 

fraction  

Xs Freezing point (°C) 

0.1 -0.76 ± 0.04 

0.2 -1.92 ± 0.08 

0.3 -3.45 ± 0.06 

0.4 -6.54 ± 0.19 

0.5 -9.79 ± 0.24 

 

The freezing curve of coffee is between the freezing curves of glucose and sucrose, within 

the typical region of food fluids proposed by Auleda et al. (2011). This can be attributed to 

the polysaccharides content of coffee extract, which varies from 20 to 75% dry basis 

(Thaler, 1978; Franca et al., 2005; De Maria et al., 2006), depending on coffee variety, 

roasting and extracting processes.  

 

Rheological Measurements 

 

Rheological Behaviour 

 

The rheograms of coffee solutions at Xs 5, 20, 35, and 50% and temperatures between -6 

and 4°C are presented in Fig. 3.2, where shear stress (σ) as a function of shear rate (γ) is 

plotted. The dots correspond to experimental data and the lines were generated from 

parameters of Eq. 1, shown in Table 3.3. For this regression, coefficients of determination 

between 0.95 and 1.00 were obtained, suggesting good fitness of the models. A 

Newtonian behaviour was obtained with a flow index close to 1. Exponents of power law 
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were less than 1 for high Xs and low temperatures, showing a slightly pseudoplastic 

behaviour. However, this result is not significant according to standard deviation.  
   

 

Figure 3.2. Rheogram of coffee solutions 

4°C (□), 2°C (∆), 0°C(◊), -2°C (○), -4°C(x) and -6°C(─). (a) Xs=0.05, (b) Xs= 0.20, (c) 

Xs=0.35 y (d) Xs=0.50. Lines are calculated values using parameters given in Table 

3.3. 
 

The Newtonian behaviour was reported by Sobolik et al. (2002) for concentrated coffee 

solutions at higher temperatures in the interval from 0 to 1574 s-1. Moreover, the 

consistency coefficient of Eq. 1 was increased with Xs and decreased with temperature, as 

is indicated by several researchers (Chine et al.,2009; Magerramov et al.,2007). Assuming 
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a Newtonian behaviour, the values of viscosity of coffee solutions at the tested shear rates 

are presented in Table 3.4. As expected, the viscosity increased with increasing Xs and 

decreasing temperature. It was observed that influence of Xs on viscosity is greater than 

influence of temperature. These results are comparable with those obtained for other food 

solutions (Ruiz et al.,2010) and for coffee solutions at higher temperatures (Sobolik et 

al.,2002; Telis-Romero et al., 2001).  
  

Table 3.3. Parameters of power law (Eq. 1) for different coffee mass fractions 

and temperatures 

Xs T (°C) K n R2 

0.05 0 2.10 *10-3 ± 0.90 *10-3 1.01 ± 0.01 0.99 

 
2 1.91 *10-3 ± 0.10 *10-3 1.01 ± 0.01 1.00 

 
4 1.80 *10-3 ± 0.10 *10-3 1.03 ± 0.01 0.99 

0.20 -4 9.14 *10-3 ± 0.40 *10-3 0.97 ± 0.01 0.99 

 
-2 8.02 *10-3 ± 0.60 *10-3 0.98 ± 0.02 0.99 

 
0 7.52 *10-3 ± 0.40 *10-3 0.98 ± 0.01 0.99 

 
2 6.90 *10-3 ± 0.20 *10-3 0.98 ± 0.01 0.99 

 
4 0.81 *10-3 ± 2.70 *10-3 0.93 ± 0.08 0.95 

0.35 -4 5.67 *10-2 ± 0.47 *10-2 0.95 ± 0.04 0.98 

 
-2 4.92 *10-2 ± 0.40 *10-2 0.96 ± 0.03 0.98 

 
0 4.48 *10-2 ± 0.47 *10-2 0.96 ± 0.04 0.98 

 
2 4.20 *10-2 ± 0.14 *10-2 0.96 ± 0.01 0.99 

 
4 3.52 *10-2 ± 0.37 *10-2 0.97 ± 0.04 0.98 

0.50 -6 1.10 ± 0.29 0.98 ± 0.08 0.95 

 
-4 1.01 ± 0.18 0.94 ± 0.05 0.97 

 
-2 0.91 ± 0.16 0.93 ± 0.05 0.97 

 
0 0.79 ± 0.14 0.92 ± 0.05 0.97 

 
2 0.65 ± 0.12 0.94 ± 0.04 0.98 

 
4 0.53 ± 0.06 0.94 ± 0.03 0.99 

 

Viscosity Mathematical Modelling 

 

The viscosity dependence on temperature is presented in Table 3.4. As expected, 

viscosity increased with Xs and decreased with temperature. Data was fitted to Eq. 2 and 

the parameters for coffee solutions are presented in Table 3.5. The activation energy was 

increased with Xs, similarly to the result obtained by (Telis-Romero et al., 2001) for coffee 

solutions at temperatures between 20 and 80°C. On the other hand, Ko values decreased 

with Xs. A good fit between experimental and modelled data was obtained. The results are 

comparable with those reported for other food solutions at temperatures close to freezing 

(Falguera et al., 2010; Ibarz et al., 2009; Ruiz et al., 2010). 

 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

28 

 

Ea for sucrose solutions was reported by Galmarini et al. (2009), for sucrose concentration 

of 35% with a value of 22.0 kJ∙mol-1 between 20 and 34 °C. For fruit juices, activation 

energy of 42 kJ∙mol-1 is reported by Chin et al. (2009). Likewise, the reported activation 

energy of untreated sugar cane juice is 36.79 kJ∙ mol-1 (Galmarini et al., 2009). Ea value 

for mandarin juice at low temperatures is 33 kJ∙ mol-1 (Falguera et al., 2010). It is important 

to remember that Ea for water is 14.4 kJ∙ mol-1 and this value can be increased until 60 kJ∙ 

mol-1 with solid concentration (Astolfi-Filho et al.,2011). Ea for coffee solutions obtained in 

the present study varied from 22.0 to 51.3 kJ∙ mol-1, giving values within the range for food 

fluids.  

 

Table 3.4. Viscosity of coffee solutions at different temperatures (T) and 

coffee mass fractions (Xs). (mPa·s) 

Xs 0.05 0.20 0.35 0.50 

T (°C)     

4 1.99 ± 0.02 5.84 ± 0.08 32.9 ± 1.68 425.84 ± 16.94 

2 2.13 ± 0.02 6.41 ± 0.07 36.8 ± 1.98 543.03 ± 44.73 

0 2.29 ± 0.02 6.99 ± 0.09 40.7 ± 1.95 633.43 ± 54.68 

-2 
 

7.51 ± 0.18 45.6 ± 2.23 734.54 ± 58.74 

-4 
 

8.22 ± 0.12 51.1 ± 2.58 849.11 ± 74.89 

-6 
 

  1037.24 ± 94.90 

 

Table 3.5. Parameters of Arrhenius equation (Eq. 2.) for coffee solutions at 

different Xs 

Xs Ko (mPa·s) Ea (kJ·mol-1) R2 

0.05 1.39 *10-4 ± 0.82*10-4 22.0 ± 1.35 0.974 

0.20 7.60*10-5 ± 3.10*10-5 25.9 ± 0.91 0.984 

0.35 1.20*10-5 ± 1.40*10-5 34.1 ± 2.56 0.933 

0.50 9.27*10-8 ± 0.00*10-8 51.3 ± 3.57 0.934 

 

General Models 

 

The Regression analyses were performed for four different models of viscosity prediction 

as a function of Xs and temperature. Parameters of models, standard deviation, and 

coefficients of determination are given in Table 3.6. Values are comparable with those 

reported by Ibarz et al, (1992), Longinotti and Corti, (2008) and Sobolik et al. (2002), 

although there are some differences in values due to specificity for coffee solutions at the 

present conditions. Eq. 5. had the highest R2 value, thus, this model seems to be capable 

of adequately describing viscosity of coffee solutions at different temperatures (°C) and 

coffee mass fraction at the investigated conditions:  
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𝑙𝑜𝑔10 𝜂 = 21.3 + 2.1𝑋𝑠 + (
30−𝑇

91+𝑇
) (31.5 − 12.7𝑋𝑠2.53)  (5) 

 

The other two models tested presented a slightly lower regression coefficient, but the 

adjustment was also satisfactory. Consequently, it is assumed that all models properly 

describe the viscosity of coffee solutions in the temperature and coffee mass fraction 

intervals evaluated in this study. 

 

The parameters of Eq.7 for coffee solutions at temperatures between 0 and 80 °C were 

reported by Sobolik et al. (2002). It is possible to compare a coincident point between the 

reported model and the model fitted in the present work. The viscosity of a coffee solution 

at Xs 0.20 and T=0 °C, generated by the model reported by Sobolik et al. (2002) is 0.0085 

Pa∙s and the corresponding value obtained in this work is 0.0069 Pa∙s, showing a 

difference of 18%. Sobolik et al. (2002) compared their results with those obtained by 

Weisser in a previous work and found a maximum difference of 15%. This difference is 

attributed by the authors to the fact that viscosity depends on the type of coffee and its 

processing. The generation of parameters of this model at temperatures close to freezing 

expands the range of application of the model to sub-zero temperatures.  

 

Table 3.6. Parameters of mathematical models for prediction of coffee 

solution's viscosity. 

Eq. Parameters R2 

3, 4 

a = 8.1 *10-3 ± 3.0 *10-5 

0.955 
b = -15.8 ± 1.43 

c = 18.9 ± 1.93 

d = 1.87 ± 0.27 

   

5, 6 

a1 = 21.3 ± 1.18 

0.999 

a2 = 2.10 ± 0.34 

b1 = 31.5 ± 1.76 

b2 = -12.7 ± 0.65 

c1 = 2.53 ± 0.21 

   

7 

a3 = -7.03 ± 19.5 

0.992 

a4 = 1.01 ± 9.48 

a5 = -38.7 ± 79.8 

a6 = 2.16 *103 ± 5.31*103 

a7 = 1.60 *103  ± 2.1*104 

 

 

A plot of viscosity values as a function of temperature and Xs was generated using the 

parameters of the Eq. 5 (Fig. 3.3). This figure showed that viscosity increased with Xs and 

decreased with temperature. The same result was reported by Diaz-Ocampo et al., (2013). 
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The curve on the surface represents the freezing point curve of coffee solutions, using 

values obtained in section 3.2. The viscosity values beyond the line do not have physical 

significance because they are below the freezing point. A higher dependence of viscosity 

on Xs than on T is evident in the studied interval. 

 

Density 

 

The density of coffee extract as a function of coffee mass fraction and temperature is 

shown in Table 3.7. As expected, density increases with Xs and decreases with 

temperature (Gundurao et al., 2011). Values between 1036 and 1277 kg•m-3 were 

obtained. The results are similar to those reported by Telis-Romero et al. (2000) between 

1000 to 1200 kg m-3 for the same Xs intervals and higher temperatures. The density 

evidences a stronger dependence on solid content than on temperature. Density can be 

expressed as an average of coffee solids density and water density (Sobolik et al., 2002); 

in turn, density of these components is dependent on temperature. The model fitted is 

shown in Eq. 11 to 13. The regression coefficient was R2=0.989, showing a good data 

fitting.  

 

 

Figure 3.3. Coffee solutions viscosity as a function of temperature and coffee 

mass fraction.  

Predicted values using Eq. 5. The curve on surface represents freezing point curve 

for coffee solutions modelled by Eq. 10. 
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1

𝜌
=

𝑋𝑠

𝜌𝑐
+

(1−𝑋𝑠)

𝜌𝑤
      (11)     R2=0.989    Where,  

𝜌𝑐 = 1878.1 − 40.76𝑇 + 1.035𝑇2   (12) 

𝜌𝑤 = 1000 + 2.30𝑇 − 0.11𝑇2  (13) 

Table 3.7. Density of coffee extract (kg·m-3) as a function of coffee mass 

fraction and temperature. 

T(°C) 0 5 10 15 20 25 

Xs       

0.1 1083.1 ± 11.7 1073.6 ± 12.2 1053.0 ± 14.3 1042.1 ± 11.4 1037.4 ± 8.2 1036.3 ± 8.9 

0.2 1133.4 ± 11.3 1115.7 ± 13.0 1087.3 ± 14.9 1072.1 ± 15.0 1062.8 ± 8.4 1058.6 ± 16.4 

0.3 1177.0 ± 9.6 1159.8 ± 19.9 1134.9 ± 22.6 1114.3 ± 17.2 1107.6 ± 20.7 1099.6 ± 7.5 

0.4 1224.2 ± 8.4 1205.2 ± 5.8 1174.3 ± 16.3 1153.6 ± 13.2 1147.1 ± 13.7 1141.7 ± 26.6 

0.5 1277.2 ± 3.5 1263.0 ± 11.9 1230.0 ± 4.4 1215.1 ± 6.9 1204.2 ± 10.9 1196.1 ± 16.5 

3.5. Conclusions 

 

The viscosity of coffee solutions at temperatures close to the freezing point can be 

predicted by three general models as a function of temperature and coffee mass fraction. 

The coffee solutions presented a Newtonian behaviour. A slight pseudoplasticity was 

found at high concentrations and low temperatures, but this result was not significant. In 

turn, a linear relationship between coffee mass fraction and brix degrees was found; this 

expression allows measuring coffee mass fraction by a simple technique, such as 

refractometry. Meanwhile, the freezing curve presented a quadratic behaviour within the 

zone for food fluids. Finally, the density of coffee solutions can be expressed as an 

average of coffee solids and water densities. The characterisation of physical properties, 

rheological behaviour, and freezing curve of coffee solutions is useful for designing 

operations such as freeze-concentration and freeze drying.  Mathematical models for Brix 

degrees, viscosity, freezing point depression, and density of coffee solutions were fitted. 

These models can contribute in designing  technologies such as freeze-concentration and 

freeze drying in the coffee industry. 
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4. BLOCK FREEZE-CONCENTRATION OF COFFEE EXTRACT: EFFECT OF 

FREEZING AND THAWING STAGES ON SOLUTE RECOVERY AND BIOACTIVE 

COMPOUNDS  

 

4.1. Abstract 

Coffee extract was freeze-concentrated using the total block technique. The effects of four 

parameters were evaluated: the initial coffee mass fraction (5 and 15% w/w), the cooling 

temperature (-10 and -20 °C), the heating temperature (20 and 40 °C) and the freezing 

direction (parallel and counter-flow to the thawing direction). The solid concentration was 

measured during the thawing stage to quantify the solute recovery and the concentration 

index for one stage of freeze concentration. The coffee mass fraction, the freezing 

direction and the cooling temperature significantly influenced the solute recovery. A 

concentration index between 1 and 2.3 was obtained in one cycle. The effect of block 

freeze concentration on the bioactive compound concentration and the antioxidant activity 

was measured. The coffee bioactive compounds were distributed in proportion to the total 

solid content in the ice and liquid. Therefore, block freeze concentration is an effective 

technique to preserve functional properties of coffee extracts.  

 

Keywords: Cryoconcentration; solute yield; coffee; chlorogenic acids; antioxidant activity 

 

Nomenclature 

 

CI Concentration index 

CIcum Cumulative concentration index 

CFCL Concentration of bioactive compounds in the freeze-concentrated liquid 

CRI Concentration of bioactive compounds in the residual ice 

f Thawing fraction  

FD Freezing direction 

IL Ice loss percentage 

m s 0  Initial solute mass 

m s liq Solute mass in the liquid fraction 

m0 Initial mass 

mliq  Collected liquid mass  

TC Cooling temperature 

TH Heating temperature 

Xs 0  Coffee mass fraction in the initial solution 

XS Coffee mass fraction 

Xs liq  Coffee mass fraction in the freeze-concentrated liquid fraction 

Y  Solute yield 
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4.2. Introduction 

Coffee is the most traded food in the world, and its production has great economic and 

social importance worldwide (Esquivel & Jiménez, 2012; Vignoli et al., 2011). For the 

consumer, the value of coffee is provided by its sensory and functional properties; for this 

reason, technologies that promote quality preservation are highly valued in coffee 

processing. In the production of freeze-dried coffee, freeze concentration (FC) technology 

is used to remove water from coffee extracts to increase the solid content and reduce the 

time and cost of the freeze-drying process. At the same time, the sensory properties of the 

product are preserved using low temperatures (Boss et al., 2004; Joët et al., 2010; 

Sánchez et al., 2009).   

 

Water removal in FC is achieved by cooling the solution until the ice crystals form and 

separate (Miyawaki et al., 2005). Three techniques are used according to the ice crystal 

growth: suspension FC, film FC (progressive or falling film FC) and block FC (total or 

partial) (Aider & de Halleux, 2009; Sánchez et al., 2009). Suspension FC is a unique 

technique implemented at the industrial level. Different techniques, such as falling film FC, 

(Chen et al., 1998; Sánchez et al., 2011), progressive FC (Miyawaki et al., 2005) and block 

FC (Aider & Ounis, 2012; Nakagawa et al., 2010a), are being developed to reduce 

operational costs. 

 

In the block FC method, also known as freeze–thaw concentration, the solution to be 

concentrated is completely frozen and then partially thawed to recover a fraction of liquid 

with a higher concentration (Aider & de Halleux, 2009; Nakagawa et al., 2010b). Block FC 

consists of three stages: freezing, thawing and separation of the concentrated liquid 

fraction (Moreno et al., 2013). These stages define the separation efficiency (Nakagawa et 

al., 2009). Additionally, the process can be repeated in successive cycles to increase the 

concentration index (Aider & Ounis, 2012).  

 

The technical viability of the block FC method has been proposed recently by several 

researchers (Gao et al., 2009; Nakagawa et al., 2010a; Aider & Ounis, 2012; Boaventura 

et al., 2012; Miyawaki et al., 2012; Petzold et al., 2013). During the freezing stage, heat 

and mass transfer phenomena can modify the solute occlusion, which should be as low as 

possible. Chen et al. (2001) reported that the solute elution in the freezing front in FC 

depends on the molecular size of the compounds. Certain authors have reported that the 

solute separation is controlled by the thawing stage (Nakagawa et al., 2010b). For coffee 

solutions, Moreno et al. (2013) studied the use of aids in the separation stage. These 

authors reported the influence of the FC protocol and solution type on solute recovery and 

the concentration index; for this reason, there is no agreement on the significance of the 

process variables. The effects of the process variables of block FC on the separation 

efficiency of coffee extracts have not been reported.  

 

Coffee can be considered to be a functional beverage due to its radical scavenging 

capabilities (Cheong et al., 2013; Esquivel & Jiménez, 2012). Several studies have 
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reported the health benefits of coffee consumption related to the components with 

antioxidant activity, such as the group of chlorogenic acids and caffeine. Chlorogenic acid 

(3-caffeoylquinic acid), cryptochlorogenic acid (4-caffeoylquinic acid), neoclorogenic acid 

(5-caffeoylquinic acid) and caffeine are the major bioactive compounds present in coffee 

(Ferruzzi, 2010; Fujioka & Shibamoto, 2008; Sopelana et al., 2013; Vignoli et al., 2011). 

The block FC method has been shown to retain nutritional and functional properties of the 

product using low processing temperatures (Belén et al., 2013; Boaventura et al., 2012); 

however, this effect has not been tested for coffee extracts.  

 

The aim of the present study was to evaluate the effect of the initial coffee mass fraction, 

the cooling temperature, the heating temperature and the freezing direction on the solute 

yield and concentration index of block freeze-concentrated coffee extracts. Additionally, 

the impact of the technique on bioactive compound concentration and the antioxidant 

activity of the coffee extract was tested. 

4.3. Materials and Methods 

4.3.1. Materials 

Coffee solutions were prepared from freeze-dried soluble coffee supplied by the company 

Buencafé Liofilizado de Colombia (Colombian Coffee Growers Federation, Colombia) for 

the FC tests. The coffee was added to distilled water at 35 °C and mixed for 20 min. The 

samples were stored at 4 °C for 12 h. The solid concentration is expressed as the coffee 

mass fraction (XS), which is defined as the mass of coffee solids per unit of coffee solution 

mass. The relationship between Brix degrees and XS is represented by the equation 

XS=0.0087 °Brix (R2=0.991). This expression was obtained by preparing coffee solutions at 

10, 20, 30, 40 and 50 °Brix and by measuring coffee mass fraction using the weight loss 

technique in the oven at 103 °C for four hours according to technical standard NTC4602 

(Icontec, 2009). The measurements were performed in triplicate. The coffee mass fraction 

of the solutions was ascertained immediately before the FC tests by refractometry (Atago 

Pal 100, Japan). A liquid coffee extract was used for the measurement of bioactive 

compounds. This extract belonged to the same batch of soluble coffee and was also 

provided by Buencafé Liofilizado de Colombia.  

4.3.2. Methods  

 

Freeze concentration protocol 

 

The effects of the initial coffee mass fraction (XS), cooling temperature (TC), heating 

temperature (TH) and the freezing direction (FD) were studied. A full factorial design with 

four factors and two levels was used for a total number of 16 tests (Table 4.1). The coffee 

solutions were subjected to one cycle of freezing, thawing and separation to study the 

effect of process variables on solute yield after one cycle of FC.  

 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

38 

 

Table 4.1. Experimental design 

Test XS TC TH FD 

1 0.05 -10 20 1 

2 0.05 -10 20 -1 

3 0.05 -10 40 1 

4 0.05 -10 40 -1 

5 0.05 -20 20 1 

6 0.05 -20 20 -1 

7 0.05 -20 40 1 

8 0.05 -20 40 -1 

9 0.15 -10 20 1 

10 0.15 -10 20 -1 

11 0.15 -10 40 1 

12 0.15 -10 40 -1 

13 0.15 -20 20 1 

14 0.15 -20 20 -1 

15 0.15 -20 40 1 

16 0.15 -20 40 -1 

FD +1: counter-flow to thawing; FD -1: parallel to thawing 

 

The block FC device is shown in Fig. 4.1. In total, 160 g of the coffee sample was placed 

into a cylindrical container (1) measuring 52.5 mm in diameter and 85 mm in height. The 

container is a double jacket device for the flux of cooling and heating fluids. The internal 

jacket is 19 mm in diameter (2). The cooling/heating fluid was a mixture of ethylene glycol 

and water (53% w/w) coming from two circulated baths (4 and 5) (Polystat, Cole Parmer, 

USA). The baths were temperature controlled (6 and 7) at an interval from -35 °C to 150 

°C +/- 0.01 °C. The baths pumped the heat exchange fluid to the jackets through a system 

of ducts and valves (7).  

 

 Figure 4.1. Experimental set up for block freeze concentration  



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

39 

 

During the tests, the heat exchange fluid temperature was settled in one bath. After the 

fluid reached the temperature, it was circulated to the jackets to freeze the solution inside. 

The heat transfer was in the radial direction from the internal wall (for freezing parallel to 

thawing) or from the external wall (for freezing in counter-flow to thawing). Meanwhile, the 

heating temperature of the second bath was settled. When the sample was frozen and the 

temperature was approximately constant, the thawing stage was begun by pumping the 

heating fluid through the external jacket. The exit valve (9) was opened and the liquid 

fraction was separated in a collector vessel (10) on a scale (11) (Ohaus PA3102, USA) 

with a capacity of 3100 g and a precision of 0.01 g for weight measurement. During the 

thawing stage, the temperature of the internal jacket was maintained one Celsius degree 

below the freezing point of the coffee solution to avoid thawing the internal side and to 

preserve unidirectional thawing. Ten liquid fractions of the same mass were collected. 

Lastly, the coffee mass fraction (XS) was measured by refractometry (Atago Pal 100, 

Japan).  

 

Temperature profile 

The FC device seen in Fig. 4.1 has four temperature sensors (12) inside of the container 

to measure the temperature profile during one test. These sensors were used during the 

temperature measuring tests but not during the FC tests. The sensors PT100-IP65 (Testo, 

Germany) had a 2 mm diameter and a measuring interval of -50 to 300 °C +/- 0.01 °C and 

were placed equidistant from the centre of the container (sensor 1) and the external wall 

(sensor 4). The sensors were connected to a datalogger 176 T2 (Testo, Germany) 

connected to a PC for data collection.  

 

Data analysis 

 

Thawing fraction (f) 

 

A thawing fraction (f) was used to follow the development of the process. The f was 

measured as the ratio between the thawed mass and the mass of the original solution, 

defined by Eq. 1. (Miyawaki et al., 2012; Nakagawa et al., 2010a): 

f = mliq/m0 (1) 

where 

f: thawing fraction  

mliq: collected liquid mass  

m0: initial mass. 

 

Solute Yield (Y) 

 

Solute yield was calculated for analysing the solute recovery. Y was defined as the 

relationship between the mass of solute present in the separated liquid and the mass of 

solute present initially in the original solution, as seen in Eq. 2. (Moreno et al., 2013; 

Nakagawa et al., 2010a): 
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Y=ms liq/ms 0 (2) 

where 

Y: solute yield 

m s liq: solute mass in the liquid fraction 

m s 0: initial solute mass. 

 

Concentration Index 

 

The concentration index (CI) was used to express the concentration of solutes reached 

after the FC process. CI was defined as the relationship between the solid concentration in 

the liquid fraction and the solid concentration in the initial solution. CI is also known as 

relative concentration (Nakagawa et al., 2009):  

CI = Xs liq / X s 0  (3) 

where 

CI: concentration index 

Xs liq: coffee mass fraction in the freeze-concentrated liquid fraction 

Xs 0: coffee mass fraction in the initial solution. 

 

When the CI is calculated using the mixture of the thawed fractions at a given time, Eq. 3. 

can be expressed as the cumulative index (CIcum). Cumulative CI is the relationship 

between XS in the accumulated liquid fraction and XS in the initial solution. 

Eq. 4. was obtained by combining Eq. 2. and Eq. 3.:  

Y =CI cum*f (4). 

 

Area under curve Y vs. f 

 

During the thawing stage of FC, the graph Y against f represents the percentage of coffee 

solids that was recovered from the initial solution for each thawed liquid fraction. The 

behaviour of a freeze concentration test can be represented by Fig. 4.2, as proposed by 

Nakagawa, et al. (2010a). 

 
Figure 4.2. Solute yield during freeze concentration tests.  

Adapted from (Nakagawa et al., 2009) 
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The diagonal line represents the case in which the thawed liquid fraction had the same 

concentration as the initial solution; therefore, there was no FC. A higher curve from the 

diagonal indicates the amount of recovered solute for a given f and the efficiency of the 

separation were greater. An ideal situation would be a curve very close to the y-axis in 

which all of the solute was recovered at the beginning of the thawing stage. The curve of 

ideal separation can be calculated from the freezing curve of coffe extract of Fig. 3.3. and 

Table 3.2. With this curve, the highest amount of recovered solutes can be calculated at 

the average temperature of the ice. Therefore, the area under the curve Y vs. f can be 

used as a single parameter to compare the efficiency of the separation process and to 

examine the effect of the studied factors.  

 

The area under the curve represents the integral of the function Y vs. f. The area value is 

bounded between 0 when the solutes are not recovered and by 1 when all the solutes are 

recovered instantaneously and there is no solute occlusion. The diagonal line of no-

concentration has an area of 0.5. An area value closer to one indicates a better result of 

the FC process. The area under the curve can be understood as the sum of the solute 

yield achieved in a thawing fraction during the FC. The area under curve Y vs. f was used 

as an identifying parameter of the effect of each studied variable.  

 

Freezing front growth rate 

 

The average freezing front growth rate was calculated by measuring the distance from the 

cooling surface to the front of the ice during the freezing stage with a calliper. The average 

of the ratios of distance to time was used as the rate. The rate was expressed in 

micrometres per second. 

 

Bioactive compound measurement  

 

The major bioactive compounds of coffee extract, chlorogenic acid (CGA), 

cryptochlorogenic acid (c-CGA) and caffeine, were measured for the initial solution, the 

freeze-concentrated liquid recovered at a f value of 50% and for the residual ice at the 

same f as a comparative parameter. The measurements were performed for tests 1 and 

16 (Table 4.1), which correspond to the extreme values of XS, TC, TH and total process 

time. The measurements were performed in triplicate.  

 

The concentration of bioactive compounds was determined by reversed-phase high 

performance liquid chromatography (RP-HPLC) as described by Fujioka & Shibamoto 

(2008) and Owen et al. (2003) with modifications. The RP-HPLC apparatus, LaChrom 

(Merck-Hitachi, Germany-Japan), was equipped with a quaternary pump, degasification 

system and a diode array detector (UV/VIS). The separation was achieved in a Gemini 

column C-18 (Phenomenex, USA) measuring 250 mm * 4.6 mm and 5 μm at 25 °C. The 

mobile phase used was acetic acid 2% (A) and methanol (B). The gradient was adjusted 

as follows: 0-10 min, A/B 96/4; 65 min, 85/15; 75 min, 75/25; and 85 min, 25/75 at a flow 
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rate of 1 mL·min-1. CGA and c-GCA were detected at 325 nm, and caffeine was detected 

at 276 nm. The injection volume was 5 μL. The concentrations of bioactive compounds 

were calculated using a regression equation of their concentrations and the peak area 

obtained from pattern grade HPLC (Sigma-Aldrich, USA).  

 

The loss of bioactive compounds in the residual ice due to FC was calculated using Eq. 5. 

(Ramos et al., 2005): 

IL= CRI / (CRI + CFCL)*100 (5) 

where  

IL: ice loss 

CRI= concentration of bioactive compounds in the residual ice 

CFCL= concentration of bioactive compounds in the freeze-concentrated liquid. 

 

Antioxidant activity 

The antioxidant activity of coffee samples was determined by the ABTS (2,20-azinobis (3-

ethylbenzothiazoline-6-sulphonic acid assay) and DPPH (2,2-diphenyl-1-picrylhydrazyl 

assay) methods.  

 

ABTS methodology  

 

Antioxidant activity was estimated in terms of radical scavenging activity using the 

procedure described by Vignoli et al. (2011) with modifications. Briefly, ABTS radical 

cations (ABTS+) were produced by reacting 3.5 mM ABTS stock solution with 12.5 mM 

potassium persulphate prepared in a 10% phosphate buffer solution at a pH of 7.4 in 

distilled water. The solution was stored in the dark at room temperature for 12 h. Before 

the analysis, the solution was settled at 0.8 +/- 0.2 nm. Lastly, 50 μL of the coffee sample 

was added to 200 μL of ABTS+ solution and the absorbance was read after 30 min of 

incubation in complete darkness using an iMark Microplate Reader spectrophotometer 

(Bio-Rad, USA). The same procedure was conducted for calibration with ethanol solutions 

containing known concentrations of Trolox between 3 and 15 μL·mL-1. The results were 

expressed in g of Trolox per 100 g of coffee (dry matter). The experiments were performed 

in triplicate.  

 

DPPH methodology 

 

The DPPH technique was performed according to Vignoli et al. (2011). A DPPH solution 

was prepared at 0.6 mM of methanol. The absorbance was settled to 1.1 nm before the 

tests. For the analysis, 50 μL of DPPH solution was added to 75 μL of each coffee sample. 

The absorbance was measured at 515 nm after 30 min of incubation at room temperature 

in complete darkness. The calibration was performed with Trolox at concentrations 

between 3 and 15 μL·mL-1. The antioxidant activity was expressed as mg of Trolox/mL. 

The experiments were performed in triplicate using methanol as a blank.  
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Statistical analysis 

All the tests were performed in triplicate. The area under the curve of Y vs. f was obtained 

by a spline regression procedure. A response surface regression procedure was used to 

determine the effect of each studied factor listed in Table 1 on the area under the curve 

with a confidence interval of 95%. One-way analysis of variance (ANOVA) was applied to 

the results of the area under the curve followed by a LSD test with a level of significance of 

95%. For the bioactive compound measurement, the mean values were calculated and a 

correlation analysis was performed by comparing the Pearson coefficients. All statistical 

analysis were performed using the SAS 9.2 software package.  

4.4. Results and discussion 

4.4.1. Temperature profiles 

 

The temperature profiles during FC tests for tests 1 and 8 described in Table 4.1 are 

shown in Fig. 4.3. These tests corresponded to the lowest and highest overall process 

time; therefore, the other tests were within this time interval. Temperature sensor 1 was 

located beside the internal wall of the container and sensor 4 was located in the external 

wall. In test 1, the freezing was achieved from the centre and the thawing from the external 

wall. For this reason, the temperature dropped first in sensor 1 and last in sensor 4, as can 

be seen in Fig. 3a; during the thawing stage, the order was reversed.  

 

Point “a” shows the nucleation phenomenon that caused a temperature increase due to 

the latent heat of the phase change. The latent heat released from the portion of liquid 

closest to the centre (line 1) caused a temperature increasing of the external portion 

before it was frozen (line 4). For this reason, a temperature increasing in the interval 0°C 

to 5°C was observed. After that, the whole solution was frozen and the temperature tended 

to be constant. A similar behaviour was reported by Nakagawa et al. (2010b).  

 

When the temperature was stable, the thawing phase began (point b). A change in the 

temperature was observed in the opposite order than it was in the freezing stage. For test 

1, the thawing time was 180 min and the average freezing growth rate was 1.84 μm·s-1. 

Alternatively, in test 8 (Fig. 4.3b), the freezing and the thawing were both achieved from 

the external wall in parallel. The first portion that was frozen and thawed corresponded to 

sensor 4, which was located beside the external wall. A freezing time of 45 min and an 

average ice growth rate of 7.17 μm·s-1 were obtained.  

 

4.4.2. Freeze-concentration tests 

The results of the block FC tests are shown in Table 4.2 in descending order of the area 

under the curve of Y vs. f. The greatest area was obtained for test 1, which corresponded 

to the lowest coffee mass fraction, the greatest cooling temperature, the lowest heating 

temperature and freezing direction in counter-flow to the thawing. The treatments showed 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

44 

 

significant differences at p<0.05. The LSD test indicated differences among treatments for 

XS=0.05. Differences in FD and TC can be observed. On the contrary, the tests with the 

highest XS did not show significant difference because the solid concentration is 

predominant over the effect of the other factors.  

 

 

 

Figure 4.3. Temperature profile during freezing and thawing stages.  

a) Test 1. TC = -10 °C, TH = 20 °C; b) Test 8 TC = -20 °C, TH = 40 °C. 1: Temperature 

sensor 1 (interior) and 4: temperature sensor 4 (exterior) 

 

The values for Y and f when the CI was equal to one are shown in Table 4.2. At this value 

of f, solute yields between 67 and 83% were obtained. At this point, the cumulative CI 

values were between 1.10 and 1.67. A CI of 1.8 for one cycle of FC was reported by Aider 

& Ounis (2012). For falling film FC, a CI between 2 and 3 was reported by Sánchez et al. 

(2011) and Belén et al. (2012). Miyawaki et al. (2005) reported a CI between 2 and 3 for 

progressive FC. However, all of these authors reported that the results depended on the 

fluid being concentrated, the type and size of the equipment and the process time.  

a 

b 
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Table 4.2. Freeze concentration tests in descending order of area under the curve 

TEST XS TC TH FD 
Area 
under 
curve 

f at 
CI=1 

Y at 
CI=1 

Cumulative 
CI at CI=1 

CI 
max 

Freezing 
front 

growth (μ 
s-1) 

1  0.05 -10 20 1 0.802
 a

 0.5 0.83 1.67 2.22 1.84 

3  0.05 -10 40 1 0.778
 a,b

 0.5 0.78 1.56 1.49 1.83 

5  0.05 -20 20 1 0.777
 b,c

 0.5 0.81 1.62 1.89 2.87 

2  0.05 -10 20 -1 0.762
 b,c,d

 0.5 0.82 1.64 2.26 3.71 

4
 
 0.05 -10 40 -1 0.746

 e,c,d
 0.6 0.91 1.51 2.23 3.71 

7
 
 0.05 -20 40 1 0.741

 e,d
 0.5 0.73 1.47 1.87 2.87 

6  0.05 -20 20 -1 0.736
 e,d

 0.6 0.88 1.47 1.79 7.17 

8  0.05 -20 40 -1 0.735
 e

 0.6 0.90 1.50 2.38 7.17 

9  0.15 -10 20 1 0.657
 f
 0.7 0.81 1.16 1.25 1.19 

10  0.15 -10 20 -1 0.653
 f
 0.7 0.81 1.16 1.29 5.10 

11  0.15 -10 40 1 0.652
 f
 0.7 0.78 1.12 1.17 1.19 

14
 
 0.15 -20 20 -1 0.647

 f
 0.7 0.80 1.14 1.32 7.53 

16 0.15 -20 40 -1 0.646
 f
 0.8 0.89 1.11 1.23 7.53 

13
 
 0.15 -20 20 1 0.644

 f
 0.6 0.67 1.12 1.22 2.58 

15
 
 0.15 -20 40 1 0.640

 f
 0.7 0.77 1.10 1.18 2.58 

12
 
 0.15 -10 40 -1 0.635

 f
 0.7 0.78 1.11 1.16 5.10 

Different letters indicate statistically significant differences (p<0.05) 

 

The maximum CI obtained was 2.38 for test 8. The maximum CI for each test was reached 

in the first thawing fractions and these values descended during the thawing stage. The 

concentrated fraction percolates through the frozen matrix (Petzold et al., 2013) and its 

concentration descended until values close to zero during the thawing stage. It therefore 

was possible to know the f value at which the CI reached a value of 1. This situation 

corresponded to the moment at which it becomes convenient to separate the thawing 

fraction to avoid a cumulative concentration decrease. The f values are shown in Table 2 (f 

at CI=1) and varied from 0.5 to 0.8. The f value at which the thawing stage has to be 

stopped depends on the process conditions. 

 

Freezing front growth rates from 1.8 to 7.5 μm·s-1 were obtained. The values depended on 

the cooling temperature, the heat transfer area and the initial coffee mass fraction. The 

area under the curve tended to be higher for lower freezing rates. The result is more 

evident at low solid concentrations. For high solid concentrations the effect of freezing rate 

was not observed because of the effect of solid interactions. No concentration was 

obtained for a freezing rate of 7.5 μm·s-1. At this rate, the ice occluded solutes during the 

freezing stage. A critical rate value was also obtained by Nakagawa et al. (2010a). The 

authors reported that for velocities higher than 8 μm·s-1, the freezing was too fast to expect 

a considerable separation of the concentrated solution phase.  
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4.4.3. Effect of each operational factor on solute recovery 

 

A regression analysis was performed to determine the statistical significance of the factors 

of the study on the area under the curve of Y vs. f. The result is shown in Table 4.3. The 

analysis showed a good fitting of the experimental data (R2=0.9874 and RMSE=0.0123). 

The parameters with a Pr<0.05 significantly affected the area under the curve. The main 

effects XS, TC and FD and the interaction terms TC·XS and FD·XS significantly affected the 

freeze concentration.   

 

Table 4.3. Significance analysis for freeze concentration factors  

Parameter Estimator Pr > |t|  

Intercept  0.917 <0.001  
XS - 1.617 0.0002 * 
TC 0.004 0.039 * 
TH - 0.001 0.077  
FD 0.037 0.010 * 

TC·XS - 0.020 0.049 * 
TH·XS - 0.006 0.184  
TH·TC - 0.001 0.545  
FD·XS - 0.133 0.019 * 
FD·TC 0.001 0.141  
FD·TH 0.001 0.358  

* statistically significant at α<0.05 

 

The coffee mass fraction had the greatest influence with a negative correlation; in other 

words, the grade of concentration achieved with the block FC decreased with the increase 

in XS. The second main effect was the freezing direction followed by the cooling 

temperature. The interactions between XS and the other two mean factors were also 

significant, indicating the influence of these variables. Alternatively, the TH did not 

significantly affect the studied intervals. Nakagawa et al. (2010b) and Moreno et al. (2013) 

reported that the TH influenced the solute yield when lower thawing temperatures were 

compared. This result depended on the FC protocol and the level of TH. 

 

Effect of initial coffee mass fraction (XS) 

 

The curves Y against f and CI against f for tests 5 and 13 are shown in Fig. 4.4. These test 

had different values of XS, but the other factors were constant. A higher solute recovery 

was obtained for XS = 0.05. This result was the same for all of the tests. Comparing the 

curve with the diagonal line of no-concentration, the area under the curve was higher for 

the lowest XS.   

This result can be explained by different factors. First, during the freezing stage, the ice 

grows by the diffusion of water molecules to the ice surface and the counter-diffusion of 

solutes to the liquid phase (Petzold & Aguilera, 2009). The diffusion rate of solutes 

decreases when the solid concentration increases due to the interactions between 
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molecules; consequently, the achieved concentration decreases. The same result was 

reported by Chen et al. (2001) and Hindmarsh, Russell, & Chen (2005). Second, the 

coffee solution viscosity increases with XS; this factor can cause the separation of the 

liquid phase during the thawing stage to be difficult (Raventós et al., 2007). Additionally, 

the ice tends to grow in dendritic form for high solid concentrations, occluding higher 

amounts of solutes (Yee et al., 2003). Lastly, the volume of water that can be frozen and 

separated is lower for higher concentrations (Aider & de Halleux 2008a). The combination 

of these four effects explains why XS was the factor with the greatest effect on Y and CI.  

 

 
(a) 

 
(b) 

Figure 4.4. Effect of coffee mass fraction on solute yield and the concentration 

index.  

a) Test 5, XS = 5% (□); Test 13, XS = 15% (○); b) Test 6, XS = 5% (◊); Test 14, XS = 15% 
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In the CI vs. f curve, the value at which the CI crossed the horizontal line of CI=1 is shown 

in Fig. 4 to 7. This intersection corresponded to the moment at which the thawing stage 

has to be completed to avoid a sample dilution and to recover as much solute as possible. 

For test 1, at f=0.5, 83% of the coffee solids had been recovered and the cumulative CI 

was 1.67. These results indicate a good separation efficiency.  

 

Effect of freezing direction (FD) 

 

Tests 1 and 2 are shown in Fig. 4.5a. Tests 9 and 10 are shown in Fig. 4.5b. Table 4.2 

shows the differences in freezing direction. A better FC was obtained for the tests in which 

the freezing and thawing directions were opposite.  

 
(a) 

 
(b) 

Figure 4.5. Effect of freezing direction on solute yield and the concentration index.  

a) Test 1, FD = +1 (□); Test 2, FD = -1 (○); b) Test 9, FD = +1 (◊); Test 10, FD = -1 (Δ) 
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For the FD during counter-flow, the CI began in maximum values and descended during 

the thawing. This result indicates that the solutes moved during the freezing stage to the 

farthest zone from the container centre, which was the last area frozen and the first area 

thawed. Additionally, the lower heat transfer area in the internal wall compared to the 

external wall facilitated the solute elution due to the slower ice front growth.  

 

 

 
(a) 

 
(b) 

Figure 4.6. Effect of cooling temperature on solute yield and the concentration 

index.  

a) Test 3, TC = -10 °C (□); Test 7, TC = -20 °C (○); b) Test 11, TC = -10 °C (◊); Test 15, TC 

= -20 °C (Δ) 
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Alternatively, the initial CI was lower than the CI for the tests when the FD was in parallel. 

The solutes moved from the external region of the container, as evidenced by the smaller 

XS compared to the initial XS. This finding can be explained by the elution phenomenon, in 

which a movement of the solutes was produced by counter-diffusion during ice crystals 

formation that expelled the solutes to the liquid fraction. This result was also observed by 

Nakagawa et al. (2009). Moreover, Chen et al. (2001) reported that elution depends on the 

molecular size of the solutes. The effect is smaller with increasing initial solute contents.  

 

 
(a) 

 
(b) 

Figure 4.7. Effect of heating temperature on solute yield and the concentration 

index. 

a) Test 2, TH = 20 °C (□); Test 4, TH = 40 °C (○); b) Test 10, TH = 20 °C (◊); Test 12, TH = 

40 °C (Δ) 

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Y
 

f 

C
 I 

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Y
 

f 

C
 I 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

51 

 

For the tests when the FD was in parallel, the CI was lower than counter-flow direction at 

the beginning, and then it increased at f values from 0.2 to 0.4. This result could have 

occurred because the solutes diffused from the concentrated liquid fractions to the droplet 

of water that had melted during thawing. This phenomenon is known as sweating. This 

result was also reported by Nakagawa et al. (2009). Likewise, the concentrated portions 

were the first fractions to be thawed and separated due to the difference in densities, as 

reported by Yee et al. (2003). The results show the freezing direction as a variable of 

interest in the study of block FC to promote the intensification of solute recovery. 

 

Effect of cooling temperature (TC) 

 

Fig. 4.6 shows the tests comparing the effect of TC. Better outcomes were obtained at -10 

°C. The heat transfer rate was slower at higher cooling temperatures. The ice crystals 

were able to grow in a more ordered pattern that occluded a smaller amount of solutes. 

For the elution to occur, the solutes mass transfer rate must be greater than the ice growth 

rate (Caretta et al., 2006; Petzold & Aguilera, 2009). In addition, the ice crystal size 

depends on the cooling rate, which can affect the level of occlusion (Pardo et al., 2002). 

Certain authors have reported that the cooling temperature is not a significant factor 

impacting block FC (Aider & de Halleux, 2008b; Gao et al., 2009). These reports suggest 

that the effect of TC depends on the FC protocol during both the freezing and thawing 

stages and depends on the separation mode of the liquid phase.  

 

Effect of heating temperature (TH) 

 

A slightly higher solute recovery was obtained at a TH of 20 °C (Fig. 4.7). The average 

temperature in the empty region of the container after each liquid fraction separation 

during the thawing was 10 °C (Fig. 4.3). The treatments with the lowest TH allowed for a 

slower thawing and avoided the dilution of the concentrated phase. However, the effect 

was not significant at the studied levels. The TH may be significant at different levels, as 

reported by Moreno et al. (2013) where the tested heating temperatures were closer to the 

freezing point.  

4.4.4. Bioactive compounds and the antioxidant activity of coffee  

 

The concentrations of the major bioactive compounds in coffee solutions were determined 

for the initial solution (C0), the liquid freeze-concentrated liquid (CFCL) and the residual ice 

(C RI) obtained for a thawing fraction of 50%. A typical chromatogram is shown in Fig. 4.8. 

Chlorogenic acids were the major component in the solutions. The bioactive compounds 

concentration and the ice loss percentage are shown in Table 4.4.  

The ice loss percentage was approximately 16% for the lowest XS and 41% for the highest 

XS. This factor was related to the concentration index. When the ice loss (IL) was 

calculated on a coffee dry matter basis, the result was approximately 50%. This result 

indicates that the functional compounds were equally distributed in the ice and liquid 
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fractions. There was a greater amount of bioactive compounds in the liquid phase because 

the concentrated liquid had a higher XS. The results correspond to tests 1 and 16 (Table 

1), which had extreme values of XS, TC, TH and total process time. All of the other tests 

were inside the intervals of tests 1 and 16. 

 

 
Figure 4.8. Typical chromatogram of a coffee solution sample: Test 1. 

 

The CI of total coffee solids for tests 1 and 16 at f=0.5 were 1.60 and 1.15, respectively as 

seen in table 4.  These values were statistically equal to the CI for the bioactive 

compounds, according to the LSD test. A higher significant correlation (1.00) was found 

(p<0.01) between XS and the concentrations of CGA, 4-CQA and caffeine. The same 

correlation between CI and %LI was found. Consequently, the amount of bioactive 

compounds was maintained in proportion to the amount of total coffee solids. Therefore, 

the concentration of bioactive compounds was enhanced through freeze concentration and 

the bioactive compounds of the beverage were preserved by block FC.  

 

Highly significant correlations (p<0.01) between antioxidant activity measured by DPPH 

and the concentrations of CGA, c-CGA and caffeine were demonstrated, as seen in table 

4.5. The correlations of the ABTS measurements were significant (p<0.05). These results 

confirm that the antioxidant activity of coffee depends on the CGA and caffeine content, as 

reported by Fujioka & Shibamoto (2008).  

 

A ratio between the antioxidant activity of the liquid fraction and the initial solution was 

calculated to represent the antioxidant activity relative index (CFCL/C0) (Table 4.4). There 

was no significant difference between the antioxidant activity relative index and the CI of 

the total coffee solids. The antioxidant activity was increased until 2.4 in one FC cycle. The 

increase of the antioxidant activity of mate extract was also reported by Boaventura et al. 

(2012) using block freeze concentration. This finding suggests block FC is an effective 

technique to preserve the functional properties of coffee extracts.  

 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

53 

 

Table 4.4. Changes in bioactive compounds and the antioxidant activity of coffee 

during freeze concentration  

Test Compound C0 (mg/mL) C FCL (mg/mL) C RI (mg/mL) % Ice loss % Ice loss (dry 

basis) 

CFCL/C0 

1 CGA 0.29 ± 0.01 0.48 ± 0.04 0.09 ± 0.02 16.03 ± 4.05 48.68 ± 0.37 1.66 ± 0.14 
a
 

c-CGA 0.20 ± 0.00 0.33 ± 0.03 0.06 ± 0.01 16.28 ± 3.89 49.21 ± 0.79 1.66 ± 0.12
 a

 

Caffeine 1.21 ± 0.01 2.02 ± 0.17 0.39 ± 0.08 16.07 ± 3.83 48.79 ± 0.77 1.67 ± 0.13
 a

 

 Total solids 0.05 ± 0.00 0.08 ± 0.01 0.01 ± 0.00 16.87 ± 4.30 50.0 ± 0.00 1.60 ± 0.14
 a

 

 DPPH* 2.61 ±0.39 4.01 ± 2.42 1.17 ±0.25 27.10 ± 13.5 61.50 ± 19.82 1.58 ± 1.00
 
 

 ABTS* 24.02 ±2.64 58.22 ± 22.70 12.63 ±1.97 18.84 ±5.97 53.10 ± 10.40 2.47 ± 1.08
 
 

16 CGA 0.93 ± 0.01 1.07 ± 0.02 0.76 ± 0.01 41.50 ± 0.74 49.62 ± 0.77 1.16 ± 0.03
 b

 

c-CGA 0.63 ± 0.01 0.73 ± 0.01 0.52 ± 0.01 41.65 ± 0.70 49.79 ± 0.70 1.17 ± 0.12
 b

 

Caffeine 3.93 ± 0.03 4.56 ± 0.08 3.28 ± 0.03 41.81 ± 0.68 49.96 ± 0.58 1.16 ± 0.03
 b

 

 Total solids 0.15 ± 0.00 0.17 ± 0.01 0.12 ± 0.00 41.86 ± 0.43 50.0 ± 0.00 1.15 ± 0.01
 b

 

 DPPH* 53.15 ±3.99 72.90 ±9.01 33.5 ±2.97 30.77 ±0.51 37.92 ± 0.32 1.41 ± 0.31 

 ABTS* 136.90 ±9.01 171.31 ±1.50 114.8 ±8.20 39.52 ±2.25 47.32 ± 2.08 1.27 ± 0.13 

Different letters indicate statistically significant differences (p<0.05) 

* Expressed as mg Trolox/mL 

 

Table 4.5. Correlations between antioxidant activity and bioactive compounds 

concentration 

  CGA cCGA CAFFEINE ABTS DPPH 

CGA  1 1.00
**
 1.00

**
 0.557

*
 0.913

**
 

cCGA  1.00
**
 1 1.00

**
 0.561

*
 0.915

**
 

CAFFEINE  1.00
**
 1,000

**
 1 0.561

*
 0.914

**
 

ABTS  0.557
*
 0.561

*
 0.561

*
 1 0.744

**
 

DPPH  0.913
**
 0.915

**
 0.914

**
 0.744

**
 1 

** The correlation is significant p<0.01 (bilateral). 
* The correlation is significant p<0.05 (bilateral). 

 

4.5. Conclusions 

 

Coffee extract was freeze-concentrated by the total block technique. A significant effect of 

the initial coffee mass fraction, freezing direction and cooling temperature on solute 

recovery was found. The highest solute recovery was achieved at the lowest coffee mass 

fraction, when the freezing direction was in counter-flow to the thawing direction and at the 

highest cooling temperatures. The thawing fractions at which completion of the thawing 

stage was convenient were found between the values of 0.5 and 0.8. The initial coffee 

mass fraction was the factor with the highest influence on the solute yield and the 

concentration index. Using a freezing direction in counter-flow to the thawing direction 

represents an interesting alternative to increase solute recovery due to solute elution. 
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Furthermore, the coffee bioactive compounds were distributed in the ice and liquid phase 

in proportion to the total solid content. Very significant correlations between the antioxidant 

activity and chlorogenic acid and caffeine contents in the freeze-concentrated extract were 

found. Consequently, the freeze concentration method increased the bioactive compound 

concentration and the antioxidant activity of the coffee extract. The block freeze 

concentration method is a potential technique to remove water and preserve the functional 

properties of coffee extracts.  
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5. EFFECT OF SEPARATION AND THAWING MODE ON BLOCK FREEZE-

CONCENTRATION OF COFFEE BREWS 

5.1. Abstract 

 

Coffee brews were freeze-concentrated using block technique to evaluate the effect of 

thawing temperature, thawing mode and separation mode on solute yield. Samples were 

frozen and solute recovered using different thawing and separation conditions. Three 

thawing temperatures (20, 4 and 1°C), two thawing modes (microwave assisted and free 

thawing) and two liquid fraction separation modes (gravitational and vacuum assisted) 

were tested.  Solute yield was evaluated as a function of thawing ratio. Data were fitted to 

a monomolecular model to compare separation quality by means of the solute recovery 

ratio for each treatment. A combination of microwave assisted thawing and vacuum 

separation showed the best results in terms of solute recovery ratio. On the other hand, 

applying microwave assisted thawing or vacuum separation individually did not 

significantly enhance the solute recovery ratio. Additionally a thawing temperature effect 

on the solute recover ratio was also found. These results show that it is possible to 

improve the separation quality of Block FC by combining this technology with vacuum-

assisted separation microwave heating. These results suggest that block freeze-

concentration has potential industrial application.   

 

Keywords: Cryoconcentration; thawing; coffee; vacuum; microwave; solute yield; 

monomolecular model 

5.2. Introduction 

 

Freeze-concentration (FC) is a technology used to remove water at low temperatures 

preserving the quality of the original material (Miyawaki et al., 2005). Water remotion is 

achieved once water ice crystals are formed, leaving behind a more concentrated fluid 

(Sánchez et al., 2009). Moreover, FC allows to reduce processing time during the 

industrial freeze drying (Boss et al., 2004).  

 

FC techniques can be classified in three groups: suspension crystallization (Huige and 

Thijssen, 1972), film freeze concentration (Sánchez et al., 2009) and freeze-thaw method, 

known also as block freeze concentration (Aider and de Halleux, 2009; Sánchez et al., 

2011a). For suspension crystallization a scraped surface heat exchanger is used to form a 

suspension of ice crystals that can be subsequently separated (Miyawaki et al., 2005), 

(Habib and Farid, 2006). In Film FC a single crystal layer is formed by contact with a 

refrigerated surface (Raventós et al., 2007; Sánchez et al., 2011b). Freeze-thaw FC can 

be achieved using two different techniques: total or partial block (Nakagawa et al., 2010a). 

In the partial block technique, the solution is partially frozen and the remaining 
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concentrated liquid is separated after a pre-determined time (Burdo et al., 2008).  On the 

other hand, the total block technique consists of completely freezing the sample with a 

subsequent thawing until the desired amount of solute has been recovered (Aider and de 

Halleux, 2009). Consequently, block FC comprises three important steps: freezing, 

thawing and separation. 

 

Increasing ice purity is a big challenge for block FC (Aider and de Halleux, 2008). 

Although, it is clear that the mass of the collected liquid increases with the collection time, 

increasing it until collection of the entire original solution will lead to no overall 

concentration effect. Therefore, it is important to determine the mass of the collected 

sample in which solute recovery and concentration are high enough in order to stop the 

process at this point. In the same way, it is important to establish the thawing conditions or 

aids in separation stage to recover as much solute as possible. 

 

The block FC  method has been recently studied as a way to improve solute yield (Gao et 

al., 2009; Okawa et al., 2009; Nakagawa et al., 2010a; Nakagawa et al., 2010b; Miyawaki, 

et al., 2012). Furthermore, microwave assisted and gravitational thawing have been 

studied for milk whey (Aider et al., 2008) and for maple sap (Aider and de Halleux, 2008).  

It is worth noting that there are no reported studies about vacuum application and its 

relationship with process variables during the thawing and separation stages of block FC. 

 

Meanwhile, coffee is the most traded food commodity worldwide (Esquivel and Jiménez, 

2011). The functional and organoleptic properties of coffee are highly important for its 

processing and trading. Coffee processing technologies play a large role in defining the 

quality of the beverage (Joët et al., 2010), therefore, in the soluble coffee industry, 

technologies that preserve the initial characteristics of the brew are useful. Currently, 

suspension FC is the unique technique that is being used by coffee industry. This 

technique shows a high efficiency and purity of separated ice crystals, however, it is 

recognized as an expensive method for food concentration (Aider and de Halleux, 2009). 

Therefore, the use of this separation process is restricted to large-scale processing plants. 

For this reason, the block FC technique has been proposed in order to reduce cost and 

maintain high crystal purity (Aider and the Halleux, 2009), including different modes to 

increase solute recovery in thawing and separation stages, looking forward to implement 

this technique at different industrial scales. 

 

In this paper, the total block FC of coffee brews is studied, analyzing the effect of 

separation mode (gravitational and vacuum assisted), thawing temperature (1°C, 4 °C and 

20 °C) and thawing mode (natural convection and microwave assisted) on solute yield.    
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5.3. Materials and methods 

5.3.1. Materials 

Coffee solutions were prepared from commercial soluble coffee, (Aroma brand, Colombia) 

and distilled water at 20 °C.  An initial concentration of 4.3 grams of dissolved solids / 100 

grams of solution (5 °Bx) was used. Concentration was measured using a refractometer 

(Abbe refractometer model RL3 Polskie Zaklady Optyczne Warszawa, Poland), together 

with a calibration equation in order to account for the deviation caused by the mixture of 

solids present in coffee. The calibration equation was obtained by preparing solutions at 

10, 20, 30, 40 and 50 °Bx and measuring their solid contents using an oven drying 

procedure at 103 °C for four hours according to (NTC 4602, 1999). Measurements were 

performed in triplicate.  The following equation was obtained: Xs= 0.0087°Bx (R2=0.99). 

Due to the precision of refractometer (+/- 0.5 °Bx), uncertainty in solid fraction 

measurement corresponded to +/- 0.00438. It is clear from other reports that the initial 

concentration affects the results of freeze concentration (Aider et al., 2008). However, in 

these experiments initial solid content was used as a constant parameter for the 

experiment to observe the effect of the other factors. 

5.3.2. Methods 

 
Freeze concentration protocol 

Samples were frozen in cylindrical containers (200 mL) at -12 °C and then stored during 

72 hours at the same temperature. Afterwards, samples were thawed and the 

concentrated fraction was separated under different conditions. As shown in Fig 5.1, 

frozen samples (1) were placed in a chamber with controlled temperature (5) and drops of 

liquid fraction were collected by gravity in an external collection vessel (2). The chamber 

consisted of an upright freezer with thermostat (Haceb 87L, Colombia) for the two lowest 

temperatures and an incubator chamber (Selecta Celmag-L, España) for the highest 

temperature level. Below the vessel was a scale (3) (Mettler Toledo AB 204 S, 

Switzerland. Precision +/- 0.1 g), used to record weight changes during thawing. The 

collection vessel was removed approximately every time that 7% of liquid was collected in 

order to measure the liquid concentration. Thawing procedure was done at three different 

thawing temperatures (TT) fixed in the chamber (1°C, 4°C and 20°C +/- 1°C), two thawing 

modes (TM) and two separation modes (SM) as it is showed in table 1 following a 

complete factorial design. Thawing and separation modes are explained in paragraphs 

2.2.2 and 2.2.3. All experiments were performed in triplicate. 
 

Thawing mode: 

For some samples, as it is shown in Table 5.1, thawing stage was initiated by applying a 

microwave pulse (+1) and for others thawing was freely developed under settled external 

temperature (-1). Therefore, half of samples were exposed to 5.1 kJ of microwave energy 

that was delivered in one 1 minute by a microwave oven (Haceb Arezzo-0.7, China).   This 
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energy pulse was made of three short pulses of 2 seconds at 1.7 kJ, leading to an average 

power delivery of 85 Watt during one minute. Afterwards, thawing and separation 

procedure was carried out at the settled thawing temperature following the procedure 

described in paragraph 2.2.1.  
         

 

 

 

 

 

 

 

Figure 5.1. Experimental set up.  

1. Frozen solution container; 2. Collecting sample vessel; 3. Scale; 4. Vacuum 

pump; 5. Temperature controlled chamber 

 

Table 5.1. Experimental design 

Treatment Thawing 
temperature (°C) 

(TT) 

Thawing 
mode 
(TM) 

Separation 
mode 
(SM) 

1 20 -1 Gravitatonal 
2 4 -1 Gravitational 
3 1 -1 Gravitational 
4 20 +1 Gravitational 
5 4 +1 Gravitational 
6 1 +1 Gravitational 
7 20 -1 Vacuum 
8 4 -1 Vacuum 
9 1 -1 Vacuum 

10 20 +1 Vacuum 
11 4 +1 Vacuum 
12 1 +1 Vacuum 

+1: Microwave assisted thawing 
-1: Free thawing (without microwaves) 
 
Separation mode 

Two different separation modes were carried out: gravitational and vacuum assisted. The 

first consisted in drop collecting by gravitational effect without any interference. In the 

second, vacuum pressure of 1 kPa (74.7kPa abs) was applied using an aspirator (Büchi 

model B-169, Switzerland) to route and increase the movement of the liquid fraction that 

was trapped inside the frozen portion. Thawing and separation procedures were carried 
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out as described in paragraph 2.2.1.Vacuum pump was disconnected in order to measure 

mass and solid concentration and reconnected after collecting the sample.   

5.3.3. Data analysis and modeling 

 

Thawing fraction  

Thawing fraction (f) was used to follow the development of the process. f is measured as 

the ratio between thawed mass and that of the original solution, defined by Eq. (1) 

(Nakagawa et al., 2010b) and (Miyawaki et al., 2012): 

 

f = mliq/m0 (1) 

Where,  

f: thawing fraction  

mliq : collected liquid mass  

m0: initial mass 

 

Solute Yield 

Solute yield is defined as the fraction of recovered solute, calculated by the relation 

between mass of solids present in the separated liquid and the mass of solute present 

initially in the original solution (Nakagawa et al., 2010a): 

 

Y=ms  liq/ms 0  (2) 

Where, 

Y: Solute yield 

m s liq: Solute mass in liquid fraction 

m s 0: Initial solute mass 

 

Concentration factor 

Concentration factor is defined as the relation between the solid concentration in the liquid 

fraction and the solid concentration in the initial solution: 

 

CF = Xs liq / X s 0  (3) 

Where,  

CF: Concentration factor 

Xs liq: solid fraction in freeze concentrated liquid fraction 

Xs 0: solid fraction in initial solution 

 

Additionally, Y can be obtained as shown in the Eq. 4 by combining Eq. 1, 2 and 3:  

Y = CF * f  (4) 
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5.3.4. Mathematical model 

 

Both Solute yield (Y) and thawing fraction (f) vary between 0 and 1. It is important to note 

that a diagonal line with slope equal to one in the plot Y against f represents a process 

without concentration and is considered a process with a perfect solute inclusion 

(Nakagawa et al., 2010a).  Therefore, at any point on the diagonal line, concentration of 

solids in the portion sample is that of the initial sample as seen from Eq. (5). 

 

If Y=f  ⇒  ms0/m0 =ms liq/m liq (5) 

 

It can be inferred from Y-f plot that the further a point is from the diagonal line, the higher 

the concentration of the sample. It is worth pointing out that the behavior of the FC process 

in this plot is a curve bounded between the points (0,0) and (1,1). This relationship can be 

represented by a "monomolecular" model Eq. (6), which is frequently used in the statistical 

analysis of nonlinear relationships (Nothnagl et al., 2004).    

 

dY/df=r(1-Y) (6) 

Where,  

Y: Solute Yield 

f: thawing fraction 

r: solute recovery ratio (constant for each condition) 

 

Eq. (7) is obtained solving the differential equation and transforming it into a linear 

equation using natural logarithm:  

 

ln(1/(1-Y))=r∙f   (7) 

 

Therefore, constant r is the slope of straight line calculated from Eq. (7) and is not directly 

related with time. Furthermore, it represents the solute yield per thawed liquid fraction and 

can be named “solute recovery ratio”. The higher slope r, the fewer amount of ice that 

should be melted to recover a defined amount of solute, thus r can be used as an indicator 

of separation quality. Monomolecular model is an intrinsically linear model with one 

parameter (r). As CF is the ratio between Y and f according to Eq. 4, the r parameter can 

be understood as the change of concentration factor in the graph Y vs f.  

5.3.5. Statistic analysis 

 

Parameters of monomolecular model for each treatment were obtained by a simple linear 

regression procedure using SAS 9.2. The result was the r value for each of twelve 

evaluated treatments. A ratio comparison with confidence interval procedure at p<0.05 

was used to determine differences of r value between treatments. 
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Additionally, it is possible to identify the influence of factors TT, TM and SM on solute 

recovery ratio (r). The r value can be considered as a functional value, it represents the 

relationship between Y and f. A multiple linear regression procedure (p<0.05) was applied 

using SAS 9.2 to this purpose. Significance of mean and combined effects on r value was 

established.   

5.4. Results and discussion 

 

Solute recovery ratio (r), defined in Eq. (7), was obtained for each treatment and these 

values are presented in decreasing order in table 5.2. In this table, the best conditions for 

solute recovery in freeze concentration correspond to those with the highest r values.  

There, it can be seen that regression coefficients vary between 0.93 and 0.99, showing a 

good adjustment of the model. The majority of treatments were statistically different from 

each other, except for the treatments 10, 11 and 12 that showed statistically the same 

values (95% confidence) as well as treatments 1, 4 and 7.  

 

Table 5.2. Solute recovery ratio. 

Treatment 

number 

TT (°C) TM SM Solute 

recovery 

ratio(r) 

R2 RMSE * 

11 4 MW vacuum 6.74 0.978 0.078 a 

10 20 MW vacuum 6.42 0.976 0.117 a 

12 1 MW vacuum 6.26 0.931 0.216 a 

6 1 MW gravitational 5.61 0.979 0.052 b 

9 1 - vacuum 5.60 0.980 0.047 c 

3 1 - gravitational 5.12 0.943 0.419 d 

1 20 - gravitational 5.01 0.989 0.031 e 

4 20 MW gravitational 5.00 0.977 0.117 e 

7 20 - vacuum 4.74 0.990 0.018 e 

2 4 - gravitational 4.32 0.984 0.041 f 

5 4 MW gravitational 3.37 0.968 0.106 g 

8 4 - vacuum 3.04 0.963 0.030 h 

*Treatments with the same letter do not differ significantly 

 

Fig. 5.2 shows the comparison between the Ŷ values that were estimated using Eq. 7 and 

Y values obtained from experimental data. It is clear that data points were distributed close 

and around the continuous line that represents (Ŷ=Y). Analyzing the slope of predicted and 

experimental data line (m=0.999) and regression coefficient (R2=0.94), it can be inferred 

that predicted values tend to be similar to experimental values. This result confirms the 

good adjustment of experimental data to the monomolecular model.  
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At this point, it is important to highlight the usefulness of parameter r in FC quality analysis.  

As it has been discussed earlier, r value represents the amount of sample that needs to be 

melted in order to recover a defined amount of solids. It can be seen from experimental 

data (Table 2), that solute recovery ratios vary from 3.04 to 6.74. Thus, these r values are 

showing that under some experimental conditions (treatment 8), it is necessary to thaw 

near half of the sample in order to recover 75% (Y = 0.75) of the solids. On the other hand, 

in the best case scenario (treatment 11), it will be necessary to thaw only 20% of the 

sample in order to recover the same amount of solute. Furthermore, the concentration of 

recovered liquid Xliq can be calculated using r values and, Eqs. (1), (2) and (7). 

 

Xliq = (Y.ms0)/(f.m0 ) = (Y.X0)/f  (8) 

Where: 

X0: initial solids concentration in the sample. 

 

If Eq. (7) is included the resulting expression is a function of r: 

 

Xliq=(Y.X0 r)/(ln(1/(1-Y)))   (9)  

  

Figure 5.2. Parity plot: experimental Y values against predicted  Ŷ values.  

Regression line obtained: y=0.999·x; R2= 0.94.  

 

Therefore, using experimental data which have r values between 3.04 and 6.74, it can be 

estimated that to recover 75% of solids, the concentration of solids in the liquid samples 

will vary between 0.08 and 0.18 depending on the procedure selected. This information, 

combined with information on mass transfer speed, is a useful tool to define block FC 

processing strategies. Therefore, modeling heat and mass transfer kinetics should be part 

of the future work. 
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A regression analysis was used to quantify the effect of each parameter on solute recovery 

ratio (Table 5.2).  The experimental design selected for this work, made it possible to 

obtain linear main effect and linear combined effect of the evaluated parameters. These 

results are presented in Table 5.3. Two parameters showed a significant effect on solute 

recovery ratio: thawing temperature (both TT and TT*TT) and the combination of 

separation mode with thawing mode (SM*TM). 

 

Table 5.3. Effect of TT, TM and SM on solute recovery ratio. 

Parameter Standard Estimator Pr > |t| 

Intercept 6.028 <.0001 

TT -0.608 0.0028 

TM -0.310 0.6110 

SM -0.186 0.7595 

TT*TT 0.027 0.0023 

TT*TM 0.018 0.6586 

TM*TM - - 

SM*TT -0.003 0.9348 

SM*TM 2.184 0.004 

SM*SM - - 

Thawing temperature had a significant effect on solute yield as illustrated in Fig. 5.3. The 

trend was not linear because the significant influence of TT*TT (Table 5.3). Therefore, TT 

= 1 °C is better than TT=20 °C and better than TT=4 °C for all separation and thawing 

conditions where the combination of MW-Vacuum is not present.  

 

 
Figure 5.3. Effect of temperature on Solute Yield. 

Treatments numbered according to table 1. (1=20°C, 2=4°C, 3=1°C). Lines are modeled 

by Eq. 7 and parameters in table 3. Dots correspond to experimental data. 
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Significance of thawing temperature can be explained by changes in ice structure. Solute 

recovery depends on capacity of the separation system to collect concentrated liquid 

fractions and this is related to porous structure and density of frozen matrix. Water 

solutions experiment density changes during freezing and thawing (Akyurt et al., 2002). 

Freezing and thawing temperatures influence freezing and thawing speeds, affecting the 

ice porous structure (Pardo et al., 2002) and the movement of liquid through it.  Moreover, 

if diffusion of liquid is slower than heat transfer, some ice would be expected to melt and to 

dilute the solution before it can be recovered. Therefore, mass transfer speed affects 

solute recovery ratio because at low diffusion rates, greater portions of the sample should 

be melted in order to obtain a certain amount of solute. Thus, for this kind of freeze 

concentration process it is important to find a good balance between thawing speed (heat 

transfer) and separation speed (mass transfer) not only to optimize processing speed, but 

also to find the best recovery condition. Meanwhile, TT did not show a linear effect, which 

was not expected, therefore, further work in order to relate changes of frozen sample´s 

microstructure with processing parameters can lead to a deeper understanding of block 

FC. 

 
Figure 5.4. Effect of separation mode on Solute Yield 

Treatments numbered according to table 5.1. (1, 4 = gravitational, 7, 10 = vacuum) Lines 

are modeled by Eq. 7 and parameters in table 3. Dots correspond to experimental data. 
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Figure 5.5. Effect of Thawing mode on Solute Yield 

Treatments numbered according to table 1. (3, 9 = free, 6, 12 = Microwave). Lines are 

modeled by Eq. 7 and parameters in table 3. Dots correspond to experimental data. 

 

It was seen from experimental data (Table 5.2) that, the highest solute recovery ratio was 

obtained for treatments 10, 11 and 12, in which a combination of microwave thawing and 

vacuum separation was used. Moreover, under former conditions, temperature did not 

show a significant effect. This observation is in accordance with results of regression 

analysis (Table 5.3) in which the combined parameter had a bigger standard estimator 

than TT and TT*TT parameters. Other parameters such as TM and SM had no significant 

influence when analyzed alone. A similar result, where MW thawing has not a significant 

effect on separation efficiency was reported by (Aider and Ounis, 2012). Fig. 5.4, 5.5 and 

5.6 depict this situation, in which the effect of microwave thawing and vacuum separation 

is significant only when both of them are present in the treatment.  

 

Experimental results showed that r value was increased up to two times when MW was 

combined with vacuum separation. This means that a similar Y can be reached with a 

lower f, increasing concentration of separated liquid portion. On the other hand, effect of 

vacuum was very small without microwave assisted thawing as it is showed in Fig. 5.5. 

Actually, r values decreased when vacuum was present, but table 5.3 shows that this 

effect is not significant when compared with other parameters. This suggests that vacuum 

separation promotes the separation of concentrated liquid fraction from the ice matrix and 

increases process efficiency only when microwave thawing is present. Therefore, this 

synergy present when MW and vacuum are combined shows that this operating condition 

is an appropriate tool to improve separation quality in block FC.  
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Figure 5.6. Effect of Thawing mode on Solute Yield 

Treatments numbered according to table 1. (2, 8 = free, 5, 11 = Microwave). Lines are 

modeled by Eq 7 and parameters in table 5.3. Dots correspond to experimental data. 

 

This synergistic behavior can be explained using two different mechanisms: accelerated 

internal thawing and hydrodynamic movement of molten portions of the sample. As it is 

known, the absorbed microwave energy is related to the loss factor of the material.  Thus, 

substances with a high loss factor will readily absorb microwave energy, while those with a 

low loss factor are either reflecting or transparent to microwave energy (Wu et al., 2004), 

(Wang et al., 2011). It is important to highlight that loss factor of liquid water is greater than 

that of ice (Ryyniinen, 1995). Microwave can penetrate frozen layer and reach up the 

unfrozen liquid (Rattanadecho, 2004). Therefore, it would be expected that during a 

microwave pulse, liquid pockets will be formed in regions with higher concentration of 

solids and lower melting points. However, these liquid pockets cannot be easily separated 

from the sample because of the tortuosity of diffusion path inside the frozen matrix.  Here, 

vacuum plays a synergistic role because pressure difference helps evacuating the 

concentrated liquid phase easily promoting liquid movement and separation. Experimental 

data showed that this hydrodynamic movement enabled by vacuum is a good way to 

accelerate liquid removal. Therefore, in a future paper, the effect of these parameters on 

the Block FC process kinetics will be analyzed. 

 

As solute yield indicates the amount of solute recovery but not the process velocity, it is 

useful to combine this parameter with the analysis of thawing time. Thawing time (t) 

required to collect 50% of liquid (t at f=0.5) is showed in table 4 in increasing order. Also, 

the Solute yield at the moment (Y at f=0.5) and the concentration factor (CF at f=0.5) are 

presented.  
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Thawing time was lower for treatments 10, 4, 7, and 1, which correspond to TT= 20°C. 

Treatments with TT=4°C and TT=1°C presented until 25 times more thawing time. The 

result is similar for solute recovery rate, in which TT showed a significant effect. 

Comparing treatments with the same TT, microwave thawing slightly allows spending less 

time.  

 

Vacuum separation helped to reduce t slightly. At the same time, vacuum separation 

allowed to recover more solute. This suggests that vacuum separation promotes 

separation of concentrated liquid fraction from the ice matrix and increases process 

efficiency, showing this separation mode as an interesting topic in block FC. 

 

The concentration factor (CF) at 50% of thawing is presented for each condition. Values 

between 1.4 and 1.9 were obtained. These values are comparable with those obtained 

using other concentration techniques`. For example, in falling film FC, CF is around 2 for 

one stage of FC (Raventós et. al., 2007), in progressive FC, where CF is around 2.8 

(Miyawaki et. all, 2005), in Block FC, CF=1.4 without separation assistance (Nakagawa et. 

al., 2010) and in microwave assisted thawing Block FC, CF is close to 1.7 (Aider and 

Ounis, 2012) for one stage. The highest CF was obtained for treatments with vacuum 

separation, due to the positive effect of pressure difference on the movement of the 

concentrated liquid fraction.  

 

On the other hand the lowest thawing time was obtained for treatment 10 (TT=20°C, MW 

thawing and vacuum separation). The same treatment showed the highest solute recovery 

rate. Consequently, this condition is appropriate for the performance of FC, recovering 

98% of solute when 50% of mass is thawed and just spending 2.7 h of thawing.  

 

5.5. Conclusions 

The relationship between solute yield and thawing fraction can be represented using the 

monomolecular model. Linearization of this model, using slope r which is not related to 

time, allows to ease analysis in terms of the separation efficiency, and quality of the 

recovered liquid. Combination of microwave assisted thawing and vacuum separation 

exerts a synergistic positive effect on solute recovery ratio. Experimental results showed 

that this operating condition is an appropriate tool to improve separation quality in block 

FC.    Thawing temperature has a significant effect on solute recovery ratio; both TT and 

TT*TT, are highly influential parameters. Therefore, under the experimental conditions 

used in this work temperature did not show a linear effect on separation quality. Block 

freeze-concentration is a potential technology for food concentration. Process alternatives 

such as, thawing temperature control, microwave thawing and vacuum separation are 

helpful to increase solute recovery and should be taken into account when scaling up this 

technology.   
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6. BEHAVIOUR OF FALLING-FILM FREEZE CONCENTRATION OF COFFEE 

EXTRACT 

6.1. Abstract 

 

The behaviour of falling-film freeze concentration of coffee extract was studied through 

determining the solute inclusion in the ice produced in a single-plate freeze concentrator. 

The effect of the initial coffee mass fraction of the extract, the average ice growth rate and 

the film velocity were studied. The coffee extract at four coffee mass fractions (0.05, 0.15, 

0.25 and 0.35 w/w) was freeze concentrated at three different cooling temperatures (-10, -

15 and -20°C) and three flow rates (5·10-5, 7.5·10-5 and 10·10-5 m3·s-1). The solute 

inclusion in the ice and the effect of each parameter were determined. The coffee mass 

fraction, ice growth rate and film velocity affected the average distribution coefficient.  The 

coffee mass fraction had the greatest effect on average distribution coefficient. The Chen 

model parameters to predict the average distribution coefficient and the concentration 

index were found. A logistical model was proposed to predict the concentration reached in 

successive stages, which tended to 35% at the studied intervals. The model showed an 

adjusted regression coefficient of 0.98 and the experimental values were within the 95% 

confidence intervals. The model can be used to predict the behaviour of falling film freeze 

concentration of coffee extract; this technique is an economic and simple alternative to 

conventional freeze concentration.   

 

Keywords: cryoconcentration; coffee; average distribution coefficient; falling-film; modelling 

 

Nomenclature 

 

a:  width of the ice sheet (m) 

CI:  concentration index (unitless) 

f:  liquid fraction (unitless) 

g:  acceleration due to gravity (9.8 m s-1) 

h:  height of the ice sheet (m) 

K:  average distribution coefficient (unitless) 

m ice:  mass of the ice sheet (kg) 

m s 0:  initial solute mass (unitless) 

m s liq: solute mass in the liquid fraction (kg) 

m0:  initial mass (kg) 

mliq:  collected liquid mass (kg) 

n: number of stages (unitless) 

Q:  fluid flow rate (m3·s-1) 

T:  temperature (°C) 
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t:  time of freezing (s) 

Us,∞:  fluid film velocity (m·s-1) 

V ice:  average ice growth rate (mm·s-1) 

X s ice:  coffee mass fraction in the ice (w/w) 

Xs 0:  coffee mass fraction in the initial solution (w/w) 

Xs liq:  coffee mass fraction in the freeze-concentrated liquid fraction (w/w) 

Y:  solute yield (unitless) 

η:  coffee extract viscosity (Pa·s) 

ρ:  coffee extract density (Kg·m-3) 

ρ c:  coffee solids density (Kg·m-3) 

ρ ice:  ice density (Kg·m-3) 

ρ w:  water density (Kg·m-3) 

6.2. Introduction 

 

Freeze concentration (FC) is a technique used to remove water from solutions by cooling 

the solution until ice crystals are produced and separated (Sánchez et al., 2009). The final 

liquid fraction has a higher concentration than the initial solution because of the water 

removed in the form of ice. This technique is used in the food industry due to its ability to 

preserve sensitive properties in products such as coffee extract.  

 

Depending on the growth of ice crystals, there are three techniques of FC, suspension FC, 

film FC (progressive or falling-film FC) and block FC (also known as freeze-thaw FC) 

(Aider and de Halleux, 2009; Boaventura et al., 2013; Sánchez et al., 2011a). Suspension 

FC is the most implemented technique in the coffee industry. This is an efficient technique 

to obtain high ice purity despite the high operational costs (Miyawaki et al., 2005; Qin et 

al., 2006; Sánchez et al, 2011a; Van der Ham et al., 2004).  

 

The falling-film freeze concentration (FFFC) is a simple technique in which the solution to 

be concentrated is re-circulated on a cooled vertical plate. The fluid descends in a film, 

and an ice sheet is produced by freezing. The ice forms a single layer on the cold surface. 

The solution is collected and re-circulated continuously (Sánchez et al., 2011b). FFFC has 

been studied with several food fluids (Belén et al., 2013; Chen et al., 1998; Flesland, 1995; 

Hernández et al., 2009, 2010; Raventós et al., 2007; Sánchez et al., 2010). Coffee extract 

freeze concentration has been studied using the block technique (Moreno et al., 2014b; 

Moreno et al., 2013) and progressive FC (Miyawaki et al., 2005). Moreno et al. (2014a) 

studied falling-film freeze concentration to propose an alternative process to concentrate 

coffee extract.  

 

The solutes retained in the ice sheets determine the concentration efficiency (Raventós et 

al., 2007). Although the solute can be recovered by partial thawing of the ice (Gulfo et al., 

2013), a low amount of solute occluded in the ice is desired. One way to express the level 

of solid occlusion is the average distribution coefficient. The average distribution coefficient 
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is defined as the ratio  between the concentration of solute in the liquid fraction and the 

concentration of solute in the ice. Chen and Chen (2000) studied the solute occlusion of 

the ice in falling-film freeze concentration for model solutions. The authors proposed a 

correlation to evaluate the average distribution coefficient for model solutions and food 

fluids. The solute inclusion of the ice produced in FFFC has not been studied for coffee 

extract, and the effect of the ice growth rate and the fluid flow rate has not been 

determined. This information is useful in the design of falling-film freeze concentration 

systems as a simpler alternative than the suspension technique.   

The aim of the present study was to evaluate the behaviour of coffee extract during falling-

film freeze concentration at different coffee mass fractions, ice growth rates and film 

velocities on the plate and to obtain the parameters for average distribution coefficient 

modelling.  

6.3. Materials and Methods 

6.3.1. Materials 

 

Coffee extract was prepared from soluble coffee supplied by Buencafé Liofilizado de 

Colombia (Colombian Coffee Growers Federation, Colombia). The coffee was added to 

distilled water at 35 °C and mixed for 20 min. The samples were stored at 4 °C for 12 h.  

6.3.2. Methods 

 

Experimental design  

The coffee extract was freeze concentrated using a complete factorial design with three 

variables as shown in Table 6.1. Four different coffee mass fractions were tested within 

the typical interval for freeze-concentration processes (Moreno et al., 2014a). Three plate 

temperatures were tested to achieve different ice growth rates. Finally, three fluid fluxes 

were adjusted to obtain different film velocities of fluid falling on the ice sheet.  

 

Table 6.1. Experimental design.  

 

Variable Level 

Xs* 0.05, 0.15, 0.25, 0.35 

TP (°C) -10, -15, -20 

Q (m3·s-1) 5·10-5; 7.5·10-5; 10·10-5 

 

*The coffee mass fraction (Xs) was expressed as a fraction (w/w). It can be converted to a 

percentage by multiplying 100. 

 

Freeze concentration tests 
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In each test, 800 mL of coffee extract was freeze concentrated by the falling-film 

technique. The experimental setup is shown in Fig. 6.1. The coffee extract flows in a 

descending film over the cooling plates, and it was collected in a collector tank and re-

circulated by a VGC-400 peristaltic pump (Seditesa, Spain) and a VFD007L2 frequency 

variator (Seditesa, Spain). The ice growth on the surface of the freezing plates was then 

removed in a batch operation. The plate had dimensions of 25-cm width and 20-cm height.  

2

1

3

4

5

6
7

 
Figure 6.1. Experimental setup.  

(1) Chamber; (2) Cooling bath; (3) Cooling plate; (4) Distribution duct; (5) Ice sheet; (6) 

collector vessel; (7) pump. 

 

The coffee mass fraction of the liquid fraction and the ice were measured after one hour of 

processing by a Pal 100 refractometer (Atago, Japan). The coffee mass fraction is defined 

as the mass of coffee solids per unit of coffee solution mass. The relationship between 

Brix degrees and XS is represented by the equation XS=0.0087 °Brix reported by Moreno 

et al. (2014c) for the same product used in the present work.  

 

Mathematical model 

The solid inclusion in the ice is determined by the average distribution coefficient. The 

concentration of the solute in the solid and liquid fractions can be calculated from this 

value. The average distribution coefficient is defined as the ratio of the coffee mass 

fraction of the ice to the coffee mass fraction of the freeze concentrated liquid as shown in 

Eq. (1). 

 

𝐾 =
𝑥𝑠 𝑖𝑐𝑒

𝑥𝑠 𝑙𝑖𝑞
  (1) 

The mathematical model used in the present work was proposed by Chen et al. (1998). 

The model expressed the average distribution coefficient as a function of the ice growth 

rate on the plate of a falling-film freeze concentrator and the film velocity of the fluid on the 

ice sheet produced.  

 

The average ice growth rate depends on the heat transfer rate, the degree of supercoiling 

and the thickness of the ice film, among other variables (Qin et al, 2009). The average ice 
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growth rate is related to the plate temperature. The average ice growth rate was calculated 

from the mass of the ice sheet at the end of the process, the solid concentration in the ice, 

the process time, the ice density and the dimensions of the plate, according to the Eq. (2) 

(Chen et al., 1998). 

 

�̅�𝑖𝑐𝑒 =
𝑚𝑖𝑐𝑒(1−𝑥𝑠 𝑖𝑐𝑒)

𝑡 ℎ 𝑎 𝜌𝑖𝑐𝑒
∙ 106    (𝜇𝑚 𝑠−1)     (2) 

 

Meanwhile, the fluid film velocity depends on the fluid flux regulated through the pump, the 

viscosity and density of the coffee extract and the dimensions of the plate. The film velocity 

is related to the mass transfer coefficient which is proportional to the fluid velocity to a 

power of 0.5 (Chen et al., 1998). Consequently, the Chen model includes the average ice 

growth rate and the falling film velocity to represent heat transfer and mass transfer rates. 

The fluid film velocity was calculated by Eq. (3). The Eq. (3) is valid for films descending 

on a plate, in laminar flow and without superficial traction forces (Rane and Jabade, 2005; 

Perry et al. 1992).  

 

𝑢𝑠,∞ =
𝑄

𝑎(
3 𝑄 𝜂

𝜌 𝑎 𝑔
)

1
3⁄

   (𝑚 𝑠−1)   (3) 

 

The viscosity and density of the coffee extract were calculated from the average coffee 

mass fraction and the average temperature of the extract using Eq. (4) and Eq. (5-7), 

respectively. Eq. (4-7) were reported by Moreno et al. (2014c) for the same coffee used in 

the present work and the same temperature and concentrations intervals used in these 

tests.  

 

𝑙𝑜𝑔10 𝜂 = 21.3 + 2.1𝑥𝑠 𝑙𝑖𝑞 + (
30−𝑇

91+𝑇
) (31.5 − 12.7𝑥𝑠 𝑙𝑖𝑞

2.53) (4) 

1

𝜌
=

𝑋𝑠 𝑙𝑖𝑞

𝜌𝑐
+

(1−𝑋𝑠 𝑙𝑖𝑞)

𝜌𝑤
      (5) 

𝜌𝑐 = 1878.1 − 40.76𝑇 + 1.035𝑇2   (6) 

𝜌𝑤 = 1000 + 2.30𝑇 − 0.11𝑇2  (7) 

 

Once the model variables were calculated, the correlation can be applied for prediction of 

the average distribution coefficient. This correlation is presented in Eq. (8). The equation 

proposed by Chen and Chen (2000) is composed of a term related to the coffee mass 

fraction, a term related to the heat transfer and mass transfer and an independent term. 

 

𝐾 = 𝐴 + 𝐵𝑥𝑠0 + 𝐶
�̅�𝑖𝑐𝑒

𝑢𝑠,∞
0.5  (8) 

The assumptions of the model presented in Eq. (8) were the following: The solid 

distribution in the ice is uniform, the falling-film flows in laminar flow, the ice growth rate is 

the average of the ice growth rates during the process, the time of one stage is 60 min and 

the freezing process is developed in vertical plate.  
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The concentration index, the solute yield and the liquid fraction are variables used to 

evaluate the behaviour of the freeze concentration process. They can be calculated from 

the average distribution coefficient. The liquid fraction is the ratio of the mass of the 

concentrated liquid fraction to the mass of the original solution defined by Eq. (9) 

(Miyawaki et al., 2012; Nakagawa et al., 2010). 

 

f = mliq/m0 (9) 

The solute yield was defined as the ratio of the mass of solute present in the separated 

liquid to the mass of solute present in the original solution and was calculated by Eq. (10) 

(Moreno et al., 2013; Nakagawa et al., 2010). 

 

Y=ms liq/ms 0 (10) 

 

The concentration index was used to express the concentration of solutes reached after 

the FC process. The concentration index, CI, was defined as the ratio of the solid 

concentration in the liquid fraction to the solid concentration in the initial solution. CI is also 

known as relative concentration (Nakagawa et al., 2009).  

 

CI = Xs liq / X s 0  (11) 

 

Eq. (12) can be obtained by combination of Eq. (9-11).  

 

Y= f * CI (12) 

 

Eq. (13) and Eq. (14) were obtained by combining Eq. (1) and Eq. (12) and by the 

application of mass balance.  

 

𝐾 =
1−𝑌

𝐶𝐼−𝑌
    (13) 

𝐾 =
1−𝑓∗𝐶𝐼

𝐶𝐼−𝑓∗𝐶𝐼
    (14) 

 

The average distribution coefficient can be predicted from Eq. (8) at different operational 

conditions of the freeze-concentration process. The amount of solute recovery and the 

concentration index can be calculated from Eq. (13 -14) for different liquid or ice fractions. 

 

Statistical analysis 

The parameters of Eq. (8) and Eq. (16) were fit by the least squares regression method. A 

multiple regression analysis was performed using the statistical software SAS 9.0. The fit 

was evaluated by the adjusted regression coefficient. The 95% confidence intervals were 

calculated.  
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6.4. Results 

6.4.1. Effect of the average ice growth rate and the fluid velocity  

 

The effect of the ratio of average ice growth rate to fluid velocity to the power of 0.5 on the 

average distribution coefficient at different coffee mass fractions is shown in Fig. 6.2. The 

average distribution coefficient increased slightly with the velocities ratio. A high value of K 

indicates greater occlusion of solids in the ice sheet and lower concentration efficiency. 

The ratio of velocities is proportional to the ice growth rate and inverse to the squared root 

of the fluid velocity. The ratio, and consequently the average distribution coefficient, 

increased with the ice growth rate and decreased with the fluid film velocity.  

 

 
Figure 6.2. Effect of the ratio between average ice growth rate and fluid velocity on 

the average distribution coefficient.  

Dots represent experimental data (Δ)Xs=0.05; (○)Xs=0.15; (□)Xs=0.25; (◊)Xs=0.35. 

Continuous lines represent the predicted data. Segmented lines represent the 95% 

confidence intervals. 

 

This result can be explained by the effect of the growth of the ice front. When the ice 

growth rate exceeds the velocity at which solids can be expelled from the ice crystals to 

the ice-liquid interface, the solids stay trapped in the ice sheet (Caretta et al., 2006; 

Moreno et al., 2014b; Petzold and Aguilera, 2009). On the other hand, a high fluid velocity 

can remove solids from the ice front to the falling liquid, decreasing the solid occlusion.  

 

The effect of the average ice growth rate was most obvious at low solid concentrations, as 

reported by (Moreno et al., 2014b). For low solid concentration, heat transfer is the 

controlling phenomenon during freeze concentration. Omran et al. (1974) reported that 

mass transfer controls the FC for solid concentrations higher than 15% for sugar solutions 

and fruit juices. In the same way, Sánchez et al. (2010) reported values lower than 17% 
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solids when the FC is controlled by heat transfer. In the present work, the effect of the 

average ice growth rate on the average distribution coefficient was highest for the lowest 

coffee mass fractions evaluated, which were 5% and 15%. This confirms the observations 

described by Omran et al. (1974) and Sánchez et al. (2010).  

 

The average ice growth rate varied from 0.2 to 4 µm·s-1. The highest rates were obtained 

at the lowest temperatures and concentrations of solids. Moreno et al. (2014b) and 

Nakagawa et al. (2010) reported that freeze concentration occurs for an ice growth rate 

lower than 6 µm·s-1 for the block technique for model solutions. Chen and Chen (2000) 

studied rates under 2 µm·s-1 for falling-film freeze concentration of food fluids. Meanwhile, 

Flesland (1995) reported rates between 0.2 and 2 µm·s-1 for sucrose solutions FFFC. The 

use of low supercooling  temperatures decrease energy consumption and decrease the ice 

growth rate (Rane and Padiya, 2011). Low ice growth rates decrease solid occlusion, but, 

at the same time, the productivity of the process can be affected; as a consequence, both 

aspects have to be analysed.  

 

On the other hand, the average distribution coefficient decreased slightly with film velocity. 

Chen et al. (1998) reported a reduction of the average distribution coefficient with the film 

velocity for sugar solutions. Nevertheless, the effect was low for the studied intervals. In 

contrast, in the progressive tubular freeze concentration, where the pump provided 

velocities of 4.8 m·s-1 (Miyawaki et al., 2005), this variable had a greater influence than 

FFFC. These results suggest that the film velocity had less influence in FFFC than other 

techniques because of the low velocity values of the free falling-film. However, the 

combined effect of the ice growth rate and the film velocity was significant as shown in p-

values of the table 6.2. 

 

Table 6.2. Multiple regression analysis of Eq. (15) 

Variable Estimator of the 

parameter 

Standard 

error 

Pr > ǀtǀ Standardized 

parameter 

Intercept 0.089 0.023 0.0006 0 

Xs 2.123 0.067 <.0001 1.069 

V ice / Us∞ 
0.5 0.028 0.006 <.0001 0.161 

 

6.4.2. Effect of solid concentration 

Fig. 6.3 shows the effect of the coffee mass fraction on the average distribution coefficient. 

K increased linearly with the solid content of the extract. The solid content had the greatest 

influence on the average distribution coefficient according to the slope of the line shown in 

Fig. 6.3 and the standardized parameters showed in Table 6.2. The same result was 

obtained for block freeze concentration. Moreno et al. (2014b) reported that the solid 

content of coffee extract primarily affects the separation efficiency.  
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Figure 6.3. Effect of coffee mass fraction on average distribution coefficient 

 

 

The solid occlusion was increased with the coffee mass fraction mainly for two reasons. 

First, the diffusion velocity of solutes from the ice front to the falling-film of fluid decreased 

with the solid content because of the interaction between solute molecules (Hindmarsh et 

al., 2005; Petzold and Aguilera, 2009). Secondly, the viscosity of the fluid increased with 

the solid concentration; consequently, solute movement is slower and is therefore more 

easily trapped in the ice front (Moreno et al, 2014c; Raventós et al., 2007).  

 

The average distribution coefficient increased from 0.2 to 0.9 when the coffee mass 

fraction increased from 0.05 to 0.35. This result shows that when the solid extract 

concentration rises above 35%, the value of k tends to one. At this value of k, the liquid 

fraction has the same concentration as the ice, and the concentration efficiency tends to 

zero. A high value of the average distribution coefficient is a problem in terms of the purity 

of the ice and the concentration efficiency. However, this problem can be solved by 

fractionated thawing of the ice sheet. Gulfo et al. (2013) proposed a partial thawing of ice 

sheets to recover the retained solutes. Moreno et al. (2014a) proposed a process to 

concentrate coffee extract by the integration of the ice thawing with FFFC and block FC. 

With this strategy, the operational limit of progressive FC can be overtaken, and the 

concentration efficiency can be increased.  

6.4.3. Mathematical modelling 

The parameters of the Eq. (3) were obtained from experimental data. A multiple regression 

analysis was achieved to fit the parameters of the Chen model. The results are shown in 

Table 6.2.  The parameters of the three variables were statistically significant for a 

confidence interval of 95%.  These results confirm that the coffee mass fraction and the 

ratio of the average ice growth rate to the fluid velocity affected significantly the average 

distribution coefficient. An adjusted regression coefficient of 0.98 was obtained. According 

to these results, the average distribution coefficient in FFFC of coffee extract can be 
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calculated as a function of the coffee mass fraction of the extract, the average ice growth 

rate and the fluid film velocity by the Eq. (15).  

 

The smallest average distribution coefficient was obtained for the smallest solid 

concentration and the smallest ratio of average ice growth rate to film velocity, as shown in 

Fig 6.4. Experimental data were compared with the predicted data generated from Eq. (15) 

in Fig. 6.5. A good fit was obtained as evaluated by the adjusted regression coefficient.  

 

𝐾 = 0.089 + 2.123𝑋𝑠 + 0.028
�̅�𝑖𝑐𝑒

𝑢𝑠,∞
0.5          R2=0.98 (15) 

 

The experimental data, the predicted data generated from Eq. (15) and the 95% 

confidence intervals are shown in fig 6.2. The three parameters had significant effect on 

the average distribution coefficient as shown in Table 6.2. The parameter with the greatest 

effect on the average distribution coefficient was the term associated with the coffee mass 

fraction, according to the standardized parameters presented in Table 6.2. This confirms 

the higher influence of solid concentration on the solute occlusion in the ice.  

 
 

Figure 6.4. Modelling of the partition coefficient as a function of Xs, V ice and Us.  

Dots: experimental data; plane: predicted data from Eq. (15). 
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Figure 6.5. Parity plot of the average distribution coefficient.  

Experimental vs predicted data from Eq. (15). 

 

The parameters of Eq. (8) were compared with the parameters for other food fluids 

obtained by Chen and Chen (2000) in Table 6.3. The parameters of Eq. (8) for coffee 

extract were similar to those of orange juice, possibly due to the similar viscosity at low 

temperatures and similar freezing points (Moreno et al., 2014c; Ibarz et al., 2009). The 

behaviour of falling-film freeze concentration of orange juice reported by Sánchez et al. 

(2010) was similar to the FFFC of coffee extract (Moreno et al., 2014c).  

 

 

Table 6.3. Parameters of Eq. (8) for several food fluids.  

  Fluid A B C R2 

Coffee extract (present work) 0.09 2.12 0.03 0.98 

Sucrose solution (Chen and Chen, 2000) -0.14 2.06 0.14 0.96 

Orange juice (Chen and Chen, 2000) -0.12 2.18 0.12 0.98 

Milk (Chen and Chen, 2000) -0.02 0.36 0.08 0.96 

6.4.4. Model for solid concentration prediction in successive stages 

The behaviour of falling-film freeze-concentration at can be predicted from the Chen model 

presented in Eq. (15). A simulation of the process is presented based on the conditions of 

FFFC of coffee extract reported by Moreno et al. (2014a). The following parameters were 

used for the simulation: A coffee extract with 5% solids entered the first stage of FFFC. 

The average ice growth rate was 2 µm·s-1, and the film velocity was 0.5 m·s-1. The 

simulation parameters were established to compare them with experimental data reported 

by Moreno et al. (2014) and Auleda et al. (2011) for falling-film freeze concentration of 

coffee extract and sugar solutions, respectively in a geometrical similar device. In addition, 

these parameters were all within the intervals tested in the present work.  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 K
 p

re
d

ic
te

d
d

 v
al

u
e

s 

K experimental values 



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

83 

 

 

The average distribution coefficient was predicted from Eq. (15). With this value, the solid 

concentration in the ice was calculated. After that, a mass balance was achieved 

assuming an ice fraction between 0.26 and 0.44 according to the data reported by Moreno 

et al. (2014a). These values were within the results obtained to generate the model in Eq. 

(15). With the ice fraction, the liquid fraction (f) was calculated. Subsequently, the solid 

concentrations of the extract were calculated from Eq. (13). This extract can be freeze 

concentrated again in a new stage, so the calculation process was repeated successively 

in six stages. The coffee mass fraction of the freeze-concentrated extract at each stage is 

shown in Fig. 6.6.  

 

 
Figure 6.6. Predicted values of successive stages of falling film freeze concentration 

of coffee extract.  

Bars: predicted data from Eq. 16. Lines: 95% confidence intervals. Dots (○): experimental 

data reported by Moreno et al. (2014a). 

Starting with an extract of 5% coffee solids, the concentration of the freeze-concentrated 

extract tended to 37% solids at the end of the process. The concentration showed 

sigmoidal behaviour. The same behaviour was reported by Bayindirli and Ungan (1993) in 

the freeze concentration of apple juice and by Nonthanum and Tansakul (2008) for lime 

juice. At the beginning, the concentration increased linearly. However, at the end, the 

concentration tends to an asymptotic value due to the thermodynamic limit when the 

extract was close to the eutectic point concentration.  

 

The Chen model can be applied for one stage of FFFC. A mass balance is needed to 

calculate the solid concentration in successive stages. However, a model to predict the 

coffee mass fraction from the number of stages used in FFFC can be adjusted from data 

generated with Eq. 13-15. The sigmoidal behaviour can be modelled with the logistic 

model presented in Eq. 16. The model predicts the coffee mass fraction of the 

concentrated liquid as a function of the initial coffee mass fraction and the number of 
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stages. The parameters of the Eq. 16 were obtained by least squares regression with data 

generated from the Chen model.  

 

𝑥𝑆 𝑙𝑖𝑞 =
0.55𝑥0

(1.30𝑥0+(0.55−1.30𝑥0)exp (−0.55𝑛))
     R2=0.998   (16) 

 

The concentration reached after successive stages of FFFC can be predicted by Eq. 16. 

Fig. 6 shows the predicted data from Eq. (16) (bars), the 95% confidence intervals (lines), 

and the experimental data of FFFC of coffee extract reported by Moreno et al., 2014a,. 

The experimental data presented a good fit with the models with an adjusted regression 

coefficient of 0.998. The generated parameters were significant for alpha 0.05. According 

to the simulation, after six stages of FFFC, a coffee extract of 31.8% solids was obtained. 

The concentration tended to 35%.  Moreno et al. (2014a) reported an extract with 30.4% 

solids after six stages of FFFC starting with a 5% coffee extract. The results show that the 

Chen model accurately predicts the behaviour of falling-film freeze concentration of coffee 

extract. Likewise, the logistic model fit the data accurately for the first stages. A slight 

deviation of experimental data was observed for the three last stages. The differences can 

be attributed to the difference in the scale of the device reported by Moreno et al. (2014) 

and those used in the present work. However, the model showed a trend for the solid 

concentration increasing. The logistic model is useful to predict the solid concentration in 

terms of the number of stages used in FFFC.  

6.5. Conclusions 

 

This study showed that the mass fraction of solids and the ratio of the average growth rate 

of the freezing front to the velocity of the fluid film affected significantly the average 

distribution coefficient of the ice produced during  the falling-film freeze concentration of 

coffee extract. The greatest effect was  obtained for the coffee mass fraction of the extratc. 

The parameters of the Chen model were obtained for the prediction of average distribution 

coefficient of coffee extract. A logistic model was adjusted to predict the behaviour of 

successive stages of falling-film freeze concentration. In successive stages of falling-film 

freeze concentration, the coffee mass fraction tends to 35% at the studied conditions. 

From this information, it is possible to predict the coffee mass fraction of concentrated 

liquid and ice during falling-film freeze concentration at different operational conditions. 

The models properly fit the experimental data.  
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7. VOLATILE COMPOUNDS PRESERVATION AND SOLUTES RETENTION OF 

BLOCK AND FALLING-FILM FREEZE CONCENTRATION OF COFFEE 

EXTRACT 

 

 

7.1. Abstract 

 

Coffee extract was freeze-concentrated through block and falling-film techniques. Solute 

retention and concentration efficiency were determined after one stage of the process. Ice 

morphology was characterized through image analysis. Preservation of volatile 

compounds was determined through GC-MS. The effect of coffee extract on flavour was 

determined after freeze concentration through sensory evaluation. Solute occlusion was 

higher for falling-film than for block freeze-concentration, with an average distribution 

coefficient of 0.45 and 0.29 respectively. Ice crystal size was lower for the falling-film 

technique; this explains the higher solute occlusion. Dewatering capacity was higher for 

the falling-film technique as this process is faster than block freeze-concentration. Major 

volatile compounds of the coffee extract were preserved after freeze concentration with 

both techniques. In the same way, no differences were found in most of the sensory 

attributes of the freeze-concentrated extract obtained using both techniques. Results 

confirm the benefits of the block and falling-film freeze concentration techniques in 

preserving the quality of coffee extract.  

 

7.2. Introduction 

 

Coffee is the most traded food in the world. Coffee flavour is highly important during its 

processing (Caporaso et al., 2014). Freeze-dried coffee is a higher quality product than 

soluble coffee due to low processing temperatures (Fissore et al., 2014). The process to 

obtain freeze-dried coffee begins with an initial stage of aqueous extraction by percolation, 

followed by concentration and drying of the extract. The objective of the concentration 

stage is to eliminate part of the water from the extract. This stage is performed through 

freeze concentration. Freeze concentration (FC) is a technology used to remove water 

from aqueous solutions by freezing (Sánchez et al., 2009). This technology is used to 

reduce processing times in the freeze drying stage (Moreno et al., 2014c). 

 

One of the advantages of using FC in soluble coffee production is the preservation of 

volatile compounds (Budryn et al., 2011; Cheong et al., 2013; MacLeod et al., 2006; 

Sopelana et al., 2013). The sensory attributes of the coffee beverage is one of its most 

important quality parameters. Consequently, sensory analysis is the most used technique 
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to evaluate coffee quality (Cheong et al., 2013; Farah et al., 2006; Korhonová et al., 2009). 

However, there are few reported works on the efficacy of volatile compounds preservation 

when using FC (Ramos et al., 2005).  

 

Separation efficiency in freeze concentration (FC) is related to solid occlusion in the ice 

layer. This occlusion can be influenced by the morphology of ice crystals achieved by the 

freezing conditions and the solution type (Ayel et al., 2006; Butler, 2002; Okawa et al., 

2009; Pardo et al., 2002). Food materials science attempts to develop structure-property 

relationships in foods. In particular, it has been demonstrated that many desirable traits of 

food depend on the way foods are structured (Aguilera, 2007).  

 

Understanding the quantitative relationships between freeze concentration and ice crystal 

morphology is of practical importance. This knowledge can be applied, for example, to 

engineer processes with higher efficiencies thanks to material properties. Physical 

properties of ice layer can be deemed as the result of the characteristics (size) and spatial 

arrangement of crystals (Germain and Aguilera, 2012). The freezing stage is a key step 

because it fixes the morphology of the frozen material and, as a result, it can affect the 

efficiency of the freeze concentration process. That is why it is important to evaluate the 

morphology generated by the processes mentioned above. Mean diameters and size 

distributions of ice crystals have been reported as the result of the freezing process; it has 

been observed that distributions of ice crystal sizes depend not only on the freezing rates, 

a well-known result, but also on sample size and freezing direction, among other variables 

(Hottot et al. 2007).  

 

The most implemented FC technique is called suspension FC. In this technique, small ice 

crystals are produced in a scraped heat exchanger and then removed through washing 

columns (Qin et al., 2009). A high separation efficiency is achieved; however, the initial 

and operational costs are relatively high (Petzold and Aguilera, 2013). As a result, different 

techniques such as falling-film and block FC are being developed.  

 

In block freeze-concentration, also known as freeze-thaw FC, the solution is completely 

frozen in a vessel. After that, the solution is partially thawed to recover a liquid 

concentrated fraction (Aider and de Halleux, 2009; Moreno et al., 2014c; Nakagawa et al., 

2010). On the other hand, in falling-film freeze concentration (FFFC), the solution is 

circulated through a cooling plate. An ice sheet is formed on the plate and the solution is 

recirculated until a desired concentration is reached in a batch operation (Hernández et al., 

2010). Several researchers have established the viability of both techniques to concentrate 

food solutions (Aider and de Halleux, 2008; Nakagawa et al., 2010; Petzold and Aguilera, 

2013; Raventós et al., 2007; Sánchez et al., 2010).  

 

Block and falling-film FC have been studied in coffee extract concentration (Moreno et al., 

2014a). The preservation of bioactive compounds has been demonstrated (Moreno et al., 

2014c); however, the effect of FC on volatile compounds and sensory quality of the 
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beverage has not been studied. In addition, the ice morphology achieved through these 

FC techniques and its relationship with solute occlusion has not been determined.  

The aim of the present study was to compare solute retention, productivity of the 

operation, ice morphology, volatile compounds preservation, and sensory quality between 

falling-film freeze concentration and block freeze-concentration of coffee extract.  

 

7.3. Materials and Methods 

7.3.1. Materials 

 

Coffee extract supplied by the company Buencafé Liofilizado de Colombia (National 

Federation of Coffee Growers of Colombia) was used for the FC tests. The extract was 

13% w/w solids. The extract was stored at -18°C and thawed at 4°C for 8 hours previously 

to the tests.  

 

7.3.2. Methods 

 

7.3.2.1. Freeze Concentration Tests 

 

Block Freeze-Concentration Tests 

 

One stage of block FC was tested according to the parameters reported by Moreno et al., 

(2014c). The block FC technique consisted in complete freezing of the extract in a closed 

vessel, and the subsequent partial thawing and separation of the liquid phase. The tests 

were performed in the device shown in Fig. (7.1a). The coffee sample (160 g) was placed 

into a cylindrical double-jacketed container of 5.2 cm in diameter and 8.5 cm in height. The 

internal jacket was cooled through a mixture of ethylene glycol and water (53% w/w) from 

a bath (Polystat, Cole Parmer, USA) with temperature control (-35 °C to 150 °C +/- 0.01 

°C). The cooling fluid temperature was set at -10 °C. The cooling fluid was circulated into 

the internal jacket once it reached that temperature.  

 

Ice grew from the centre to the external wall of the container. When the sample was 

completely frozen, it was thawed by heating the external jacket at 20°C with the fluid from 

the second bath. Fifty percent of the extract mass was collected and separated from the 

ice, according to the results proposed by Moreno et al. (2014c). The solid concentration 

(Cs) of the liquid and the ice fractions was measured through refractometry (Atago Pal 

100, Japan). Cs is defined as the mass of coffee solids per unit of mass of coffee solution. 

The relationship between Brix degrees and CS is represented by the equation Cs=0.87 

°Brix, reported by Moreno et al., (2014d). The two fractions were stored at 4°C during 12 

hours for the analysis of volatile compounds. Tests were performed in triplicate. 
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   (a)       (b) 

Figure 7.1 Experimental set up. (a) block freeze concentrator; (b) falling-film freeze 

concentrator  

Falling Film Freeze Concentration Tests 

 

One stage of FFFC was tested according to the parameters reported by Moreno et al., 

2014b). The FFFC consisted in the continuous circulation of the extract through a 

refrigerated plate until ice sheet formation and separation occurred. The coffee extract 

(800 g) was freeze-concentrated using the experimental setup showed in Fig (7.1b). The 

coffee extract flowed through a descending film over a cooling plate of 25 cm in width and 

20 cm in height. The extract was collected in a tank and recirculated by a VGC-400 

peristaltic pump (Seditesa, Spain). The cooling fluid temperature was set at -20 °C. The 

cooling fluid was circulated into the plate once it reached that temperature. Ice grew on the 

surface of the freezing plate and was removed at the end of the stage. This stage was 

completed after 2 hours, when the ice produced was close to 50% of the initial extract. The 

solid concentration of the liquid fraction and the ice were measured through refractometry 

(Atago Pal 100, Japan). The temperature of the liquid phase was determined during the 

tests. Experiments were performed in triplicate. 

 

Data Analysis for FC Tests 

 

Solute retention in the ice produced through block and falling-film FC was analysed by 

comparing the solute yield, the concentration index, the partition coefficient, the ice front 

growth and the dewatering capacity of the operation.  

 

Solute yield (Y) represents the amount of solute or coffee solids recovered in the liquid 

fraction. It was defined as the relationship between the mass of solute present in the 

freeze-concentrated liquid and the mass of the solute present in the initial solution, as 

calculated by Eq. 1 (Moreno et al., 2013; Nakagawa et al., 2010), where Y is the solute 

yield, ms liq is the solute mass in the liquid fraction, and ms 0 is the initial solute mass. 

 

Y=ms liq/ms 0 (1) 
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The Concentration Index (CI) was defined as the relationship between the solid 

concentration in the liquid freeze-concentrated fraction and the solid concentration in the 

initial solution (Nakagawa et al., 2009), where CI is the concentration index, Cs liq is the 

solid concentration (% m/m) in the freeze-concentrated liquid, and Cs 0 is the solid 

concentration (% m/m) in the initial solution. 

 

CI = Cs liq/C s 0 (2) 

 

The ice fraction (f ice) was defined as the ratio between the ice mass and the mass of the 

original solution as calculated by Eq. 3 (Miyawaki et al., 2012; Nakagawa et al., 2010): 

 

f = mice/m0 (3) 

 

The average distribution coefficient is defined as the ratio between the solid concentration 

in the ice (Cs ice) and the solid concentration in the freeze-concentrated liquid (Cs liq), as 

shown in Eq. (4) (Chen and Chen, 2000). 

 

𝐾 =
𝐶𝑠 𝑖𝑐𝑒

𝐶𝑠 𝑙𝑖𝑞
 (4) 

 

The average ice growth rate was calculated by Eq. 5 (Chen, Chen, & Free, 1999), where 

Vice is the ice growth rate, mice is the ice mass, Cs ice is the coffee concentration in the 

ice, t is the total freezing time, A is the heat transfer area, and ρice is he density of ice.  

 

�̅�𝑖𝑐𝑒 =
𝑚𝑖𝑐𝑒(1−𝐶𝑠 𝑖𝑐𝑒/100)

𝑡 𝐴 𝜌𝑖𝑐𝑒
∙ 106  (𝜇𝑚 𝑠−1)  (5) 

 

Finally, the dewatering capacity was calculated as the relationship of the mass of water 

removed from the solution per unit of mass of initial extract and per unit of time (t), Eq. 6.  

 

Dewatering capacity= mice·(1- (Cs ice/100))/(m0·t) (6) 

 

7.3.2.2. Image Analysis of Morphological Structure of the Ice Crystals 

 

Samples of the ice produced through block and falling-film freeze concentration were 

characterized by microscopic analysis. In every experiment, ice was removed from the 

equipment. Then, a portion of the frozen sample was transferred to a cryomicrotome 

CM1850 (Leica, Germany) with a chamber temperature set at -20°C. Ice crystals produced 

were observed with a Nikon Eclipse Ti microscope (Nikon, United States), using 

transmitted light and a 10X Nikon DS-Fi1 objective. To avoid thawing of the frozen 

samples, the microscope was fitted with a PE120 Peltier-based cooling stage coupled to a 

PE 94 temperature control system (Linkam Scientific Instruments, United Kingdom), 

allowing temperature control down to −20 °C. This cooling stage and all the materials 
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employed in sample manipulation (spatula, coverslip glasses, tweezers and so on) were 

previously tempered at the freezing point of the freeze-concentrated sample (-21°C). 

 

The images of the ice crystals formed in the samples of 20148 x 1536 pixels were 

captured using a Nikon microscope camera (Nikon, United States) fitted to the microscope 

and by means of the NIS-elements F V2.30 software interfaced to a personal computer. 

These images were converted to grey scale (8 bits) maps and then to binary images (black 

and white) using ImageJ v.5.1 (National Institutes of Health, Unites States) as an image 

analysis software. A threshold was applied to each image by using default settings. Spatial 

measurements, originally expressed as number of pixels, were calibrated using a 

micrograph taken from a 1-mm stage micrometer placed on the microscope stage. 

 

Hydraulic diameter, area, and circularity values were estimated using the ImageJ v.5.1 

software. More than 30 images were analysed at the top, at the middle, and at the bottom 

of the sample in order to obtain a good reproducibility of the parameters of the ice crystals. 

 

7.3.2.3. Identification and Quantification of Volatile Compounds 

 

The major volatile compounds of the initial extract, the liquid, and the ice fractions of block 

FC and FFFC were identified and quantified through gas chromatography and mass 

spectrophotometry (GC/MS), according to the method reported by Ribeiro et al., (2010) 

with some modifications.  

 

Extraction of volatile compounds was carried out through the Head Space Solid Phase 

Micro Extraction (HS-SPME) technique, using Divinylbenzene/Polydimethylsiloxane (DVB/ 

PDMS) fibre with 65 μm thickness (Supelco, USA). Sealed glass vials (40 mL) were used 

to collect 2-g samples of the coffee extract, the liquid, and ice fractions obtained from 

Block FC and FFFC tests. Fibres were conditioned and then used in the injection port of 

the chromatographer for 30 min at 250°C in splitless mode. The fibres were inserted in the 

vials and exposed for 30 min at room temperature. 

 

CG analyses were performed in an OP5050 GC-MS system (Shimadzu, Japan) equipped 

with a RTX-5 capillary column (30m×0.25mm× 0.25 μm). Helium (1.20 mL•min−1) was 

used as carrier gas. Oven temperature was programmed as follows: 40 °C→5°C/min→150 

°C, followed by 30 °C/ min→260 °C. MS were performed using electron ionization (energy 

70 eV). The scans were recorded within the 40-350 m/z range and compared to the Wiley 

139 library using the Class 5K software.  

 

Ice loss percentage of each FC technique was calculated by Eq. 7. (Ramos et al., 2005), 

where RPA is the relative percent area in the ice fraction and liquid fractions. 

 

Ice loss percentage= RPA ice/(RPA ice + RPA liq)*100 Eq. (7) 
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7.3.2.4. Sensory Descriptive Analysis 

 

A descriptive quantitative sensory evaluation was performed of the liquid and ice fractions 

obtained from block and falling-film FC and of the initial extract. Samples were evaluated 

by six panellists of the Trained Sensory Analysis Laboratory of the University of Antioquia. 

Coffee extracts were evaluated based on descriptive sensory attributes according to the 

National Standard NTC 4883. Coffee descriptors included aroma, acidity, bitterness, 

sweetness, tobacco, fruity, floral, aftertaste, body, global impact. A 10-point scale was 

used, with ‘0’ indicating uncharacterised attribute intensity and ‘10’ indicating very strong 

attribute intensity. Coffee extract samples were diluted to 1.5% solid content at 90°C and 

presented to the panellists. The results were averaged for each of the descriptive 

attributes and plotted in a web diagram. 

 

7.3.2.5. Statistical Analysis 

 

All the tests were performed in triplicate. Data reported included the mean and standard 

deviation. One-way analysis of variance (ANOVA) was applied to the results with a level of 

significance of 95% in order to evaluate significance of the differences. For the sensory 

evaluation, a Dunnett test was applied to establish the significance of the difference. The 

statistical analysis was performed using the SAS 9.2 software package. 

 

7.4. Results 

7.4.1. Freeze Concentration Tests 

 

Table 7.1 shows the results on concentration of coffee solids in the liquid (C liq) and ice (C 

ice) fractions achieved through block and falling-film FC. The concentration index (CI) 

achieved through the block technique was significantly higher than the CI obtained through 

the FFFC. The concentration increased 1.5 times to 20.8% with the block technique. On 

the other hand, the FFFC increased the concentration 1.3 times, reaching a value of 

17.8%. Solute yield (Y) for the block technique was higher than for the FFFC technique, 

but the difference was not statistically significant. This value is affected by the ice fraction. 

Solute occlusion in the ice, expressed by the average partition coefficient, was significantly 

higher in FFFC than in block FC.  

 

The best result of the block technique in terms of the lowest solute retention can be 

explained by the difference in the ice front rate, which was higher for FFFC. At a higher 

freezing rate, a higher amount of solutes can be retained in the ice (Caretta et al., 2006). 

When the heat transfer rate is higher than the mass transfer rate, solute elution cannot 

exceed the ice front growth rate and the solute is trapped in the ice. In addition, the 

difference in the freezing point produced by the concentration gradient in the liquid around 

the ice front produces a zone where ice growth is unstable (Petzold and Aguilera, 2009). 
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The ice growth is trapped in the portions of concentrated liquid; this phenomenon is known 

as constitutional supercooling and it can affect concentration efficiency (Butler, 2001; 

Rodrigues et al., 2011; Ruiz et al., 2010; Sánchez et al., 2010). This effect was reported in 

block freeze-concentration by (Moreno, et al., 2014c; Nakagawa et al., 2010) and in falling-

film FC by (Chen and Chen, 2000; Gulfo et al., 2013). Ice growth rate depends on the 

cooling temperature and the heat transfer area. These design parameters are very 

important in the design of FC equipment.  

 

Table 7.1. Results of freeze concentration tests  

Technique Block Falling Film 

C0 13.4 ± 0.1 13.4 ± 0.1 

C liq 20.8 ± 0.9 a 17.8 ± 0.3 b 

C ice 6.0 ± 0.9 c 8.0 ± 0.6 d 

CI 1.55 ± 0.03 e 1.33 ± 0.03 f 

Y 0.77 ± 0.03 g 0.72 ± 0.05 g 

K 0.29 ± 0.05 h 0.45 ± 0.03 i 

f 0.50 ± 0.00 j 0.46 ± 0.04 j 

Average ice growth rate (μ s-1) 0.85 ± 0.02 k 1.37 ± 0.12 l 

Dewatering Capacity (kg water / (kg extract · h)) 0.08 ± 0.01 m 0.28 ± 0.02 n 

 

The lowest solute occlusion obtained through the block technique was contrasted with the 

result of the dewatering capacity per unit of time of both techniques. Dewatering capacity 

was significantly higher for the falling-film FC. This technique produced a value of 0.28 kg 

of water per kg of coffee extract per hour, 3.6 times the dewatering capacity of the block 

technique. Block FC can employ a high freezing time, and if the freezing rate is increased 

to reduce process time, the ice growth would be more occluded and the concentration 

index would be lower in the concentration of coffee extract, as reported by (Moreno et al., 

2014b). FFFC allowed high freezing rates with relatively low solute occlusion due to the 

solute dragging produced for the falling-film of fluid. Both techniques can be developed in 

successive stages to increase the concentration index. These results suggest that FFFC is 

a good alternative to concentrate the extract with low processing time, and the block 

technique is appropriate for obtaining ice with high purity.  

7.4.2. Image Analysis of Morphological Structure of the Ice Crystals  

 

Fig. 7.2 shows the images of ice crystals obtained during block and falling-film FC. Ice 

crystals were present as cells with a similar shape of solid prism or plate ice morphology, a 

behaviour that was observed in both techniques. This morphology depends on the cooling 

rate, the supercooling, and the presence of solutes (Petzold and Aguilera, 2009). 

Channels of concentrated coffee extract were identified between the ice crystals, verifying 

the freeze concentration phenomenon. These channels of concentrated liquid determine 

the level of solute occlusion inside the ice layer. The level of solute occlusion is related to 
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ice morphology, which depends on the shape and size of ice crystals. Differences in these 

parameters were observed between each FC technique among the distance measured 

from the cooling surface. Morphometric parameters were calculated to quantify these 

differences.  

 

 

 

     
 

     
  

Figure 7.2. Microphotographs of ice crystals of block and falling film-freeze 

concentration at three positions from the cooling surface. 10X. 

 

Table 7.2 shows the morphological characteristics of ice crystals determined through 

image analysis in Block and falling-film FC. In general, the size of ice crystals was higher 

for block FC than for FFFC. The area and diameter were statistically equal in the first 

position located close to the cooling surface; however, the diameter and area were higher 

for the block technique than for FFFC in subsequent positions. The size of ice crystals 

increased with the distance from the cooling position. This result is explained by the 

decrease in heat transfer rate due to the thermal resistance produced by the growing ice 

layer. The average distribution coefficient and the ice growth rate were higher for the FFFC 

than for Block FC, as shown in Table 1. Fast ice growth produces a crystal of small size. 

The highest K obtained in the FFFC can be explained by the lowest diameter of ice 

crystals. The smaller the ice crystal, the bigger the amount of liquid trapped in the 

channels. This result confirms that solute occlusion is higher when ice growth is faster.  

 

Circularity of the ice crystals decreased with ice front position; however, the difference was 

not statistically significant. Morphometric parameters such as size and circularity can be 

important in the thawing step of block FC, where a low tortuosity of the channels is 

desirable to recover the liquid fraction. In the same way, solutes can be recovered by 

Block 

Falling 

film 

1 mm 5.4 mm 10 mm 

250 µm 
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partial thawing of the ice layer produced in FFFC, as described by (Moreno et al., 2014), 

and the shape of ice crystals can play an important role in this step. Morphometric 

parameters of ice crystals affect solute retention in the ice layer. These parameters can be 

an interesting topic of research to increase separation efficiency of block and falling-film 

freeze concentration.  

 

Table 7.2. Morphometric parameters of ice crystals produced in block and falling-

film freeze concentration 

Position (mm) Area (mm
2
) 

Hydraulic 

Diameter 

(mm) 

Circularity K 

Average ice 

growth rate 

(μ s
-1

) 

Block 

1 0.008 ± 0.001
a 

0.064 ± 0.001
f 

0.440 ± 0.007
k 

0.29 ± 0.05 
m

 0.85 ± 0.02
 p

 5.4 0.030 ± 0.001
b 

0.124 ± 0.001
g 

0.421 ± 0.007
l, 

10 0.080 ± 0.002
c 

0.196 ± 0.003
h 

0.415 ± 0.006
l 

Falling 

film 

1 0.008 ± 0.001
a 

0.065 ± 0.001
f 

0.449 ± 0.008
k 

0.45 ± 0.03 
n
 1.37 ± 0.12

 q
 5.4 0.013 ± 0.001

d 
0.080 ± 0.001

i 
0.431 ± 0.007

k,l 

10 0.020 ± 0.001
e 

0.100 ±  0.001
j 

0.422 ±  0.007
l 

 

7.4.3. Identification and Quantification of the Volatile Compounds 

 

The major volatile compounds of the initial extract, the liquid, and the ice fractions of block 

FC and FFFC were identified and quantified through MS-GC. Chromatograms are shown 

in Fig. 7.3. The y-axis shows relative percentage area of the compound concentration and 

the x-axis shows retention time. Profiles were similar for all the samples, showing that 

major volatile compounds are contained in the samples after freeze concentration.  

 

Eight major volatile compounds were identified in the coffee extract and the freeze-

concentrated samples. The identification was made through mass spectrum and Kovats 

index (Sanz et al., 2002). Table 3 shows the identified compounds, including aldehydes, 

furans, pyrrols, pirazines, alcohols, and esters. These 8 major compounds represented 

70% of the amount of total volatile compounds extracted from the coffee samples with the 

SPME technique.  

 

Pentanal or valeraldehyde is a compound identified in coffee beverage (Toci & Farah, 

2008) that has been associated with, vanilla, fruity, and nutty notes (Flament, 2002). 

Furans, such as furfural and furfuryl alcohol, are responsible for basic aromatic notes such 

as burnt, caramel, and fruity (Cheong et al., 2013; Roldán et al., 2003; Toci and Farah, 

2008). On the other hand, 2-furanmethanol and 2-furanmethanol acetate provide herbal 

notes, and caramel and smoke notes, respectively (Caporaso et al., 2014; Piccino et al. 

2014). Finally, pirazines found in the extract are a dominant group of volatile compounds in 

coffee aroma (Cheong et al., 2013), associated with roast and earth notes (Budryn et al., 
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2011; Cheong et al., 2013; Korhonová et al., 2009; Sopelana et al., 2013; Sunarharum et 

al., 2014). 

 

 
 

Figure 7.3. Chromatograms of coffee extract.  

a) Initial extract; b) Block FC liquid fraction; c) Block FC ice faction; d) FFFC liquid fraction; 

e) FFFC ice fraction. 1. Pentanal; 2. Furfural; 3. Furfuryl alcohol; 4. Dimethyl pyrazine; 5. 

5-methyl-2-furancarboxaldehyde; 6. 2-furanmethanol acetate; 7. 2-ethyl-3,5-

dimethylpyrazine; 8. Nonenal 

 

Major volatile compounds were identified in the liquid and ice fractions of both techniques 

and were the same as those identified in the initial extract. These results indicated that the 

profile of volatile compounds is preserved when using freeze concentration technology. 

 

The relative percentage area, which represents the relative concentration of volatile 

compounds of the liquid and ice fractions obtained through Block FC and FFFC are shown 

in Table 7.3. Concentration was classified in four intervals with same size in order to 

compare the variation of the relative concentration between samples. The intervals were: 

Low (+) from 1.4043 to 5.9826, medium (++) from 5.9826 to 10.5610, high (+++) from 

10.5610 to 15.1393, and very high (++++) from 15.1393 to 19.7176. In general, the relative 

concentration of volatile compounds was preserved in the freeze-concentrated liquid of 

both techniques. Differences were found in only three compounds. The relative 

concentration of Furfural decreased slightly for liquid fractions in both techniques. Furfuryl 

alcohol was preserved better in FFFC than in Block FC. On the contrary, 2-ethyl-3,5-

dimethylpyrazine preservation was higher in block FC than in FFFC.  

 

Table 7.4 shows ice loss percentage of relative concentration. An ice loss percentage of 

50% indicates that the volatile compound is distributed equally in the liquid and ice 

fractions. A percentage higher than 50% indicates a higher retention in ice than in the 
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liquid fraction. On the contrary, a value lower than 50% indicates a higher presence of the 

volatile compound in the liquid freeze concentrated fraction.  

 

Table 7.3. Relative percent area of major volatile compounds in coffee extract before 

and after freeze concentration. 

 

Peak Compound IK INITIAL BLOCK 

LIQ 

BLOCK 

ICE 

FILM 

LIQ 

FILM 

ICE 

1 Pentanal <800 + + + + + 

2 Furfural 808.6 ++++ +++ ++++ +++ ++++ 

3 furfuryl alcohol 850.2 ++++ +++ ++++ ++++ ++++ 

4 dimethyl pyrazine 949 + + + + + 

5 5-methyl-2-

furancarboxaldehyde 

954 + + + + + 

6 2-furanmethanol acetate 1032 ++ ++ ++ +++ ++ 

7 2-ethyl-3,5-dimethylpyrazine 1074 ++++ ++++ ++ +++ +++ 

8 Nonenal 1085 + + + + + 

 

 

Table 7.4. Ice loss percentage of volatile compounds after freeze concentration 

# Compound BLOCK FALLING FILM 

1 Pentanal 63.2% 68.1% 

2 Furfural 60.1% 58.1% 

3 furfuryl alcohol 53.5% 49.9% 

4 dimethyl pyrazine 53.0% 51.4% 

5 5-methyl-2-furancarboxaldehyde 50.6% 52.2% 

6 2-furanmethanol acetate 47.1% 46.8% 

7 2-ethyl-3,5-dimethylpyrazine 40.5% 46.6% 

8 nonenal 47.5% 49.6% 

 

The ice loss percentage of volatile compounds was around 50% in most of the 

compounds. A value close to 50% indicated that there is not a selective loss of volatile 

compound in the ice or the liquid fraction, as the ice fraction was 50% in mass for block FC 

and 54% for FFFC. Volatile compounds were preserved in the freeze concentrated liquid 

and its loss was proportional to the total solid content in this fraction. The total 

concentration of volatile compounds was higher in the liquid fraction, which has a higher 

total concentration of coffee solids than the ice fraction, around 3.4 times in block FC and 

2.2 times in FFFC according to the results shown in Table 1.  

 

A slight loss in the ice of pentanal and furfural −compounds associated to woody, fruit and 

burnt notes− was obtained. A better concentration of 2-furanmethanol acetate, 2-ethyl-3,5-
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dimethylpyrazine, and nonenal was obtained; these compounds are associated to 

aromatic, herbal, and earth notes. The preservation of volatile compounds in block FC and 

FFFC was similar, without remarkable differences. As a general result, both techniques 

preserved effectively the major volatile compounds of the coffee extract. The impact of this 

preservation on aroma and flavour profiles was analysed in the sensory evaluation 

presented in section 3.4.  

7.4.4. Sensory Evaluation  

 

Coffee cup testing was performed to evaluate aroma, acidity, bitterness, sweetness, 

tobacco, fruity, floral, aftertaste, body, and global impact of the samples before and after 

freeze concentration. Volatile and non-volatile compounds are responsible for these 

characteristics. Fig. 7.4 shows the results of the sensory parameters in a web chart. 

Samples were characterised by the highest scores in aroma, acidity, bitterness, body, and 

global impact. The lowest scores were obtained for sweetness, tobacco, fruity, floral, and 

aftertaste.  

 
Figure 7.4. Quantitative descriptive analysis of initial extract and freeze-

concentrated samples 

The ice and liquid fractions of Block FC and FFFC were compared with the initial extract. 

Most of the sensory parameters evaluated in the liquid and ice fractions were not 

significantly different than those evaluated in the initial extract. The aroma profiles of the 

freeze-concentrated samples and the initial extract were similar, which may be due to their 

close expression of volatile compounds. This results shows that freeze concentration is an 

effective technique to preserve the sensory quality of coffee extract. 
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The significance of the differences is shown in Table 7.5, including the mean and standard 

deviation of the scores. In block freeze-concentration, eight of ten attributes were 

statistically equal to the initial extract. A slight difference in body and global impact was 

found. In falling-film freeze concentration, seven of ten attributes were equal to the initial 

extract. A slight difference in body and global impact was found, similarly to the block 

technique. A difference in the floral note was detected in the falling-film technique. Fluid 

motion in this technique may cause a small loss of some minor volatile compound 

responsible for this note.  

 

Table 7.5. Significance of differences of quantitative descriptive analysis among 

freeze concentration techniques 

 
 Initial 

extract 
Block 
liquid 

Block ice Falling-
film liquid 

Falling-
film ice 

aroma 7.0 ± 0.6 
a
 6.3 ± 1.4 

a
 6.4 ± 1.1 

a
 6.4 ± 0.9 

a
 6.6 ± 0.6 

a
 

acidity 6.0 ± 0.7 
b
 5.8 ± 1.0 

b
 5.8 ± 1.0 

b
 5.6 ± 1.2 

b
 5.8 ± 1.1 

b
 

bitterness 5.0 ± 0.6 
c
 4.9 ± 0.9 

c
 5.6 ± 0.8 

c
 4.7 ± 0.8 

c
 5.1 ± 0.9 

c
 

sweetness 1.9 ± 0.4 
d
 1.8 ± 0.4 

d
 1.9 ± 0.6 

d
 1.9 ± 0.6 

d
 1.9 ± 0.7 

d
 

tobacco 1.9 ± 0.9 
e
 1.7 ± 0.6 

e
 2.2 ± 0.7 

e
 1.9 ± 0.5 

e
 2.2 ± 0.5 

e
 

Fruity 2.4 ± 0.7 
f
 2.5 ± 1.2 

f
 2.5 ± 0.7 

f
 2.6 ± 0.7 

f
 2.3 ± 0.8 

f
 

Floral 2.5 ± 0.7 
g
 2.0 ± 0.9 

g
 2.2 ± 0.6 

g
 1.9 ± 0.7 

h
 1.8 ± 0.5 

h
 

aftertaste 2.2 ± 0.6 
i
 2.4 ± 0.9 

i
 2.2 ± 0.6 

i
 1.9 ± 0.4 

i
 2.7 ± 0.8 

i
 

Body 6.2 ± 0.5 
j
 5.0 ± 1.0 

k
 5.6 ± 0.7 

k
 5.3 ± 1.0 

k
 5.4 ± 0.9

 k
 

global impact  8.0 ± 0.4 
l
 7.0 ± 0.8 

m
 7.1 ± 1.0 

m
 7.1 ± 1.0 

m
 7.0 ± 0.8 

m
 

 

No differences were found between the liquid and ice fractions in both techniques. This 

result suggests that compounds responsible for aroma or flavour were equally distributed 

in the ice and the liquid fractions. A similar result was reported for progressive freeze 

concentration of fruit pulps (Ramos et al., 2005).  

 

The differences in global impact can be explained by the different residual notes identified 

by the panel, associated to the handling of the extract during processing, or by the slight 

differences found in pentanal, furfural, 2-furanmethanol acetate, 2-ethyl-3,5-

dimethylpyrazine, and nonenal. The differences in floral note can be attributed to minor 

volatile compounds loss associated to this note. The differences in the body attribute can 

be explained by the production of sediments in the coffee extract. When coffee solutions 

are cooled, gelation can retain solute (Delgado et al., 2008; Thaler, 1978). Cryogels can 

be the result of freezing and thawing (Doyle et al., 2006), considering the galactomannan 

content in the coffee extract. Gel presence depends on the type of coffee and the roasting 

method (Navarini et. al. 1999). More research is needed to identify the influence of 

cryogels in the quality of freeze-concentrated coffee.  
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A comparable result for preservation of quality with freeze concentration was reported for 

preservation of functional quality by Moreno et al. (2014c). The concentration of bioactive 

compounds and the antioxidant activity of coffee extract were preserved when using 

freeze concentration. In the present work, volatile compounds and sensory quality were 

also preserved. In both results, volatile and bioactive compounds were equally distributed 

in the ice and the liquid fractions, which indicates that the increase in total solid 

concentration produces a concentration of the compounds responsible for sensory and 

functional properties without a selectivity of the compounds retained in the ice. These 

results confirmed the benefits of implementing freeze concentration to preserve the quality 

of the extract.  

7.5. Conclusions 

 

Block and falling-film freeze concentration techniques were tested to compare solute 

retention in ice, ice morphology, volatile compounds, and preservation of sensory quality in 

both techniques. The freezing rate affects the average distribution coefficient. Block FC 

produces ice with less solute retention and a higher concentration index in one stage than 

falling-film FC due to low freezing rates. Falling-film FC is a faster technique and has a 

higher dewatering capacity than block FC.  

 

The morphology of the ice is related to the freezing rate. For a high freezing rate, low size 

of ice crystals and high solute retention in the ice were obtained. The diameter and area of 

ice crystals produced through block FC were higher than those of ice crystals obtained 

from FFFC due to the freezing rate. The size of ice crystals defines the space where the 

concentrated liquid is retained, its control is important to increase concentration efficiency.  

 

The major volatile compounds of coffee extract are preserved in both techniques of freeze 

concentration. The sensory quality of the extract is preserved by freeze concentration. 

Results indicate that falling-film freeze concentration can be used as a fast technique to 

concentrate coffee extract, and block freeze-concentration is effective to produce ice with 

low solid retention. Both techniques are useful to preserve the sensory quality of the 

beverage. 
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8. A PROCESS TO CONCENTRATE COFFEE EXTRACT BY THE INTEGRATION OF 

FALLING FILM AND BLOCK FREEZE-CONCENTRATION 

 

8.1. Abstract 

 

A process to concentrate aqueous coffee extract by freeze concentration is proposed to 

achieve an industrially viable system. The techniques of falling film freeze concentration, 

fractionated thawing and block freeze concentration were studied. Batches of 40 kg of 

coffee extract with 5% initial solid concentration were freeze-concentrated in seven stages 

in a falling film multi-plate freeze concentrator. The ice from each stage was fractionally 

thawed to recover the coffee solids retained in the ice. The diluted fractions of the thawing 

stage were freeze-concentrated using the block technique. A concentrated extract with 

32.6% solids and an effluent with 0.27% solids were obtained through the integration of 

these techniques. A concentration index of 6.5, a concentration efficiency of 99.2% and a 

solute yield of 95% were obtained. The integration of these simple techniques results in a 

concentration index and solute yield comparable to industrial standards in freeze-

concentrated coffee extract production.  

 

Keywords: cryoconcentration; freeze-dried coffee; coffee extract; thawing 

8.2. Introduction 

 

Coffee is one of the most consumed beverage worldwide (Esquivel & Jiménez, 2012; 

Sopelana et al., 2011). Freeze-dried coffee is a high-quality product of the coffee industry 

because of the flavour preservation due to the low-temperature processing conditions 

(MacLeod et al., 2006). The process of obtaining freeze-dried coffee begins with the 

extraction of roasted coffee beans by percolation. Subsequently, the extract is freeze-

concentrated to remove part of the water and to obtain a concentrated extract. The 

concentrated extract may be the final product or may be freeze-dried to remove the 

remaining water to obtain soluble coffee (Boss et al., 2004). The use of freeze-

concentration technology is justified by the reduction of the freeze-drying process costs by 

25% (Van Pelt and Bassoli, 1990). In addition, the quality of the product is preserved by 

low processing temperatures (Rahman et al., 2007).  

 

Freeze concentration (FC) is a technique used to remove water from food fluids by 

freezing (Sánchez et al., 2009). The solution is cooled below the freezing point to produce 

and separate ice crystals. Three techniques are used for growth of ice crystals, 

suspension FC, film FC (progressive or falling film FC) and block FC (also known as 

freeze-thaw FC) (Aider and de Halleux, 2009; Sánchez et al., 2011a).  
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The most implemented technique in coffee processing at the industrial level is suspension 

FC. This is an efficient technique in terms of ice purity and increased concentration (Qin et 

al., 2007; Qin et al., 2006; van der Ham et al., 2004). With this technique, it is possible to 

concentrate the coffee extract to 32 to 35% solids and to obtain a high-purity effluent with 

0.1% solids (Van Mil & Bouman, 1990; Van Pelt & Bassoli, 1990). However, this technique 

requires complicated systems of ice separation and many moving parts, which increases 

the initial and operating costs (Aider and de Halleux, 2009; Miyawaki et al., 2005; Sánchez 

et al., 2009). For this reason, several other FC techniques have been studied. Recently, 

the industrial future of freeze concentration has shifted toward the configuration of one-

step systems or a combination of systems rather than suspension freeze concentration 

because of the simpler separation step (Petzold & Aguilera, 2009; Petzold et al., 2013). 

 

In falling film freeze concentration (FFFC), the solution to be concentrated is in contact 

with a cooled vertical plate on which the fluid descends. The ice forms a single layer on the 

cold surface, and the solution is re-circulated continuously (Sánchez et al., 2011b). FFFC 

has been studied with several food fluids (Belén et al., 2013; Chen et al., 1998; Hernández 

et al., 2009, 2010; Raventós et al., 2007; Sánchez et al., 2010). Flesland (1995) proposed 

multi-stage FFFC coupled to reverse osmosis for water desalination. In that study, water 

elimination was efficient. Recently, the recovery of solutes of sucrose solutions retained in 

ice was attempted using fractionated thawing of the ice (Gulfo et al., 2013; Miyawaki et al., 

2012).  

 

In contrast, in block freeze concentration (block FC), the whole solution is frozen and 

partially thawed to recover the concentrated liquid fraction (Aider and de Halleux, 2009). 

Block FC has been used for sucrose solutions, dairy products, syrup, mate extract and fruit 

juices (Aider and Ounis, 2012; Aider et al., 2009; Boaventura et al., 2012; Nakagawa et al., 

2010). For coffee extracts, Moreno et al. (2014) and Moreno et al. (2013) studied the effect 

of process conditions on the freezing and thawing stages of block FC. The viability of the 

technique was primarily demonstrated for low solid concentrations.   

 

In some food applications, FC can be used to maximise the final solid content of the 

solution. However, in the coffee industry, the minimisation of the solid content of the final 

effluent is also important due to the high value of the product. Currently, there is no plan to 

use FFFC or block FC to obtain an extract with a high solid concentration and an effluent 

with a low solid content that comply with industrial requirements.  

The aim of the present study was to propose a process to freeze-concentrate coffee 

extracts through the integration of falling film freeze concentration, which includes coffee 

solids recovery by fractionated thawing and block freeze concentration techniques.  
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8.3. Materials and Methods 

8.3.1. Materials 

A coffee extract with 5% (w/w) wet basis of total solid content was prepared from freeze-

dried soluble coffee supplied by Buencafé Liofilizado de Colombia (Colombian Coffee 

Growers Federation, Colombia) and water at 35 °C. The solution was stored at 4 °C for 24 

hours prior to the tests.  

8.3.2. Methods 

 

Three techniques were studied for coffee extract freeze-concentration following the 

flowchart shown in Fig. 8.1. First, the initial extract was freeze-concentrated by the falling 

film technique. Second, the ice formed in the first technique was thawed fractionally to 

study the recovery of the retained solutes. Finally, the diluted fractions obtained in the 

thawing stage were concentrated by the block technique to recover the retained solids. 

Each technique was individually studied. Based on the results, an integration of the 

techniques in a global process was proposed.  

 

Falling film 
freeze 

concentration

Fractionated 
thawing

Block freeze 
concentration

ice
Diluted
liquid

Initial 
extract

Final 
effluent

Final extract Concentrated 
liquid

Concentrated 
liquid

 
 

Figure 8.1. Flowchart of freeze concentration tests 

 

Falling film freeze concentration tests 

 

The FFFC tests were developed in a multi-plate freeze concentrator shown in Fig 8.2(a). 

The equipment included a freezing chamber, a freezing system, and a hydraulic system. 

The freezing unit consisted of two cooling plates with dimensions of 0.8 m width and 0.6 m 

height in a closed chamber. The hydraulic system spreads the coffee extract by means of 

two distributors with several holes 3 mm in diameter. The coffee extract flows in a 

descending film over the cooling plates, and it was collected in a collector tank and 

recirculated by a centrifugal pump. The ice growth on the surface of the freezing plates 

was then removed in a batch operation.  

 

The freezing system consisted of refrigeration cycle using the primary refrigerant R-507 

with a compressor (Tecumseh Europe, La Verpilliere, France), a condenser and an 

expansion valve. The evaporation of the refrigerant occurred in the interior of the cooling 

plates, transferring the energy through the walls of the plate. Consequently, this process 
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produces layer crystallisation in which the ice forms in thin layers on the surface of the 

heat exchanger.  

 

All the stages of FFFC started with 40 kg of coffee extract. The stage ended when the ice 

achieved an average width of 25-35 mm. After that, the ice was removed, and the 

concentrated liquid fraction was used in the next stage. The initial mass in the next stage 

was obtained adding extract prepared at the concentration of the extract used in the 

previous stage. A total of seven stages of FFFC were developed. The mass of the 

concentrated fractions and the ice was measured on a PS 60-KB scale with 1 g precision 

(Gram Precision, Spain). The solid concentration percentage (Cs) was measured by 

refractometry (Atago Pal 100, Japan). The relationship between Brix degrees and Cs is 

represented by the equation CS=0.87*°Brix reported by Moreno et al. (2014) for the same 

coffee used in the present study. 
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Figure 8.2. Experimental setup for freeze concentration tests.  

a) Falling film freeze concentration; b) Fractionated thawing; c) Block freeze concentration 

 

Coffee solids recovery by partial thawing tests 

 

Thawing tests were performed according to the method described by Gulfo et al. (2013). 

Cylindrical samples with a diameter of 60 mm, thickness from 25 to 35 mm and weight 

between 65 and 75 g were taken from the ice obtained at each of the seven stages of 
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FFFC to study the solute recovery for fractionated thawing. A drill equipped with a puncher 

(Esgarret, Spain) was used to obtain six samples homogeneously distributed in each of 

the six ice sheets, for a total of 36 samples. Samples were taken in a refrigerated chamber 

to avoid melting the ice. 

 

The samples were subjected to thawing tests in the setup shown in Fig. 8.2(b). The setup 

consisted of a cubic isolated chamber with 0.48 m sides. The chamber has a temperature 

control system (Pie Electro Dit, model 11 551, 0 to 300 W) and a 4-channel data logger 

(Testo 177-T4, Germany). The thawing was carried out at 20 +/- 1 °C in a vertical position, 

similar to the position that the ice layers had in the freeze concentrator. The dripping of the 

melting ice is collected by a funnel connected to a container on a scale (Ohaus PA3102, 

USA) with a precision of 0.01 g to measure the mass. Ten thawing fractions of equal mass 

were separated, and the solid concentration was measured by refractometry. The average 

concentration was calculated from the data of the six samples of ice from each stage.   

 

Block freeze concentration tests 

 

Based on the results of the fractionated thawing tests, the diluted fractions of this stage 

(fractions where the concentration index was less than 1) were mixed and freeze-

concentrated by the total block technique. The conditions of the FC test were as follows: 

cooling temperature -10 °C, thawing temperature 20 °C and thawing direction opposite to 

the freezing direction according to the best results reported by Moreno et al. (2014).  

 

The block freeze concentrator is shown in Fig. 2(c). 160 g of the coffee sample were 

placed into a cylindrical double jacked container measuring 5.2 cm in diameter and 8.5 cm 

in height. The heat exchange fluid was a mixture of ethylene glycol and water (53% w/w) 

coming from two baths (Polystat, Cole Parmer, USA) with temperature control (-35 °C to 

150 °C +/- 0.01 °C).  

 

The cooling fluid temperature was settled at -10 °C. After the fluid reached that 

temperature, it was circulated to the internal jacket to freeze the inner solution. The ice 

growth occurred from the centre to the external wall of the container. When the sample 

was completely frozen, the sample was thawed by pumping heating fluid through the 

external jacket at 20 °C. A valve located on the bottom of the container and close to the 

external wall was opened, and the liquid fraction was separated in a collector vessel on a 

scale (Ohaus PA3102, USA) with a precision of 0.01 g for mass measurement. Ten liquid 

fractions of the same mass were collected. The solid concentration of each fraction was 

measured by refractometry (Atago Pal 100, Japan). Test were performed in triplicate 

 

Data analysis 

 

Solute Yield (Y) 
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Solute yield represents the amount of solute or coffee solids recovered from the original 

solution. Y was defined as the relationship between the mass of solute present in the 

freeze-concentrated liquid and the mass of the solute present in the initial solution, as 

calculated by Eq. 1 (Moreno et al., 2013; Nakagawa et al., 2010): 

 

Y=ms liq/ms 0 (1) 

 

Where, Y is the solute yield, m s liq is the solute mass in the liquid fraction, and m s 0 is the 

initial solute mass. 

 

Concentration Index 

The concentration index (CI) was defined as the relationship between the solid 

concentration in the liquid freeze-concentrated fraction and the solid concentration in the 

initial solution (Nakagawa et al., 2009):  

 

CI = Cs liq / C s 0  (2) 

 

Where, CI is the concentration index, Cs liq is the solid mass percentage in the freeze-

concentrated liquid, and Cs 0 is the solid mass percentage in the initial solution. 

 

Thawing fraction 

The thawing fraction (f) was defined as the ratio between the thawed mass and the mass 

of the original solution as calculated by Eq. 3 (Miyawaki et al., 2012; Nakagawa et al., 

2010): 

 

f = mliq/m0 (3) 

 

Where, f is the thawing fraction, mliq is the freeze-concentrated liquid mass, and m0 is the 

initial mass 

 

Concentration efficiency 

 

The concentration efficiency indicates the increase in the concentration of the solution in 

relation to the amount of solids remaining in the ice (Hernández et al., 2010; Sánchez et 

al., 2010). Efficiency was calculated by Eq. 4: 

 

Eff = (Cs liq –Cs ice)/ Cs liq *100  (4) 

 

Where, Eff is the concentration efficiency (%), Cs liq is the solid mass percentage in the 

freeze-concentrated liquid, and Cs ice is the solid mass percentage in the ice (or diluted 

fraction). 

 

Statistical analysis 
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The experimental results obtained from this study were fit to different mathematical models 

using the statistical software SPSS 20.0. The fit was evaluated by the determination 

coefficient. 

8.4. Results and Discussion 

8.4.1. Falling film freeze concentration 

 

The total solid concentration in the freeze-concentrated liquid for the seven FFFC stages is 

shown in Fig. 3. The concentration progressed linearly according to Eq. 6:  

 

Cs liq= 3.9 n + C0        R
2= 0.991(6)  

 

where CS LIQ represents the solid percentage in the freeze-concentrated extract, n is the 

stage number, and C0 is the solid concentration of the initial extract, which corresponds to 

5% in these tests. Linear behaviour was also obtained for orange, apple and pear juices by 

Hernández et al. (2010) and Sánchez et al. (2011b, 2010). The results indicate that the 

solid concentration increased 3.9%, and the concentration index increased from 1.1 to 1.7 

in each stage.  

 

 

 
Figure 8.3. Solid concentration in liquid (○) and ice (□) at each stage of falling film 

freeze concentration. 

 

On the other hand, the solid concentration of the ice evolved according to a quadratic 

function. The occluded solids in the ice increased approximately linearly between the first 

and fourth stages. From this point, when the solution had 20.2% of solids, the solid 

retention in the ice increased. The increasing solid occlusion can be explained by several 

effects. First, the higher amount of solids in the extract produced an increased interaction 

between solids and water molecules (Chen et al., 1998). Second, the solution is more 
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viscous (Hernández et al., 2010) and washing the concentrated liquid fractions from the 

falling film was more difficult. In addition, the ice tends to grow in dendritic form at higher 

solid concentrations, trapping more solids inside (Butler, 2002; Yee et al., 2003).  

As a consequence of the higher solid occlusion, the concentration efficiency decreased 

linearly with the solid concentration in each stage, as shown in Table 1. A linear decrease 

in concentration efficiency was also reported by Hernández et al. (2009), (2010) and 

Raventós et al. (2007) for freeze concentration of must, fruit juices and sugar solutions, 

respectively.  

 

The final solid concentration over seven stages of FFFC was 31%, corresponding to a 

concentration index of 6.25, as shown in Table 1. The ice fraction obtained in each stage (f 

ICE) is presented in the same table. The ice mass obtained decreased in each stage. When 

the solid concentration of the extract increased, the amount of water that had to be 

removed to increase the concentration was lower. In addition, the freezing point decreased 

with the solid concentration, and the cooling capacity of the equipment limited the ice 

production. The ice in the last stage was less consistent due to the increased amount of 

solids.  

 

In Table 8.1, the solute yield of each stage (Y STAGE) is presented. The values began at 

95% and decreased through the following stages. Moreover, the accumulated solute yield 

in the seven stages was 0.42 based on the total amount of solids in the initial extract. This 

means that 42% of the coffee solids present in the initial extract were in the final extract. A 

large amount of solids was recovered in the ice due to the amount of ice, despite the lower 

concentration of these solids.  

 

Table 8.1. Initial coffee solid concentration (C s0), concentration index (CI), solute 

yield at each stage (Y STAGE), ice fraction (f ice) and concentration efficiency (Eff) of 

falling film freeze concentration tests  

 

Stage C s0 (%) CI Y STAGE f ICE Eff (%) 

1 5.0 1.70 0.95 0.44 91.7 

2 8.4 2.40 0.87 0.39 84.9 

3 11.9 3.49 0.96 0.34 83.8 

4 17.3 4.07 0.78 0.33 76.2 

5 20.2 5.12 0.89 0.30 64.2 

6 25.4 5.95 0.78 0.33 48.8 

7 29.5 6.25 0.78 0.26 35.4 

 

The results indicated that falling film freeze concentration can be used to obtain a final 

extract with a solid concentration that meets industrial requirements. However, a large 

amount of solids remained occluded in the ice, and it is necessary to find a technique to 

recover them. For this reason, fractionated thawing tests were performed.  
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8.4.2. Coffee solids recovery by fractionated thawing  

 

The ice obtained in the seven stages of FFFC tests was thawed in ten mass fractions to 

study the solid recovery. The concentration index (CI), calculated as the ratio between the 

solid concentration in the thawed fraction and the average solid concentration of the ice, is 

shown in Fig. 8.4. The CI began with values higher than 1 and descended throughout all 

stages of the thawing process. This indicated that the concentrated extract was collected 

in the first fractions, and the thawing procedure can be used for solid recovery in the ice. 

Gulfo et al. (2013); Miyawaki et al. (2012) and Yee et al. (2003) reported similar behaviour 

of the concentration in solute recovery in the thawing of sugar solutions. 

 

The solid concentrations of the first fractions were higher than the average mainly due to 

two phenomena. First, the concentration of the external faces of the ice is higher than the 

concentration in the internal portion; the external faces were the first thawed portions. In 

the face in contact with the cooling plate, the nucleation at supercooling temperatures 

increased the concentration of the liquid fraction trapped when the ice front grew (Scholz 

et al, 1993). In the face in contact with the falling fluid film, the dendritic growth of the ice 

trapped the concentrated extracts of the falling film (Sánchez et al., 2010). Second, and 

possibly more important, there was solute diffusion from the concentrated liquid occluded 

in the ice to the thawed drops. When the water drops melted, there was enough time for 

solute diffusion to the drops, increasing the solid concentration and allowing the recovery 

of a concentrated liquid (Nakagawa et al., 2009). If the ice is partially thawed, the 

concentrated fraction trapped in the ice crystals can flow freely and be separated. This 

phenomenon is known as sweating, and it is very important in the solute recovery 

(Guardani et al., 2001).  

 

 
Figure 8.4. Concentration index as a function of the thawing fraction.  
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Fig. 8.4 shows that the concentration index decreased with f, and there was a thawing 

fraction in which the CI was less than one. From this point, the concentration of the 

following fractions was less than the average; consequently, the thawing process should 

be stopped at this point to avoid dilution of the recovered extract. At this fraction (f at 

CI=1), two products are obtained, the initial fractions with CI>1 (concentrated fraction) and 

the final fractions with CI<1 (diluted fraction).  

 

The values of f at CI=1 between 0.3 and 0.7 were obtained as shown in Table 8.2. These 

values depended on the initial solid concentration of the ice (C S 0 ice). A small amount of 

ice had to be thawed to recover the solids in the first stages, in which the ice had a lower 

solid concentration. In contrast, in last stages, a higher amount of ice had to be thawed. 

The concentration of the thawing fraction was more homogenous (flatter curve in Fig. 4). In 

addition, the movement of the solids is more difficult in high solid concentrations because 

of the interaction between molecules.  

 

The solid concentrations of the diluted (C s dil) and concentrated fractions (Cs conc ) for f at 

CI=1 are shown in Table 8.2. Thawing fractions where CI=1 are also shown. These are the 

fractions in which high solid recovery is achieved without excessive dilution of the sample. 

With this strategy, a concentration index between 1.3 and 2.5 was obtained. The CI was 

highest in the first stages. Similar results were reported by Gulfo et al. (2013) for sugar 

solutions. The CI can be calculated from the concentrations reported in Table 2. The CI 

decreased with the initial solid concentration in the ice, as shown in Fig. 8.5. The 

behaviour can be described by Eq. 7:  

 

CI= 50.35•Cs0
 2 – 16.98•Cs0  + 2.61    R2= 0.94  (7)  

 

Table 8.2. Concentration of the diluted (C s dil) and concentrated fractions (C s conc) of 

the recommended thawing fraction (f at CI=1). 

 

Stage f at CI=1 C s 0 ice (%) C s conc (%) C s dil (%) 

1 0.3 0.7 ± 0.1 1.8 ± 0.4 0.2 ± 0.0 

2 0.3 1.8 ± 0.2 4.5 ± 0.6 0.7 ± 0.0  

3 0.4 2.9 ± 0.3 5.7 ± 0.8 1.0 ± 0.1 

4 0.4 5.0 ± 0.7 8.6 ± 1.1 1.4 ± 0.3 

5 0.5 9.4 ± 0.1 14.5 ± 0.2 4.2 ± 0.1 

6 0.7 15.6 ± 1.0 20.4 ± 0.3  8.3 ± 2.9  

7 0.7 20.0 ± 1.6 23.2 ± 1.4 12.6 ± 2.2 

Average ± standard deviation. 
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Figure 8.5. Concentration index (CI) at the recommended thawing fraction as a 

function of the initial solid concentration (C s0) of the ice. 

 

Solute yield can be calculated from Eq. 8, which is obtained by combining Eqs. 1, 2 and 3 

(Moreno et al., 2014). Solute yields from 73% and 81% were obtained. Miyawaki et al. 

(2012) reported solute yields above 90% by ice thawing from a tubular progressive freeze 

concentrator. The solute yield depends on the thawing fraction.  

 

Y=f*CI   (8) 

 

The combination of the fractionated thawing process and the FFFC technique resulted in a 

solute yield of 62%. Although the solid recovery was increased by more than 70%, a large 

amount of coffee solids remained in the diluted fraction. Another technique needed to be 

integrated to the process to increase the solid recovery. Block FC was studied for this 

purpose.  

8.4.3. Block freeze-concentration 

 

The diluted fractions from the fractionated thawing tests were mixed and freeze-

concentrated by the block technique to recover the solids from this fraction. Ten fractions 

were obtained in the first stage, and the solute yield (Y) and concentration index (CI) were 

calculated. The diluted fractions (according to the CI values) obtained in the first stage 

were mixed and freeze-concentrated in a second stage. The results of the two stages are 

shown in Fig. 8.6.  
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Figure 8.6. Solute yield (Y) and concentration index (CI) after block freeze 

concentration. 

 (○) stage 1; (Δ) stage 2.  

 

Maximal CI values of 2.3 and 2.7 were obtained in the first thawing fraction. These results 

were obtained because the sample was frozen from the centre and thawed from the 

exterior of the container. With this control of the thawing direction, the solids moved to the 

growing freezing front by elution when the ice crystals formed. The last fraction frozen was 

the first to be thawed. This fraction had the highest solid content. The solid elution was 

possible because of the low freezing rate achieved by the cooling temperature of -10 °C; at 

this temperature the average freezing rate was 1.84 μm•s-1 (Moreno et al., 2014). The 

lower the freezing rate is, the lower the solid occlusion is. Nakagawa et al. (2010) reported 

a limit of 8 μm•s-1 for freeze concentration in a similar cylindrical device.  

 

The CI decreased during the thawing. The highest values were obtained for the firsts 

thawing fractions due to sweating, similarly to the fractionated thawing test results. 

Sweating is defined as crystal purification based on partial melting by heating the cooling 

surface at a temperature close to the freezing point (Jiang et al., 2013). Sweating depends 

on factors such as temperature, porosity of the ice layer, solid concentration, and thawing 

rate (Rich et al., 2010). The coffee solids moved to the thawing drops and increased the 

concentration in the drops; in this way, recovery of the majority of solids was possible in 

the first fractions. As in fractionated thawing, sweating is of great importance in block 

freeze concentration (Nakagawa et al., 2009). 

 

The CI decreased until it reached a value of 1. In this thawing fraction (f at CI=1), it is 

convenient to stop the thawing stage and to separate two streams, one diluted and one 

concentrated. For the first stage of block FC with an initial solid concentration of 1.8%, the 

CI was 1 at f=0.5. At this point, 77% of coffee solids have been recovered, and a CI of 1.54 
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has been achieved, as can be calculated from data in Table 3. The mixture of the five 

diluted fractions had a solid concentration of 0.9%; for this reason, this mixture was freeze-

concentrated in a second stage. For the second stage, CI was 1 at f=0.4. When 40% of the 

extract was thawed, a solute yield of 66% and a CI of 1.6 were achieved. The diluted 

fraction of the second stage had an average solid concentration of 0.5%, as shown in 

Table 8.3.  

Table 8.3. Results of block freeze concentration.  

Thawing fractions when the concentration index (CI) is 1. thawing fraction when CI=1 (f at 

CI=1); solid concentration of the Initial (C s0 (%));the concentrated (C s conc) and diluted 

fractions (C s dil), and solute yield (Y) 

 

Stage f at CI=1 C s0 (%) C s conc (%) C s dil (%) Y 

1 0.5 1.9 ± 0.0 2.8 ± 0.1 0.9 ± 0.1 0.78 ± 0.01 

2 0.4 0.9 ± 0.1 1.5 ± 0.1 0.5 ± 0.1 0.68 ± 0.02 

 

Block FC was considered to be complete based on the solid concentration of the diluted 

fraction in the second stage. A third stage could be implemented, but this decision 

depends on the global process strategy and the desired solid concentration of the final 

effluent.  

 

8.4.4. Integration of falling film freeze concentration, ice thawing and block freeze 

concentration 

 

Falling film freeze concentration, fractionated thawing and block freeze concentration can 

be integrated in a global strategy to establish an industrial process to concentrate coffee 

extracts. In this process, the objective is to obtain an extract that is as concentrated as 

possible and to minimise the concentration of the effluent to avoid the coffee solid loss. 

Two streams, diluted and concentrated, are obtained in each technique. The process is 

presented in Fig. 8.7. The mass and solid concentration of the extract is presented for 

each stream. The mass balance was achieved for a basis of calculation of 1000 kg/h of 

diluted coffee extract entering the process (Feed). Even though the process must be 

scaled up, mass balance can be applied to analyse the possible results at an industrial 

level.  

 

The process starts with seven stages of falling film freeze concentration. The solid 

concentration at the end of each stage was calculated by Eq. 6. The concentrated fraction 

of each stage entered the next stage. After falling film freeze concentration, the ice is 

thawed to recover the occluded solids. This thawing can be achieved using the same 

equipment used for FFFC. The concentration obtained from the thawing process was 

calculated by Eq. 7. The thawing ended when the f values shown in Table 8.2 were 

reached. The diluted and concentrated fractions can be separated. At this point, 64% of 
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the solids retained in the ice were recovered. The diluted fraction of the first thawing stage 

had 0.24% solids and was considered an effluent. The other diluted fractions can be mixed 

to obtain 574.8 kg/h of extract with 1.7% of coffee solids. This mixture can be freeze-

concentrated by the block technique.  

 

FFFC 1 FFFC 2 FFFC 3 FFFC 4 FFFC 5 FFFC 6 FFFC 7

1135.1 kg/h

9.2%

741.6 kg/h
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17.0%

406.7 kg/h

20.9%
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24.8%
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28.7%
2108.1 kg/h
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0.24%
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2.9%
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853.5 kg/h

0.27%
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Figure 8.7. Integrated process to freeze-concentrate coffee extract using falling film 

freeze concentration (FFFC), fractionated thawing (T) and block freeze concentration 

(BFC). 

 

The results of block FC were calculated from the data reported in Table 8.3. A diluted 

stream with 0.4% of coffee solids was obtained after two stages of block FC. This stream 

can be mixed with the diluted fraction of the first thawing stage to obtain an effluent of 

853.5 kg/h with 0.27% coffee solids. This final concentration is acceptable according to 

industrial standards. The concentrated fractions from the thawing stages and block FC can 

be mixed and re-circulated through the process. A mixture of 1108.1 kg/h with 5.5% of 

solids was obtained and can be mixed with the feed.  

 

With the proposed process, the concentration of the extract increased from 5% to 32.6%. 

The concentration of the final effluent was 0.27%, comparable to industrial standards (Van 

Mil and Bouman, 1990; Van Pelt and Bassoli, 1990). The process results are presented in 

Table 8.4. Through the combination of the three techniques, the solute yield increased to 

95%, the concentration index to 6.5, and the concentration efficiency to 99.2%. The results 

indicate the convenience of the process to concentrate coffee extract in comparison to 

FFFC. The process is comparable to the suspension system currently implemented in the 

coffee industry in terms of the concentration of the product and effluent.  

 

Different variations of the process can be utilised to optimise energy consumption or cost. 

For example, an alternative process can be proposed by analysing the concentration of 

the ice in the three last stages of FFFC. These solid concentrations were higher than the 
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solid concentration of the initial extract, so they can be re-circulated without going through 

the thawing stage. Applying mass balance, with this alternative only one block FC stage is 

required to obtain an effluent with a solid concentration less than 0.3%. The process would 

include seven stages of FFFC, four stages of thawing and one stage of Block FC, reducing 

costs and time. In the same way, other combinations of strategies can be performed. The 

technical viability of the current strategy has been shown in terms of the requirements of 

the final extract and the final effluent solid concentrations. From this point, the optimisation 

of the process and equipment sizing can be initiated. This process is in development for 

future studies.  

 

Table 8.4. Final results of the integrated freeze-concentration process.  

 

Technique Y CI Efficiency 

Falling Film Freeze concentration (FFFC) 0.43 6.2 90.1% 

FFFC + fractionated thawing (T) 0.64 6.4 97.2% 

FFFC+ T + Block FC 0.95 6.5 99.2% 

 

8.5. Conclusions  

 

An operative strategy to integrate falling film freeze concentration, fractionated thawing 

and block freeze concentration was proposed as an alternative to suspension freeze 

concentration of aqueous coffee extract. Falling film freeze concentration is effective for 

increasing the solid concentration of the extract to levels reported by industry. However, a 

large amount of solid is occluded in the ice. Fractionated thawing allows the recovery of 

the solids occluded in the ice. Block freeze concentration is able to obtain a final effluent 

with low solid content, reducing solids loss.  

 

Falling film freeze concentration increased the concentration of the coffee extract 6.2 

times. With fractionated thawing, 64% of the solids retained in the ice were recovered. By 

block freeze concentration, a high-purity effluent was obtained. Through the process, the 

coffee extract was concentrated from 5% to 32.5% with an effluent with 0.27% solids. The 

concentration efficiency increased to 99.2% and the solute yield to 95%. The process is an 

alternative to the industrial freeze concentration systems based on suspension technology, 

with the advantage of the simplicity of the falling film and block freeze concentration 

equipment.  
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9. MAIN RESULTS OF THIS DISSERTATION 

 

 

This final chapter presents a summary of the main results achieved in this dissertation. 

From the main question of the research, what is the effect of the operational variables of 

block and falling-film freeze concentration on separation efficiency and quality of coffee 

extract, the most important results are highlighted.  

 

 The coffee mass fraction of the extract significantly affected the separation 

achieved during block and falling-film freeze concentration. 

 

Separation is more difficult when the concentration of coffee solids increases as a result of 

the concentration process due to the combined effect of several phenomena. First, the 

diffusion rate of solutes elution to the ice front decreases by cause of the interactions 

between molecules. Second, viscosity of the coffee solution increases, and consequently, 

liquid fraction movement is slower in the freezing and thawing stages. In addition, the 

volume of water that can be frozen and separated is lower for higher concentrations. 

Finally, increasing solute concentration decreases the freezing point and produces the 

constitutional supercooling phenomenon, trapping more quantity of solutes in the ice front. 

The combination of these effects explains why the efficiency of separation decreases with 

solid concentration.  

 

 Controlling freezing direction was useful to recover solutes during block freeze-

concentration. 

 

Commonly, the thawing of the ice block is achieved from the same front where it was 

frozen. However, when the thawing direction was controlled in such a way that it was 

opposite to the freezing direction, a higher amount of solutes were recovered. Solute 

recovery was increased when the last frozen fractions were thawed first. Solute elution to 

the freezing front was obtained; consequently, solutes were accumulated in the fractions 

farthest from the cooling wall. Solute recovery was increased when these fractions were 

thawed. This effect was dependent on initial coffee mass concentration.  

 

 The sweating phenomenon during the thawing stage increased solute recovery  

 

The sweating phenomenon was observed during the thawing stage in block freeze-

concentration and during the fractionated thawing of the ice sheets in falling-film freeze 

concentration. A highly concentrated liquid was recovered in the first fractions. Solutes 

diffused from the concentrated liquid fractions to the droplet of water that had melted 

during thawing. This phenomenon is highly important in solute recovery.  
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 The behaviour of block freeze-concentration was determined by response variables 

such as solute recovery ratio and the area under the curve of solute recovery.  

 

The effect of the operational variables of freeze concentration on separation efficiency was 

evaluated through response variables proposed in the present work. The comparative 

analysis of block freeze-concentration is difficult because solute recovery depends on the 

thawing fraction. The area under the curve of solute recovery and the solute recovery ratio 

can be used for this purpose. In addition, these variables were useful to determine the 

thawing fractions at which completion of the thawing stage was convenient. These 

variables are a contribution to the state of the art of the research on block freeze-

concentration.  

 

 The implementation of microwave thawing and vacuum assisted separation 

increased separation efficiency in block freeze-concentration.  

 

Several aids can be used during the thawing and separation stages of block freeze-

concentration. Microwave energy accelerated thawing around the channels of 

concentrated liquid trapped between ice crystals. These concentrated liquid fractions 

absorbed the microwave energy before the ice. On the other hand, vacuum separation 

increased the hydrodynamic movement of the concentrated liquid fraction between ice 

crystals, increasing solute recovery. The aids had a synergic effect on the increase of 

solute recovery. The viability of the use of these strategies depends on operational costs 

and equipment requirements, and thus, thawing and separation aids should continue to be 

studied.  

 

 The main physical properties of coffee extract were determined at temperatures 

close to freezing.  

 

Viscosity, density, freezing point, and coffee mass fraction of coffee extract were 

determined as a function of temperature and solid concentration at temperatures close to 

freezing. The properties were mathematically modelled within the typical intervals of solid 

content and temperature of freeze concentration. The information forecasted with the 

models is useful in freeze concentration modelling.  

 

 Average ice growth rate, fluid film velocity, and coffee mass fraction affected the 

average distribution coefficient of the ice obtained in the falling-film freeze 

concentrator.  

 

Low ice growth rate, high fluid film velocity, and low coffee mass fraction decreased solute 

occlusion in the ice during falling-film freeze concentration. These three variables were 

related according to the Chen and Chen model. Parameters to estimate the average 

distribution coefficient were obtained. A model to predict the concentration index, the 

solute yield and the average distribution coefficient in successive stages of falling-film 
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freeze concentration was generated. This model can be used to identify the number of 

stages required to obtain a specific concentration of the coffee extract.  

 

 Block and falling-film freeze concentration preserved the content of bioactive 

compounds and the antioxidant activity of the coffee extract. 

 

The major bioactive compounds with functional interest in coffee extract, chlorogenic acids 

and caffeine, were distributed proportionally in the ice and liquid fraction. A higher 

concentration of the bioactive compounds was obtained in the liquid fraction due to the 

higher total solid content in this fraction than in the ice. A significant correlation between 

bioactive compounds and antioxidant activity was found. Results indicated that freeze 

concentration preserves the functional quality of the beverage. These results show the 

potential of freeze concentration to concentrate extracts with biological activity in the 

biotechnology industry.  

 

 Block and falling-film freeze concentration preserved volatile compounds 

concentration and sensory quality of the coffee extract.  

 

Eight major volatile compounds were identified in the coffee extract. The same compounds 

were present after freeze concentration in the liquid and ice fractions. In general, the 

relative concentration of the volatile compounds was preserved when using both 

techniques thanks to the low processing temperatures. Most of the coffee extract attributes 

were preserved after block and falling-film freeze concentration. No differences in sensory 

attributes between ice and liquid fractions were found. As a general result, the sensory 

properties of the freeze-concentrated coffee extract were preserved. These results show 

the convenience of both techniques to preserve the sensory quality of the beverage.  

 

 Morphology of the ice crystals produced during freeze concentration affected the 

amount of solutes retained in the ice 

 

Ice crystals obtained using block and falling-film freeze concentration were characterised 

through image analysis. The morphology of ice cells and freeze-concentrated liquid 

channels was observed. The size of ice crystals decreased and solute occlusion increased 

when the freezing rate increased. The relationship between ice morphology, the 

operational variables of freeze concentration, and solute retention is an interesting 

parameter of study aiming to increase separation efficiency. The image analysis technique 

is a tool that can be used in ice crystal characterisation during freeze concentration.  

 

 Falling-film freeze concentration was effective to increase coffee extract 

concentration.  

 

The concentration of the coffee extract was increased 6.2 times when using the falling-film 

freeze concentration technique. This is a fast and flexible technique to obtain extract 
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concentrations comparable to industrial standards of the suspension technique. 

Nevertheless, part of the solutes remains trapped in the ice sheets and need to be 

subsequently recovered.  

 Fractionated thawing was useful to recover the solutes retained in the ice produced 

in a falling-film freeze concentrator. 

 

Sixty-four percent of the solutes retained in the ice produced in a falling-film freeze 

concentration were recovered through partial thawing. The sweating phenomenon 

contributed to recovering a highly concentrated liquid in the first thawing fractions. This 

technique is useful to increase solute yield in falling-film freeze concentration.  

 

 Block freeze-concentration was effective to produce a pure ice fraction with low 

solid content in the final effluent.  

 

The block technique as a final stage of freeze concentration efficiency produced a final 

effluent with 0.3% solids. The solid content of this effluent is consistent with the industrial 

requirements. Pure ice blocks were obtained thanks to the low freezing rate. In addition, 

aids can be used in the thawing and separation stages to increase separation efficiency in 

block freeze-concentration.  

 

 An operative strategy to integrate falling-film freeze concentration, fractionated 

thawing, and block freeze-concentration fulfilled the industrial requirements on the 

final concentration of coffee extract and effluent.  

 

A process to concentrate coffee extract that takes advantage of each studied technique 

was proposed. A final concentration of the extract and the effluent consistent with 

industrial requirements can be obtained. Concentration efficiency was increased to 99.2%. 

This process is an alternative to the industrial freeze concentration systems based on 

suspension technology, and it is an advance in the state of the art on the development of 

new freeze concentration techniques. 

 

 

 

 
  



 Freeze concentration of coffee extract: Study of block and falling-film techniques 

 

129 

 

 

 

 

10. CONCLUSIONS AND SUGGESTIONS 

 

 

The purpose of the current study was to determine the effect of the operational variables of 

block and falling-film freeze concentration on separation efficiency and quality of coffee 

extract. The following conclusions have been obtained. 

 

This study has shown that the concentration of coffee extract can be incremented with 

high freezing temperatures and a thawing direction opposite to the freezing direction in 

block freeze-concentration. On the other hand, low solute occlusion in the ice and high 

concentration efficiency can be obtained at low solid concentrations, low freezing rates, 

and high falling fluid velocities for falling-film freeze concentration. The relevance of extract 

solute concentration is clearly supported by the current findings. The study of the 

operational variables of freeze concentration makes several contributions to the current 

literature. 

 

The equipment designed and built to study block and falling-film freeze concentration 

showed to be efficient in controlling the main operational variables. This equipment may be 

used to systematically study freeze concentration technology.  

 

The behaviour of the average distribution coefficient in the ice produced in falling-film 

freeze concentration can be predicted through the Chen and Chen model. The number of 

stages needed to reach a specific concentration of coffee extract can be predicted through 

the mathematical model proposed in the present study.  

 

The results of this investigation show that solute yield in block freeze-concentration can be 

mathematically described by the monomolecular model. In addition, the area under the 

curve of solute yield can be used to compare the behaviour of block freeze-concentration 

under different operational conditions.  

 

This study has demonstrated, for the first time, that block and falling-film freeze 

concentration techniques are effective in the preservation of the functional and sensory 

quality of coffee extract. The major bioactive and volatile compounds are preserved in the 

freeze-concentrated liquid using both techniques. Consequently, antioxidant activity and 

most of the attributes of sensory quality are preserved with block and falling-film freeze 

concentration. 

 

The integration of block freeze-concentration, falling-film freeze concentration, and 

fractionated thawing is an alternative to the current freeze concentration systems. Falling-

film freeze concentration is effective to increase the solute concentration of the extract 
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from 5% to 32%. With fractionated thawing, up to 64% of the solutes retained in the ice 

sheet can be recovered. Block freeze-concentration has the ability to produce a final pure 

effluent with 0.3% solids. 

 

The process proposed to freeze-concentrate coffee extract is a technically viable 

alternative to obtain an extract and an effluent with a solute concentration according to 

industrial requirements. The process is an alternative to the industrial freeze concentration 

systems based on suspension technology, with the advantage of the simplicity of the 

falling film and block freeze-concentration equipment. 

 

Finally, the study has made some progress towards enhancing our understanding of 

freeze concentration and contributing to the state of the art with five research papers 

published in indexed journals and five participations in scientific events. Returning to the 

research question, it is now possible to state that freeze concentration is an applicable 

technology to concentrate coffee extract preserving the quality of the beverage. This 

technology is an alternative to extract purification in the food and biological industries.  

 

 

 This research has given rise to several suggestions in need of further 

investigation: 

 

Further research could explore the energetic optimization of the proposed process to 

establish the viability of its industrial implementation. The technical viability was 

demonstrated in terms of concentration requirements, but the economic viability of the 

energetic, initial, and maintenance costs must be established in contrast to other 

concentration systems.  

 

Future work is needed to design and scale-up equipment required to implement the 

integrated process of block and falling-film freeze concentration. This equipment needs to 

keep the simplicity and flexibility of the techniques in order to ensure the comparative 

advantages of other concentration techniques.  

 

Further research on the role of ice crystals morphology on solute retention would be 

interesting. More information on the influence of operational conditions on crystals 

morphology would help increase the degree of separation achieved.  

 

Another possible area of future research is to investigate mathematical models to describe 

phenomena such as occlusion and sweating in the ice as a function of the morphometric 

parameters of ice crystals.  

 

Finally, it is suggested to research the application of freeze concentration to recover 

components from extracts of biological materials in future studies in order to take 

advantage of this technology.  
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Coffee extract was freeze-concentrated using the total block technique. The effects of four parameters
were evaluated: the initial coffee mass fraction (5 and 15% w/w), the cooling temperature (�10 and
�20 �C), the heating temperature (20 and 40 �C) and the freezing direction (parallel and counter-flow
to the thawing direction). The solid concentration was measured during the thawing stage to quantify
the solute recovery and the concentration index for one stage of freeze concentration. The coffee mass
fraction, the freezing direction and the cooling temperature significantly influenced the solute recovery.
A concentration index between 1 and 2.3 was obtained in one cycle. The effect of block freeze concentra-
tion on the bioactive compound concentration and the antioxidant activity was measured. The coffee bio-
active compounds were distributed in proportion to the total solid content in the ice and liquid.
Therefore, block freeze concentration is an effective technique to preserve functional properties of coffee
extracts.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Coffee is the most traded food in the world, and its production
has great economic and social importance worldwide (Esquivel
and Jiménez, 2012; Vignoli et al., 2011). For the consumer, the va-
lue of coffee is provided by its sensory and functional properties;
for this reason, technologies that promote quality preservation
are highly valued in coffee processing. In the production of
freeze-dried coffee, freeze concentration (FC) technology is used
to remove water from coffee extracts to increase the solid content
and reduce the time and cost of the freeze-drying process. At the
same time, the sensory properties of the product are preserved
using low temperatures (Boss et al., 2004; Joët et al., 2010; Sánchez
et al., 2009).

Water removal in FC is achieved by cooling the solution until
the ice crystals form and separate (Miyawaki et al., 2005). Three
techniques are used according to the ice crystal growth: suspen-
sion FC, film FC (progressive or falling film FC) and block FC (total
or partial) (Aider and de Halleux, 2009; Sánchez et al., 2009). Sus-
pension FC is a unique technique implemented at the industrial le-
vel. Different techniques, such as falling film FC (Chen et al., 1998;
Sánchez et al., 2011), progressive FC (Miyawaki et al., 2005) and
block FC (Aider and Ounis, 2012; Nakagawa et al., 2010a), are being
developed to reduce operational costs.
In the block FC method, also known as freeze–thaw concentra-
tion, the solution to be concentrated is completely frozen and then
partially thawed to recover a fraction of liquid with a higher con-
centration (Aider and de Halleux, 2009; Nakagawa et al., 2010b).
Block FC consists of three stages: freezing, thawing and separation
of the concentrated liquid fraction (Moreno et al., 2013). These
stages define the separation efficiency (Nakagawa et al., 2009).
Additionally, the process can be repeated in successive cycles to in-
crease the concentration index (Aider and Ounis, 2012).

The technical viability of the block FC method has been pro-
posed recently by several researchers (Gao et al., 2009; Nakagawa
et al., 2010a; Aider and Ounis, 2012; Boaventura et al., 2012; Miy-
awaki et al., 2012; Petzold et al., 2013). During the freezing stage,
heat and mass transfer phenomena can modify the solute occlu-
sion, which should be as low as possible. Chen et al. (2001)
eported that the solute elution in the freezing front in FC depends
on the molecular size of the compounds. Certain authors have re-
ported that the solute separation is controlled by the thawing stage
(Nakagawa et al., 2010b). For coffee solutions, Moreno et al. (2013)
studied the use of aids in the separation stage. These authors re-
ported the influence of the FC protocol and solution type on solute
recovery and the concentration index; for this reason, there is no
agreement on the significance of the process variables. The effects
of the process variables of block FC on the separation efficiency of
coffee extracts have not been reported.

Coffee can be considered to be a functional beverage due to its
radical scavenging capabilities (Cheong et al., 2013; Esquivel and

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jfoodeng.2013.07.034&domain=pdf
http://dx.doi.org/10.1016/j.jfoodeng.2013.07.034
mailto:ruth.ruiz@unisabana.edu.co
http://dx.doi.org/10.1016/j.jfoodeng.2013.07.034
http://www.sciencedirect.com/science/journal/02608774
http://www.elsevier.com/locate/jfoodeng


Nomenclature

CI concentration index
CIcum cumulative concentration index
CFCL concentration of bioactive compounds in the freeze-

concentrated liquid
CRI concentration of bioactive compounds in the

residual ice
f thawing fraction
FD freezing direction
IL ice loss percentage
ms 0 initial solute mass

ms liq solute mass in the liquid fraction
m0 initial mass
mliq collected liquid mass
TC cooling temperature
TH heating temperature
Xs 0 coffee mass fraction in the initial solution
XS coffee mass fraction
Xs liq coffee mass fraction in the freeze-concentrated liquid

fraction
Y solute yield
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Jiménez, 2012). Several studies have reported the health benefits of
coffee consumption related to the components with antioxidant
activity, such as the group of chlorogenic acids and caffeine. Chlor-
ogenic acid (3-caffeoylquinic acid), cryptochlorogenic acid (4-caf-
feoylquinic acid), neoclorogenic acid (5-caffeoylquinic acid) and
caffeine are the major bioactive compounds present in coffee (Fer-
ruzzi, 2010; Fujioka and Shibamoto, 2008; Sopelana et al., 2013;
Vignoli et al., 2011). The block FC method has been shown to retain
nutritional and functional properties of the product using low pro-
cessing temperatures (Belén et al., 2013; Boaventura et al., 2012);
however, this effect has not been tested for coffee extracts.

The aim of the present study was to evaluate the effect of the
initial coffee mass fraction, the cooling temperature, the heating
temperature and the freezing direction on the solute yield and con-
centration index of block freeze-concentrated coffee extracts.
Additionally, the impact of the technique on bioactive compound
concentration and the antioxidant activity of the coffee extract
was tested.
Table 1
Experimental design.

Test XS TC TH FD

1 0.05 �10 20 1
2 0.05 �10 20 �1
3 0.05 �10 40 1
4 0.05 �10 40 �1
5 0.05 �20 20 1
6 0.05 �20 20 �1
7 0.05 �20 40 1
8 0.05 �20 40 �1
9 0.15 �10 20 1

10 0.15 �10 20 �1
11 0.15 �10 40 1
12 0.15 �10 40 �1
13 0.15 �20 20 1
14 0.15 �20 20 �1
15 0.15 �20 40 1
16 0.15 �20 40 �1

FD + 1: counter-flow to thawing; FD-1: parallel to thawing.
2. Materials and methods

2.1. Materials

Coffee solutions were prepared from freeze-dried soluble coffee
supplied by the company Buencafé Liofilizado de Colombia
(Colombian Coffee Growers Federation, Colombia) for the FC tests.
The coffee was added to distilled water at 35 �C and mixed for
20 min. The samples were stored at 4 �C for 12 h. The solid concen-
tration is expressed as the coffee mass fraction (XS), which is de-
fined as the mass of coffee solids per unit of coffee solution
mass. The relationship between Brix degrees and XS is represented
by the equation XS = 0.0087 �Brix (R2 = 0.991). This expression was
obtained by preparing coffee solutions at 10, 20, 30, 40 and 50 �Brix
and by measuring coffee mass fraction using the weight loss tech-
nique in the oven at 103 �C for 4 h according to technical standard
NTC4602 (Icontec, 2009). The measurements were performed in
triplicate. The coffee mass fraction of the solutions was ascertained
immediately before the FC tests by refractometry (Atago Pal 100,
Japan). A liquid coffee extract was used for the measurement of
bioactive compounds. This extract belonged to the same batch of
soluble coffee and was also provided by Buencafé Liofilizado de
Colombia.

2.2. Methods

2.2.1. Freeze concentration protocol
The effects of the initial coffee mass fraction (XS), cooling tem-

perature (TC), heating temperature (TH) and the freezing direction
(FD) were studied. A full factorial design with four factors and
two levels was used for a total number of 16 tests (Table 1). The
coffee solutions were subjected to one cycle of freezing, thawing
and separation to study the effect of process variables on solute
yield after one cycle of FC.

The block FC device is shown in Fig. 1. In total, 160 g of the cof-
fee sample was placed into a cylindrical container (1) measuring
52.5 mm in diameter and 85 mm in height. The container is a dou-
ble jacket device for the flux of cooling and heating fluids. The
internal jacket is 19 mm in diameter (2). The cooling/heating fluid
was a mixture of ethylene glycol and water (53% w/w) coming
from two circulated baths (4 and 5) (Polystat, Cole Parmer, USA).
The baths were temperature controlled (6 and 7) at an interval
from �35 �C to 150 �C ± 0.01 �C. The baths pumped the heat ex-
change fluid to the jackets through a system of ducts and valves
(7).

During the tests, the heat exchange fluid temperature was set-
tled in one bath. After the fluid reached the temperature, it was cir-
culated to the jackets to freeze the solution inside. The heat
transfer was in the radial direction from the internal wall (for
freezing parallel to thawing) or from the external wall (for freezing
in counter-flow to thawing). Meanwhile, the heating temperature
of the second bath was settled. When the sample was frozen and
the temperature was approximately constant, the thawing stage
was begun by pumping the heating fluid through the external jack-
et. The exit valve (9) was opened and the liquid fraction was sep-
arated in a collector vessel (10) on a scale (11) (Ohaus PA3102,
USA) with a capacity of 3100 g and a precision of 0.01 g for weight
measurement. During the thawing stage, the temperature of the
internal jacket was maintained one Celsius degree below the



Fig. 1. Experimental set up for block freeze concentration.

Fig. 2. Solute yield during freeze concentration tests. Adapted from Nakagawa et al.
(2009).
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freezing point of the coffee solution to avoid thawing the internal
side and to preserve unidirectional thawing. Ten liquid fractions
of the same mass were collected. Lastly, the coffee mass fraction
(XS) was measured by refractometry (Atago Pal 100, Japan).

2.2.2. Temperature profile
The FC device seen in Fig. 1 has four temperature sensors (12)

inside of the container to measure the temperature profile during
one test. These sensors were used during the temperature measur-
ing tests but not during the FC tests. The sensors PT100-IP65 (Tes-
to, Germany) had a 2 mm diameter and a measuring interval of
�50 to 300 �C ± 0.01 �C and were placed equidistant from the cen-
tre of the container (sensor 1) and the external wall (sensor 4). The
sensors were connected to a datalogger 176 T2 (Testo, Germany)
connected to a PC for data collection.

2.2.3. Data analysis
2.2.3.1. Thawing fraction (f). A thawing fraction (f) was used to
follow the development of the process. The f was measured as
the ratio between the thawed mass and the mass of the original
solution, defined by the following equation (Miyawaki et al.,
2012; Nakagawa et al., 2010a):

f ¼ mliq=m0 ð1Þ

where f is the thawing fraction, mliq the collected liquid mass, m0 is
the initial mass.

2.2.3.2. Solute yield (Y). Solute yield was calculated for analysing
the solute recovery. Y was defined as the relationship between
the mass of solute present in the separated liquid and the mass
of solute present initially in the original solution, as seen in the fol-
lowing equation (Moreno et al., 2013; Nakagawa et al., 2010a):

Y ¼ msliq=ms0 ð2Þ

where Y is the solute yield, ms liq the solute mass in the liquid frac-
tion, ms0 is the initial solute mass.

2.2.3.3. Concentration index. The concentration index (CI) was used
to express the concentration of solutes reached after the FC pro-
cess. CI was defined as the relationship between the solid concen-
tration in the liquid fraction and the solid concentration in the
initial solution. CI is also known as relative concentration (Nakag-
awa et al., 2009):

CI ¼ Xsliq=Xs0 ð3Þ
where CI is the concentration index, Xs liq the coffee mass fraction in
the freeze-concentrated liquid fraction, Xs 0 is the coffee mass frac-
tion in the initial solution.

When the CI is calculated using the mixture of the thawed frac-
tions at a given time, Eq. (3) can be expressed as the cumulative in-
dex (CIcum). Cumulative CI is the relationship between XS in the
accumulated liquid fraction and XS in the initial solution.

Eq. (4) was obtained by combining Eqs. (2) and (3):

Y ¼ CI�cumf ð4Þ
2.2.3.4. Area under curve Y vs. f. During the thawing stage of FC, the
graph Y against f represents the percentage of coffee solids that
was recovered from the initial solution for each thawed liquid frac-
tion. The behaviour of a freeze concentration test can be repre-
sented by Fig. 2, as proposed by Nakagawa et al. (2010a).

The diagonal line represents the case in which the thawed li-
quid fraction had the same concentration as the initial solution;
therefore, there was no FC. A higher curve from the diagonal indi-
cates the amount of recovered solute for a given f and the efficiency
of the separation were greater. An ideal situation would be a curve
very close to the y-axis in which all of the solute was recovered at
the beginning of the thawing stage. Therefore, the area under the
curve Y vs. f can be used as a single parameter to compare the effi-
ciency of the separation process and to examine the effect of the
studied factors.
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The area under the curve represents the integral of the function
Y vs. f. The area value is bounded between 0 when the solutes are
not recovered and by 1 when all the solutes are recovered instan-
taneously and there is no solute occlusion. The diagonal line of
no-concentration has an area of 0.5. An area value closer to one
indicates a better result of the FC process. The area under the curve
can be understood as the sum of the solute yield achieved in a
thawing fraction during the FC. The area under curve Y vs. f was
used as an identifying parameter of the effect of each studied
variable.

2.2.3.5. Freezing front growth rate. The average freezing front
growth rate was calculated by measuring the distance from the
cooling surface to the front of the ice during the freezing stage with
a calliper. The average of the ratios of distance to time was used as
the rate. The rate was expressed in micrometres per second.

2.2.4. Bioactive compound measurement
The major bioactive compounds of coffee extract, chlorogenic

acid (CGA), cryptochlorogenic acid (c-CGA) and caffeine, were mea-
sured for the initial solution, the freeze-concentrated liquid recov-
ered at a f value of 50% and for the residual ice at the same f as a
comparative parameter. The measurements were performed for
tests 1 and 16 (Table 1), which correspond to the extreme values
of XS, TC, TH and total process time. The measurements were per-
formed in triplicate.

The concentration of bioactive compounds was determined by
reversed-phase high performance liquid chromatography (RP-
HPLC) as described by Fujioka and Shibamoto (2008) and Owen
et al. (2003) with modifications. The RP-HPLC apparatus, LaChrom
(Merck-Hitachi, Germany–Japan), was equipped with a quaternary
pump, degasification system and a diode array detector (UV/VIS).
The separation was achieved in a Gemini column C-18 (Phenome-
nex, USA) measuring 250 mm * 4.6 mm and 5 lm at 25 �C. The mo-
bile phase used was acetic acid 2% (A) and methanol (B). The
gradient was adjusted as follows: 0–10 min, A/B 96/4; 65 min,
85/15; 75 min, 75/25; and 85 min, 25/75 at a flow rate of
1 mL min�1. CGA and c-GCA were detected at 325 nm, and caffeine
was detected at 276 nm. The injection volume was 5 lL. The con-
centrations of bioactive compounds were calculated using a
regression equation of their concentrations and the peak area ob-
tained from pattern grade HPLC (Sigma–Aldrich, USA).

The loss of bioactive compounds in the residual ice due to FC
was calculated using the following equation (Ramos et al., 2005):

IL ¼ CRI=ðCRI þ CFCLÞ � 100 ð5Þ

where IL is the ice loss, CRI the concentration of bioactive com-
pounds in the residual ice, CFCL is the concentration of bioactive
compounds in the freeze-concentrated liquid.

2.2.5. Antioxidant activity
The antioxidant activity of coffee samples was determined by

the ABTS (2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid
assay) and DPPH (2,2-diphenyl-1-picrylhydrazyl assay) methods.

2.2.6. ABTS methodology
Antioxidant activity was estimated in terms of radical scaveng-

ing activity using the procedure described by Vignoli et al. (2011)
with modifications. Briefly, ABTS radical cations (ABTS+) were pro-
duced by reacting 3.5 mM ABTS stock solution with 12.5 mM
potassium persulphate prepared in a 10% phosphate buffer solu-
tion at a pH of 7.4 in distilled water. The solution was stored in
the dark at room temperature for 12 h. Before the analysis, the
solution was settled at 0.8 ± 0.2 nm. Lastly, 50 lL of the coffee sam-
ple was added to 200 lL of ABTS + solution and the absorbance was
read after 30 min of incubation in complete darkness using an
iMark Microplate Reader spectrophotometer (Bio-Rad, USA). The
same procedure was conducted for calibration with ethanol solu-
tions containing known concentrations of Trolox between 3 and
15 lL mL�1. The results were expressed in g of Trolox per 100 g
of coffee (dry matter). The experiments were performed in
triplicate.

2.2.7. DPPH methodology
The DPPH technique was performed according to Vignoli et al.

(2011). A DPPH solution was prepared at 0.6 mM of methanol.
The absorbance was settled to 1.1 nm before the tests. For the anal-
ysis, 50 lL of DPPH solution was added to 75 lL of each coffee
sample. The absorbance was measured at 515 nm after 30 min of
incubation at room temperature in complete darkness. The calibra-
tion was performed with Trolox at concentrations between 3 and
15 lL mL�1. The antioxidant activity was expressed as mg of Trol-
ox/mL. The experiments were performed in triplicate using meth-
anol as a blank.

2.3. Statistical analysis

All the tests were performed in triplicate. The area under the
curve of Y vs. f was obtained by a spline regression procedure. A re-
sponse surface regression procedure was used to determine the ef-
fect of each studied factor listed in Table 1 on the area under the
curve with a confidence interval of 95%. One-way analysis of vari-
ance (ANOVA) was applied to the results of the area under the
curve followed by a LSD test with a level of significance of 95%.
For the bioactive compound measurement, the mean values were
calculated and a correlation analysis was performed by comparing
the Pearson coefficients. All statistical analysis were performed
using the SAS 9.2 software package.
3. Results and discussion

3.1. Temperature profiles

The temperature profiles during FC tests for tests 1 and 8 de-
scribed in Table 1 are shown in Fig. 3. These tests corresponded
to the lowest and highest overall process time; therefore, the other
tests were within this time interval. Temperature sensor 1 was lo-
cated beside the internal wall of the container and sensor 4 was lo-
cated in the external wall. In test 1, the freezing was achieved from
the centre and the thawing from the external wall. For this reason,
the temperature dropped first in sensor 1 and last in sensor 4, as
can be seen in Fig. 3a; during the thawing stage, the order was
reversed.

Point ‘‘a’’ shows the nucleation phenomenon that caused a tem-
perature increase due to the latent heat of the phase change. The
latent heat released from the portion of liquid closest to the centre
(line 1) caused a temperature increasing of the external portion be-
fore it was frozen (line 4). For this reason, a temperature increasing
in the interval 0 �C to 5 �C was observed. After that, the whole solu-
tion was frozen and the temperature tended to be constant. A sim-
ilar behaviour was reported by Nakagawa et al. (2010b).

When the temperature was stable, the thawing phase began
(point b). A change in the temperature was observed in the oppo-
site order than it was in the freezing stage. For test 1, the thawing
time was 180 min and the average freezing growth rate was
1.84 lm s�1. Alternatively, in test 8 (Fig. 3b), the freezing and the
thawing were both achieved from the external wall in parallel.
The first portion that was frozen and thawed corresponded to sen-
sor 4, which was located beside the external wall. A freezing time
of 45 min and an average ice growth rate of 7.17 lm s�1 were
obtained.



Fig. 3. Temperature profile during freezing and thawing stages. (a) Test 1.
TC = �10 �C, TH = 20 �C; (b) Test 8 TC = �20 �C, TH = 40 �C. 1: Temperature sensor 1
(interior) and 4: temperature sensor 4 (exterior).
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3.2. Freeze-concentration tests

The results of the block FC tests are shown in Table 2 in
descending order of the area under the curve of Y vs. f. The greatest
area was obtained for test 1, which corresponded to the lowest cof-
fee mass fraction, the greatest cooling temperature, the lowest
heating temperature and freezing direction in counter-flow to
Table 2
Freeze concentration tests in descending order of area under the curve.

TEST XS TC TH FD Area under curve f at CI = 1 Y at

1 0.05 �10 20 1 0.802a 0.5 0.83
3 0.05 �10 40 1 0.778a,b 0.5 0.78
5 0.05 �20 20 1 0.777b,c 0.5 0.81
2 0.05 �10 20 �1 0.762b,c,d 0.5 0.82
4 0.05 �10 40 �1 0.746e,c,d 0.6 0.91
7 0.05 �20 40 1 0.741e,d 0.5 0.73
6 0.05 �20 20 �1 0.736e,d 0.6 0.88
8 0.05 �20 40 �1 0.735e 0.6 0.90
9 0.15 �10 20 1 0.657f 0.7 0.81
10 0.15 �10 20 �1 0.653f 0.7 0.81
11 0.15 �10 40 1 0.652f 0.7 0.78
14 0.15 �20 20 �1 0.647f 0.7 0.80
16 0.15 �20 40 �1 0.646f 0.8 0.89
13 0.15 �20 20 1 0.644f 0.6 0.67
15 0.15 �20 40 1 0.640f 0.7 0.77
12 0.15 �10 40 �1 0.635f 0.7 0.78

Different letters indicate statistically significant differences (p < 0.05).
the thawing. The treatments showed significant differences at
p < 0.05. The LSD test indicated differences among treatments for
XS 0.05. Differences in FD and TC can be observed. On the contrary,
the tests with the highest XS did not show significant difference be-
cause the solid concentration is predominant over the effect of the
other factors.

The values for Y and f when the CI was equal to one are shown
in Table 2. At this value of f, solute yields between 67% and 83%
were obtained. At this point, the cumulative CI values were be-
tween 1.10 and 1.67. A CI of 1.8 for one cycle of FC was reported
by Aider and Ounis (2012). For falling film FC, a CI between 2
and 3 was reported by Sánchez et al. (2011) and Belén et al.
(2012). Miyawaki et al. (2005) reported a CI between 2 and 3 for
progressive FC. However, all of these authors reported that the re-
sults depended on the fluid being concentrated, the type and size
of the equipment and the process time.

The maximum CI obtained was 2.38 for test 8. The maximum CI
for each test was reached in the first thawing fractions and these
values descended during the thawing stage. The concentrated frac-
tion percolates through the frozen matrix (Petzold et al., 2013) and
its concentration descended until values close to zero during the
thawing stage. It therefore was possible to know the f value at
which the CI reached a value of 1. This situation corresponded to
the moment at which it becomes convenient to separate the thaw-
ing fraction to avoid a cumulative concentration decrease. The f
values are shown in Table 2 (f at CI = 1) and varied from 0.5 to
0.8. The f value at which the thawing stage has to be stopped de-
pends on the process conditions.

Freezing front growth rates from 1.8 to 7.5 lm s�1 were ob-
tained. The values depended on the cooling temperature, the heat
transfer area and the initial coffee mass fraction. The area under
the curve tended to be higher for lower freezing rates. The result
is more evident at low solid concentrations. For high solid concen-
trations the effect of freezing rate was not observed because of the
effect of solid interactions. No concentration was obtained for a
freezing rate of 7.5 lm s�1. At this rate, the ice occluded solutes
during the freezing stage. A critical rate value was also obtained
by Nakagawa et al. (2010a). The authors reported that for velocities
higher than 8 lm s�1, the freezing was too fast to expect a consid-
erable separation of the concentrated solution phase.

3.3. Effect of each operational factor on solute recovery

A regression analysis was performed to determine the statistical
significance of the factors of the study on the area under the curve
of Y vs. f. The result is shown in Table 3. The analysis showed a
CI = 1 Cumulative CI at CI = 1 CI max Freezing front growth (l s�1)

1.67 2.22 1.84
1.56 1.49 1.83
1.62 1.89 2.87
1.64 2.26 3.71
1.51 2.23 3.71
1.47 1.87 2.87
1.47 1.79 7.17
1.50 2.38 7.17
1.16 1.25 1.19
1.16 1.29 5.10
1.12 1.17 1.19
1.14 1.32 7.53
1.11 1.23 7.53
1.12 1.22 2.58
1.10 1.18 2.58
1.11 1.16 5.10



Table 3
Significance analysis of surface response for freeze concentration factors.

Parameter Estimator Pr > |t|

Intercept 0.917 <0.001
XS �1.617 0.0002*

TC 0.004 0.039*

TH �0.001 0.077
FD 0.037 0.010*

TC�XS �0.020 0.049*

TH�XS �0.006 0.184
TH�TC �0.001 0.545
FD�XS �0.133 0.019*

FD�TC 0.001 0.141
FD�TH 0.001 0.358

* Statistically significant at a < 0.05.

(a)

(b)

Fig. 4. Effect of coffee mass fraction on solute yield and the concentration index. (a)
Test 5, XS = 5% (h); Test 13, XS = 15% (s); (b) Test 6, XS = 5% (e); Test 14, XS = 15%
(D).

(a)

(b)

Fig. 5. Effect of freezing direction on solute yield and the concentration index. (a)
Test 1, FD = +1 (h); Test 2, FD = �1 (s); (b) Test 9, FD = +1 (e); Test 10, FD = �1 (D).
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good fitting of the experimental data (R2 = 0.9874 and
RMSE = 0.0123). The parameters with a Pr < 0.05 significantly af-
fected the area under the curve. The main effects XS, TC and FD

and the interaction terms TC�XS and FD�XS significantly affected
the freeze concentration.

The coffee mass fraction had the greatest influence with a neg-
ative correlation; in other words, the grade of concentration
achieved with the block FC decreased with the increase in XS.
The second main effect was the freezing direction followed by
the cooling temperature. The interactions between XS and the
other two mean factors were also significant, indicating the influ-
ence of these variables. Alternatively, the TH did not significantly
affect the studied intervals. Nakagawa et al. (2010b) and Moreno
et al. (2013) reported that the TH influenced the solute yield when
lower thawing temperatures were compared. This result depended
on the FC protocol and the level of TH.

3.3.1. Effect of initial coffee mass fraction (XS)
The curves Y against f and CI against f for tests 5 and 13 are

shown in Fig. 4. These test had different values of XS, but the other
factors were constant. A higher solute recovery was obtained for
XS = 0.05. This result was the same for all of the tests. Comparing
the curve with the diagonal line of no-concentration, the area un-
der the curve was higher for the lowest XS.

This result can be explained by different factors. First, during
the freezing stage, the ice grows by the diffusion of water mole-
cules to the ice surface and the counter-diffusion of solutes to
the liquid phase (Petzold and Aguilera, 2009). The diffusion rate
of solutes decreases when the solid concentration increases due
to the interactions between molecules; consequently, the achieved
concentration decreases. The same result was reported by Chen
et al. (2001) and Hindmarsh et al., 2005. Second, the coffee solution
viscosity increases with XS; this factor can cause the separation of
the liquid phase during the thawing stage to be difficult (Raventós
et al., 2007). Additionally, the ice tends to grow in dendritic form
for high solid concentrations, occluding higher amounts of solutes
(Yee et al., 2003). Lastly, the volume of water that can be frozen
and separated is lower for higher concentrations (Aider and de Hal-
leux, 2008a). The combination of these four effects explains why XS

was the factor with the greatest effect on Y and CI.
In the CI vs. f curve, the value at which the CI crossed the hor-

izontal line of CI = 1 is shown in Figs. 4–7. This intersection



(a)

(b)

Fig. 6. Effect of cooling temperature on solute yield and the concentration index. (a)
Test 3, TC = �10 �C (h); Test 7, TC = �20 �C (s); (b) Test 11, TC = �10 �C (e); Test 15,
TC = �20 �C (D).

(a)

(b)

Fig. 7. Effect of heating temperature on solute yield and the concentration index.
(a) Test 2, TH = 20 �C (h); Test 4, TH = 40 �C (s); (b) Test 10, TH = 20 �C (e); Test 12,
TH = 40 �C (D).
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corresponded to the moment at which the thawing stage has to be
completed to avoid a sample dilution and to recover as much sol-
ute as possible. For test 1, at f = 0.5, 83% of the coffee solids had
been recovered and the cumulative CI was 1.67. These results indi-
cate a good separation efficiency.
3.3.2. Effect of freezing direction (FD)
Tests 1 and 2 are shown in Fig. 5a. Tests 9 and 10 are shown in

Fig. 5b. Table 2 shows the differences in freezing direction. A better
FC was obtained for the tests in which the freezing and thawing
directions were opposite.

For the FD during counter-flow, the CI began in maximum val-
ues and descended during the thawing. This result indicates that
the solutes moved during the freezing stage to the farthest zone
from the container centre, which was the last area frozen and
the first area thawed. Additionally, the lower heat transfer area
in the internal wall compared to the external wall facilitated the
solute elution due to the slower ice front growth. Alternatively,
the initial CI was lower than the CI for the tests when the FD was
in parallel. The solutes moved from the external region of the con-
tainer, as evidenced by the smaller XS compared to the initial XS.
This finding can be explained by the elution phenomenon, in which
a movement of the solutes was produced by counter-diffusion dur-
ing ice crystals formation that expelled the solutes to the liquid
fraction. This result was also observed by Nakagawa et al. (2009).
Moreover, Chen et al. (2001) reported that elution depends on
the molecular size of the solutes. The effect is smaller with increas-
ing initial solute contents.
For the tests when the FD was in parallel, the CI was lower than
counter-flow direction at the beginning, and then it increased at f
values from 0.2 to 0.4. This result could have occurred because
the solutes diffused from the concentrated liquid fractions to the
droplet of water that had melted during thawing. This phenome-
non is known as sweating. This result was also reported by Nakag-
awa et al. (2009). Likewise, the concentrated portions were the first
fractions to be thawed and separated due to the difference in den-
sities, as reported by Yee et al. (2003). The results show the freez-
ing direction as a variable of interest in the study of block FC to
promote the intensification of solute recovery.
3.3.3. Effect of cooling temperature (TC)
Fig. 6 shows the tests comparing the effect of TC. Better out-

comes were obtained at �10 �C. The heat transfer rate was slower
at higher cooling temperatures. The ice crystals were able to grow
in a more ordered pattern that occluded a smaller amount of sol-
utes. For the elution to occur, the solutes mass transfer rate must
be greater than the ice growth rate (Caretta et al., 2006; Petzold
and Aguilera, 2009). In addition, the ice crystal size depends on
the cooling rate, which can affect the level of occlusion (Pardo
et al., 2002). Certain authors have reported that the cooling tem-
perature is not a significant factor impacting block FC (Aider and
de Halleux, 2008b; Gao et al., 2009). These reports suggest that
the effect of TC depends on the FC protocol during both the freezing
and thawing stages and depends on the separation mode of the
liquid phase.



Fig. 8. Typical chromatogram of a coffee solution sample: Test 1.

Table 4
Changes in bioactive compounds and the antioxidant activity of coffee during freeze concentration.

Test Compound C0 (mg/mL) CFCL (mg/mL) CRI (mg/mL) % Ice loss % Ice loss (dry basis) CFCL/C0

1 CGA 0.29 ± 0.01 0.48 ± 0.04 0.09 ± 0.02 16.03 ± 4.05 48.68 ± 0.37 1.66 ± 0.14a

c-CGA 0.20 ± 0.00 0.33 ± 0.03 0.06 ± 0.01 16.28 ± 3.89 49.21 ± 0.79 1.66 ± 0.12a

Caffeine 1.21 ± 0.01 2.02 ± 0.17 0.39 ± 0.08 16.07 ± 3.83 48.79 ± 0.77 1.67 ± 0.13a

Total solids 0.05 ± 0.00 0.08 ± 0.01 0.01 ± 0.00 16.87 ± 4.30 50.0 ± 0.00 1.60 ± 0.14a

DPPHa 2.61 ± 0.39 4.01 ± 2.42 1.17 ± 0.25 27.10 ± 13.5 61.50 ± 19.82 1.58 ± 1.00
ABTSa 24.02 ± 2.64 58.22 ± 22.70 12.63 ± 1.97 18.84 ± 5.97 53.10 ± 10.40 2.47 ± 1.08

16 CGA 0.93 ± 0.01 1.07 ± 0.02 0.76 ± 0.01 41.50 ± 0.74 49.62 ± 0.77 1.16 ± 0.03b

c-CGA 0.63 ± 0.01 0.73 ± 0.01 0.52 ± 0.01 41.65 ± 0.70 49.79 ± 0.70 1.17 ± 0.12b

Caffeine 3.93 ± 0.03 4.56 ± 0.08 3.28 ± 0.03 41.81 ± 0.68 49.96 ± 0.58 1.16 ± 0.03b

Total solids 0.15 ± 0.00 0.17 ± 0.01 0.12 ± 0.00 41.86 ± 0.43 50.0 ± 0.00 1.15 ± 0.01b

DPPHa 53.15 ± 3.99 72.90 ± 9.01 33.5 ± 2.97 30.77 ± 0.51 37.92 ± 0.32 1.41 ± 0.31
ABTSa 136.90 ± 9.01 171.31 ± 1.50 114.8 ± 8.20 39.52 ± 2.25 47.32 ± 2.08 1.27 ± 0.13

Different letters indicate statistically significant differences (p < 0.05).
a Expressed as mg Trolox/mL.

Table 5
Correlations between antioxidant activity and bioactive compounds concentration.

CGA cCGA CAFFEINE ABTS DPPH

CGA 1 1.00** 1.00** 0.557* 0.913**

cCGA 1.00** 1 1.00** 0.561* 0.915**

CAFFEINE 1.00** 1000** 1 0.561* 0.914**

ABTS 0.557* 0.561* 0.561* 1 0.744**

DPPH 0.913** 0.915** 0.914** 0.744** 1

* The correlation is significant p < 0.05 (bilateral).
** The correlation is significant p < 0.01 (bilateral).
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3.3.4. Effect of heating temperature (TH)
A slightly higher solute recovery was obtained at a TH of 20 �C

(Fig. 7). The average temperature in the empty region of the con-
tainer after each liquid fraction separation during the thawing
was 10 �C (Fig. 3). The treatments with the lowest TH allowed for
a slower thawing and avoided the dilution of the concentrated
phase. However, the effect was not significant at the studied levels.
The TH may be significant at different levels, as reported by Moreno
et al. (2013) where the tested heating temperatures were closer to
the freezing point.

3.4. Bioactive compounds and the antioxidant activity of coffee

The concentrations of the major bioactive compounds in coffee
solutions were determined for the initial solution (C0), the liquid
freeze-concentrated liquid (CFCL) and the residual ice (CRI) obtained
for a thawing fraction of 50%. A typical chromatogram is shown in
Fig. 8. Chlorogenic acids were the major component in the solu-
tions. The bioactive compounds concentration and the ice loss per-
centage are shown in Table 4.

The ice loss percentage was approximately 16% for the lowest XS

and 41% for the highest XS. This factor was related to the concentra-
tion index. When the ice loss (IL) was calculated on a coffee dry
matter basis, the result was approximately 50%. This result indi-
cates that the functional compounds were equally distributed in
the ice and liquid fractions. There was a greater amount of bioac-
tive compounds in the liquid phase because the concentrated li-
quid had a higher XS. The results correspond to tests 1 and 16
(Table 1), which had extreme values of XS, TC, TH and total process
time. All of the other tests were inside the intervals of tests 1 and
16.
The CI of total coffee solids for tests 1 and 16 at f = 0.5 were 1.60
and 1.15, respectively as seen in Table 4. These values were statis-
tically equal to the CI for the bioactive compounds, according to
the LSD test. A higher significant correlation (1.00) was found
(p < 0.01) between XS and the concentrations of CGA, 4-CQA and
caffeine. The same correlation between CI and %Li was found. Con-
sequently, the amount of bioactive compounds was maintained in
proportion to the amount of total coffee solids. Therefore, the con-
centration of bioactive compounds was enhanced through freeze
concentration and the bioactive compounds of the beverage were
preserved by block FC.

Highly significant correlations (p < 0.01) between antioxidant
activity measured by DPPH and the concentrations of CGA, c-CGA
and caffeine were demonstrated, as seen in Table 5. The correla-
tions of the ABTS measurements were significant (p < 0.05). These
results confirm that the antioxidant activity of coffee depends on
the CGA and caffeine content, as reported by Fujioka and Shibam-
oto (2008).
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A ratio between the antioxidant activity of the liquid fraction
and the initial solution was calculated to represent the antioxidant
activity relative index (CFCL/C0) (Table 4). There was no significant
difference between the antioxidant activity relative index and the
CI of the total coffee solids. The antioxidant activity was increased
until 2.4 in one FC cycle. The increase of the antioxidant activity of
mate extract was also reported by Boaventura et al. (2012) using
block freeze concentration. This finding suggests block FC is an
effective technique to preserve the functional properties of coffee
extracts.
4. Conclusions

Coffee extract was freeze-concentrated by the total block tech-
nique. A significant effect of the initial coffee mass fraction, freez-
ing direction and cooling temperature on solute recovery was
found. The highest solute recovery was achieved at the lowest cof-
fee mass fraction, when the freezing direction was in counter-flow
to the thawing direction and at the highest cooling temperatures.
The thawing fractions at which completion of the thawing stage
was convenient were found between the values of 0.5 and 0.8.
The initial coffee mass fraction was the factor with the highest
influence on the solute yield and the concentration index. Using
a freezing direction in counter-flow to the thawing direction repre-
sents an interesting alternative to increase solute recovery due to
solute elution. Furthermore, the coffee bioactive compounds were
distributed in the ice and liquid phase in proportion to the total so-
lid content. Very significant correlations between the antioxidant
activity and chlorogenic acid and caffeine contents in the freeze-
concentrated extract were found. Consequently, the freeze concen-
tration method increased the bioactive compound concentration
and the antioxidant activity of the coffee extract. The block freeze
concentration method is a potential technique to remove water
and preserve the functional properties of coffee extracts.
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Effect  of separation  and  thawing  mode  on  block
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a  b s  t  r  a  c  t

Coffee brews were freeze-concentrated using block technique to evaluate the effect of thawing temperature, thawing

mode and separation mode on solute yield. Samples were frozen and solute recovered using different thawing and

separation conditions. Three thawing temperatures (20, 4 and 1 ◦C), two thawing modes (microwave assisted and free

thawing) and two liquid fraction separation modes (gravitational and vacuum assisted) were tested. Solute yield was

evaluated as a function of thawing ratio. Data were fitted to a monomolecular model to compare separation quality

by  means of the solute recovery ratio for each treatment. A combination of microwave assisted thawing and vacuum

separation showed the best results in terms of solute recovery ratio. On the other hand, applying microwave assisted

thawing or vacuum separation individually did not significantly enhance the solute recovery ratio. Additionally

a  thawing temperature effect on the solute recover ratio was also found. These results show that it is possible to

improve the separation quality of Block FC by combining this technology with vacuum-assisted separation microwave
heating. These results suggest that block freeze-concentration has potential industrial application.

©  2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Cryoconcentration; Thawing; Coffee; Vacuum; Microwave; Solute yield; Monomolecular model
1.  Introduction

Freeze-concentration (FC) is a technology used to remove
water at low temperatures preserving the quality of the
original material (Miyawaki et al., 2005). Water remotion is
achieved once water ice crystals are formed, leaving behind
a more  concentrated fluid (Sánchez et al., 2009). Moreover, FC
allows to reduce processing time during the industrial freeze
drying (Boss et al., 2004).

FC techniques can be classified in three groups: suspension
crystallization (Huige and Thijssen, 1972), film freeze concen-
tration (Sánchez et al., 2009) and freeze-thaw method, known
also as block freeze concentration (Aider and de Halleux,
2009; Sánchez et al., 2011a). For suspension crystallization a
scraped surface heat exchanger is used to form a suspension
of ice crystals that can be subsequently separated (Miyawaki
et al., 2005; Habib and Farid, 2006). In Film FC a single crys-
tal layer is formed by contact with a refrigerated surface

(Raventós et al., 2007; Sánchez et al., 2011b). Freeze-thaw FC
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can be achieved using two different techniques: total or partial
block (Nakagawa et al., 2010a). In the partial block technique,
the solution is partially frozen and the remaining concen-
trated liquid is separated after a pre-determined time (Burdo
et al., 2008). On the other hand, the total block technique
consists of completely freezing the sample with a subse-
quent thawing until the desired amount of solute has been
recovered (Aider and de Halleux, 2009). Consequently, block
FC comprises three important steps: freezing, thawing and
separation.

Increasing ice purity is a big challenge for block FC (Aider
and de Halleux, 2008). Although, it is clear that the mass
of the collected liquid increases with the collection time,
increasing it until collection of the entire original solution
will lead to no overall concentration effect. Therefore, it is
important to determine the mass of the collected sample in
which solute recovery and concentration are high enough
in order to stop the process at this point. In the same
way, it is important to establish the thawing conditions or
.M. Pardo).
pted 18 February 2013

aids in separation stage to recover as much solute as possi-
ble.
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(SM) as shown in Table 1 following a complete factorial design.

Table 1 – Experimental design.

Treatment Thawing
temperature

(◦C) (TT)

Thawing
mode (TM)

Separation
mode (SM)

1 20 −1 Gravitational
2 4 −1 Gravitational
3 1 −1 Gravitational
4 20 +1 Gravitational
5 4 +1 Gravitational
6 1 +1 Gravitational
7 20 −1 Vacuum
8 4 −1 Vacuum
9 1 −1 Vacuum

10 20 +1 Vacuum
11 4 +1 Vacuum
12 1 +1 Vacuum
Fig. 1 – Expe

The block FC method has been recently studied as a way
o improve solute yield (Gao et al., 2009; Okawa et al., 2009;
akagawa et al., 2010a; Miyawaki et al., 2012). Furthermore,
icrowave assisted and gravitational thawing have been stud-

ed for milk whey  (Aider et al., 2008) and for maple sap (Aider
nd de Halleux, 2008). It is worth noting that there are no
eported studies about vacuum application and its relation-
hip with process variables during the thawing and separation
tages of block FC.

Meanwhile, coffee is the most traded food commodity
orldwide (Esquivel and Jiménez, 2012). The functional and
rganoleptic properties of coffee are highly important for its
rocessing and trading. Coffee processing technologies play a

arge role in defining the quality of the beverage (Joët et al.,
010), therefore, in the soluble coffee industry, technologies
hat preserve the initial characteristics of the brew are useful.
urrently, suspension FC is the unique technique that is being
sed by coffee industry. This technique shows a high efficiency
nd purity of separated ice crystals, however, it is recognized
s an expensive method for food concentration (Aider and de
alleux, 2009). Therefore, the use of this separation process

s restricted to large-scale processing plants. For this reason,
he block FC technique has been proposed in order to reduce
ost and maintain high crystal purity (Aider and de Halleux,
009), including different modes to increase solute recovery in
hawing and separation stages, looking forward to implement
his technique at different industrial scales.

In this paper, the total block FC of coffee brews is studied,
nalysing the effect of separation mode (gravitational and vac-
um assisted), thawing temperature (1 ◦C, 4 ◦C and 20 ◦C) and
hawing mode (natural convection and microwave assisted)
n solute yield.

.  Materials  and  methods

.1.  Materials

offee solutions were prepared from commercial soluble cof-
ee, (Aroma brand, Colombia) and distilled water at 20 ◦C. An
nitial concentration of 4.3 g of dissolved solids/100 g of solu-
ion (5 ◦Brix) was used. Concentration was measured using

 refractometer (Abbe refractometer model RL3 Polskie Zak-
ady Optyczne Warszawa, Poland), together with a calibration
quation in order to account for the deviation caused by the
ixture of solids present in coffee. The calibration equation
as obtained by preparing solutions at 10, 20, 30, 40 and

0 ◦Brix and measuring their solid contents using an oven dry-
ng procedure at 103 ◦C for four hours according to (NTC 4602,

999). Measurements were performed in triplicate. The follow-
ng equation was obtained: Xs = 0.0087 ◦Brix (R2 = 0.99). Due to
ental setup.

the precision of refractometer (±0.5 ◦Brix), uncertainty in solid
fraction measurement corresponded to ±0.00438. It is clear
from other reports that the initial concentration affects the
results of freeze concentration (Aider et al., 2008). However, in
these experiments initial solid content was used as a constant
parameter for the experiment to observe the effect of the other
factors.

2.2.  Methods

2.2.1.  Freeze  concentration  protocol
Samples were frozen in cylindrical containers (200 mL)  at
−12 ◦C and then stored during 72 h at the same tempera-
ture. Afterwards, samples were thawed and the concentrated
fraction was separated under different conditions. As shown
in Fig. 1, frozen samples (1) were placed in a chamber with
controlled temperature (5) and drops of liquid fraction were
collected by gravity in an external collection vessel (2). The
chamber consisted of an upright freezer with thermostat
(Haceb 87L, Colombia) for the two lowest temperatures and an
incubator chamber (Selecta Celmag-L, Spain) for the highest
temperature level. Below the vessel was a scale (3). (Met-
tler Toledo AB 204 S, Switzerland. Precision ±0.1 g), used to
record weight changes during thawing. The collection vessel
was removed approximately every time that 7% of liquid was
collected in order to measure the liquid concentration. The
thawing procedure was performed at three different thawing
temperatures (TT) fixed in the chamber (1 ◦C, 4 ◦C and 20 ◦C
±1 ◦C), two thawing modes (TM) and two separation modes
+1: microwave assisted thawing.
−1: free thawing (without microwaves).
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Thawing and separation modes are explained in Sections 2.2.2
and 2.2.3. All experiments were performed in triplicate.

2.2.2.  Thawing  mode
For some samples, as it is shown in Table 1, the thawing stage
was initiated by applying a microwave pulse (+1) and for others
thawing was freely developed under a settled external temper-
ature (−1). Therefore, half of samples were exposed to 5.1 kJ
of microwave energy that was delivered in one minute by a
microwave oven (Haceb Arezzo-0.7, China). This energy pulse
was made of three short pulses of 2 s at 1.7 kJ, leading to an
average power delivery of 85 Watts during one minute. After-
wards, the thawing and separation procedure was carried out
at the settled thawing temperature following the procedure
described in Section 2.2.1.

2.2.3.  Separation  mode
Two different separation modes were carried out: gravitational
and vacuum assisted. The first consisted of drop collecting
under gravity without any interference. In the second, a
vacuum pressure of 1 kPa (74.7 kPa abs) was applied using
an aspirator (Büchi model B-169, Switzerland) to route and
increase the movement  of the liquid fraction that was trapped
inside the frozen portion. Thawing and separation procedures
were carried out as described in Section 2.2.1. The vacuum
pump was disconnected in order to measure mass and solid
concentrations and reconnected after collecting the sample.

2.3.  Data  analysis  and  modelling

2.3.1.  Thawing  fraction
A thawing fraction (f) was defined to follow the development of
the process. f was measured as the ratio between thawed mass
and that of the original solution, defined by Eq. (1) (Nakagawa
et al., 2010b; Miyawaki et al., 2012):

f = mliq

m0
(1)

where, f is the thawing fraction, mliq is the collected liquid
mass, m0 is the initial mass.

2.3.2.  Solute  yield
Solute yield is defined as the fraction of recovered solute, cal-
culated by the relation between mass of solids present in the
separated liquid and the mass of solute present initially in the
original solution (Nakagawa et al., 2010a):

Y = ms liq

ms 0
(2)

where, Y is the solute yield, ms liq is the solute mass in liquid
fraction, ms 0 is the initial solute mass.

2.3.3.  Concentration  factor
A concentration factor was defined as the relation between
the solid concentration in the liquid fraction and the solid
concentration in the initial solution:

CF = Xs liq

Xs 0
(3)

where, CF is the concentration factor, Xs liq is the solid fraction

in freeze concentrated liquid fraction, Xs 0 is the solid fraction
in initial solution.
Additionally, Y can be obtained as shown in Eq. (4) by com-
bining Eqs. (1)–(3):

Y = CF ∗ f (4)

2.3.4.  Mathematical  model
Both solute yield (Y) and thawing fraction (f) vary between 0
and 1. It is important to note that a diagonal line with slope
equal to one in the plot Y against f represents a process without
concentration and is considered a process with a perfect solute
inclusion (Nakagawa et al., 2010a). Therefore, at any point on
the diagonal line, the concentration of solids in the portion
sample is that of the initial sample as seen from Eq. (5).

If Y = f ⇒ ms0

m0
= ms liq

mliq
(5)

It can be inferred from the Y–f plot that the further a point
is from the diagonal line, the higher the concentration of
the sample. It is worth pointing out that the behaviour of
the FC process in this plot is a curve bounded between the
points (0,0) and (1,1). This relationship can be represented by
a “monomolecular” model Eq. (6), which is frequently used in
the statistical analysis of nonlinear relationships (Nothnagl
et al., 2004).

dY

df
= r (1 − Y) (6)

where, Y is the solute yield, f is the thawing fraction, r is the
solute recovery ratio (constant for each condition).

Eq. (7) is obtained by solving the differential equation and
transforming it into a linear equation using natural loga-
rithms:

ln
(

1
1 − Y

)
= r · f (7)

Therefore, the constant r is the slope of straight line cal-
culated from Eq. (7) and is not directly related with time.
Furthermore, it represents the solute yield per thawed liquid
fraction and can be named “solute recovery ratio”. The higher
the slope r, the less ice that should be melted to recover a
defined amount of solute. Thus r can be used as an indicator
of separation quality. The monomolecular model is an intrin-
sically linear model with one parameter (r). As CF is the ratio
between Y and f according to Eq. (4), the r parameter can be
understood as the change of concentration factor in the graph
Y vs. f.

2.3.5.  Statistic  analysis
Parameters of the monomolecular model for each treatment
were obtained by a simple linear regression procedure using
SAS 9.2. The result was the r value for each of twelve evaluated
treatments. A ratio comparison with confidence interval pro-
cedure at p < 0.05 was used to determine differences of r value
between treatments.

Additionally, it is possible to identify the influence of fac-
tors TT, TM and SM on the solute recovery ratio (r). The r
value can be considered as a functional value, it represents
the relationship between Y and f. A multiple linear regression
procedure (p < 0.05) was applied using SAS 9.2 to this purpose.

The significance of the mean and combined effects on the r
values was established.
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Table 2 – Solute recovery ratio.

Treatment
number

TT (◦C) TM SM Solute recovery
ratio(r)

R2 RMSE

11 4 MW Vacuum 6.74 0.978 0.078 a
10 20 MW Vacuum 6.42 0.976 0.117 a
12 1 MW Vacuum 6.26 0.931 0.216 a

6 1 MW Gravitational 5.61 0.979 0.052 b
9 1 – Vacuum 5.60 0.980 0.047 c
3 1 – Gravitational 5.12 0.943 0.419 d
1 20 – Gravitational 5.01 0.989 0.031 e
4 20 MW Gravitational 5.00 0.977 0.117 e
7 20 – Vacuum 4.74 0.990 0.018 e
2 4 – Gravitational 4.32 0.984 0.041 f
5 4 MW Gravitational 3.37 0.968 0.106 g
8 4 – Vacuum 3.04 0.963 0.030 h

Treatments with the same letter do not differ significantly.
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.  Results  and  discussion

he solute recovery ratio (r), defined in Eq. (7), was obtained for
ach treatment and these values are presented in decreasing
rder in Table 2. In this table, the best conditions for solute
ecovery in freeze concentration correspond to those with
he highest r values. There, it can be seen that regression
oefficients vary between 0.93 and 0.99, showing a good fit to
he model. The majority of treatments were statistically dif-
erent from each other, except for the treatments 10, 11 and
2 that showed statistically the same values (95% confidence)
s well as treatments 1, 4 and 7.

Fig. 2 shows the comparison between the Ŷ values that
ere estimated using Eq. (7) and Y values obtained from

xperimental data. It is clear that the data points were dis-
ributed close and around the continuous line that represents
Ŷ = Y). Analyzing the slope of predicted and experimental data
ine (m = 0.999) and regression coefficient (R2 = 0.94), it can be
nferred that predicted values tend to be similar to experimen-
al values. This result confirms the good fit of experimental
ata to the monomolecular model.

At this point, it is important to highlight the usefulness

f parameter r in FC quality analysis. As discussed earlier,
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ig. 2 – Parity plot: experimental Y values against predicted
ˆ

 values.
egression line obtained: y = 0.999·x; R2 = 0.94.
the r value represents the amount of sample that needs to be
melted in order to recover a defined amount of solids. It can
be seen from experimental data (Table 2), that solute recovery
ratios vary from 3.04 to 6.74. Thus, these r values are showing
that under some experimental conditions (treatment 8), it is
necessary to thaw nearly half of the sample in order to recover
75% (Y = 0.75) of the solids. On the other hand, in the best case
scenario (treatment 11), it will be necessary to thaw only 20%
of the sample in order to recover the same amount of solute.
Furthermore, the concentration of recovered liquid Xliq can be
calculated using r values and, Eqs. (1), (2) and (7).

Xliq = Y  · ms0

f · m0
= Y · X0

f
(8)

where, X0: initial solids concentration in the sample.
If Eq. (7) is included the resulting expression is a function

of r:

Xliq = Y · X0 r

ln (1/(1 − Y))
(9)

Therefore, using experimental data which have r values
between 3.04 and 6.74, it can be estimated that to recover 75%
of solids, the concentration of solids in the liquid samples
will vary between 0.08 and 0.18 depending on the proce-
dure selected. This information, combined with information
on mass transfer speed, is a useful tool to define block FC
processing strategies. Therefore, modelling heat and mass
transfer kinetics should be part of the future work.

A regression analysis was used to quantify the effect of
each parameter on the solute recovery ratio (Table 2). The
experimental design selected for this work, made it possi-
ble to obtain linear main effect and linear combined effect
of the evaluated parameters. These results are presented in
Table 3. Two parameters showed a significant effect on solute
recovery ratio: thawing temperature (both TT and TT × TT)
and the combination of separation mode with thawing mode
(SM × TM).

The thawing temperature had a significant effect on solute
yield as illustrated in Fig. 3. The trend was not linear because
of the significant influence of TT × TT (Table 3). Therefore,
TT = 1 ◦C is better than TT = 20 ◦C and better than TT = 4 ◦C for
all separation and thawing conditions where the combination
of MW-Vacuum is not present.
The significance of thawing temperature can be explained
by changes in ice structure. The solute recovery depends on
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Table 3 – Effect of TT, TM and SM on solute recovery
ratio.

Parameter Standard estimator Pr > |t|
Intercept 6.028 <0.0001
TT −0.608 0.0028
TM −0.310 0.6110
SM −0.186 0.7595
TT × TT 0.027 0.0023
TT × TM 0.018 0.6586
TM × TM – –
SM × TT −0.003 0.9348
SM × TM 2.184 0.004
SM × SM – –

0
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7 Mo del
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Fig. 4 – Effect of separation mode on solute yield
treatments numbered according to Table 1 (1,
4 = gravitational; 7, 10 = vacuum) Lines are modelled by Eq.
(7) and parameters in Table 3. Each symbol corresponds to

separation efficiency was reported by (Aider and Ounis, 2012).
the capacity of the separation system to collect concentrated
liquid fractions and this is related to the porous structure
and density of frozen matrix. Water solutions experience
density changes during freezing and thawing (Akyurt et al.,
2002). Freezing and thawing temperatures influence freezing
and thawing speeds, affecting the ice porous structure (Pardo
et al., 2002) and the movement  of liquid through it. Moreover,
if diffusion of liquid is slower than heat transfer, some ice
would be expected to melt and to dilute the solution before it
can be recovered. Therefore, the rate of mass transfer affects
the solute recovery ratio because at low mass transfer rates,
greater portions of the sample should be melted in order to
obtain a certain amount of solute. Thus, for this kind of freeze
concentration process it is important to find a good balance
between thawing speed (heat transfer) and separation speed
(mass transfer) not only to optimize processing rate, but also to
find the best recovery condition. Meanwhile, TT did not show a
linear effect, which was not expected, therefore, further work
in order to relate changes of frozen sample′s microstructure
with processing parameters can lead to a deeper understand-
ing of block FC.

It was seen from experimental data (Table 2) that, the high-

est solute recovery ratio was obtained for treatments 10, 11
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Fig. 3 – Effect of temperature on solute yield treatments
numbered according to Table 1 (1, 20 ◦C; 2, 4 ◦C; 3, 1 ◦C).
Lines are modelled by Eq. (7) and parameters in Table 3.
Each symbol corresponds to data collected from triplicate
experiments.
data collected from triplicate experiments.

and 12, in which a combination of microwave thawing and
vacuum separation was used. Moreover, temperature did not
show a significant effect. This observation is in accordance
with the results of regression analysis (Table 3) in which the
combined parameter had a bigger standard estimator than TT
and TT × TT parameters. Other parameters such as TM and SM
had no significant influence when analyzed alone. A similar
result, where MW thawing did not show a significant effect on
0
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Fig. 5 – Effect of thawing mode on solute yield treatments
numbered according to Table 1 (3, 9 = free; 6,
12 = Microwave). Lines are modelled by Eq. (7) and
parameters in Table 3. Each symbol corresponds to data
collected from triplicate experiments.
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Table 4 – Thawing time and concentration factor.a

Treatment TT (◦C) TM SM Thawing time (h) at f = 0.5 Y at f = 0.5 CF at f = 0.5

10 20 1 Vacuum 2.7 0.98 ± 0.03 1.96 ± 0.05
4 20 1 Gravitational 3 0.96 ± 0.05 1.92 ± 0.05
7 20 −1 Vacuum 3 0.90 ± 0.12 1.8 ± 0.11
1 20 −1 Gravitational 3.5 0.94 ± ± 0.07 1.88 ± 0.05

11 4 1 Vacuum 12.5 0.94 ± 0.06 1.88 ± 0.15
5 4 1 Gravitational 25.6 0.84 ± 0.07 1.68 ± 0.11
8 4 −1 Vacuum 31 0.72 ± 0.08 1.44 ± 0.17
3 1 −1 Gravitational 35 0.93 ± 0.05 1.86 ± 0.2
2 4 −1 Gravitational 48.3 0.94 ± 0.07 1.88 ± 0.05
9 1 −1 Vacuum 50 0.93 ± 0.04 1.86 ± 0.55

12 1 1 Vacuum 75 0.95 ± 0.13 1.9 ± 0.34
6 1 1 Gravitational 80 0.94 ± 0.04 1.88 ± 0.55

a Values in increasing order of thawing time. Average values with standard deviation.
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igs. 4–6 depict this situation, in which the effect of microwave
hawing and vacuum separation is significant only when both
f them are present in the treatment.

Experimental results showed that the r value was increased
p to two times when MW was combined with vacuum sep-
ration. This means that a similar Y can be reached with a
ower f, increasing concentration of separated liquid portion.
n the other hand, the effect of vacuum was very small with-
ut microwave assisted thawing as seen in Fig. 5. Actually,

 values decreased when vacuum was present, but Table 3
hows that this effect was not significant when compared
ith other parameters. This suggests that vacuum separa-

ion promotes the separation of concentrated liquid fraction
rom the ice matrix and increases process efficiency only when

icrowave thawing is present. Therefore, this synergy when
W and vacuum are combined shows that this operating con-

ition is an appropriate tool to improve separation quality in
lock FC.
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ig. 6 – Effect of thawing mode on solute yield treatments
umbered according to Table 1 (2, 8 = free; 5,
1 = Microwave). Lines are modelled by Eq. (7) and
arameters in Table 3. Each symbol corresponds to data
ollected from triplicate experiments.
This synergistic behaviour can be explained using two
different mechanisms: accelerated internal thawing and
hydrodynamic movement  of molten portions of the sample.
As it is known, the absorbed microwave energy is related
to the loss factor of the material. Thus, substances with a
high loss factor will readily absorb microwave energy, while
those with a low loss factor are either reflecting or trans-
parent to microwave energy (Wu et al., 2004; Wang et al.,
2011). It is important to highlight that the loss factor of liquid
water is greater than that of ice (Ryyniinen, 1995). Microwaves
can penetrate the frozen layer and reach the unfrozen liquid
(Rattanadecho, 2004). Therefore, it would be expected that dur-
ing a microwave pulse, liquid pockets will be formed in regions
with higher concentration of solids and lower melting points.
However, these liquid pockets cannot be easily separated from
the sample because of the tortuosity of the paths inside the
frozen matrix. Here, vacuum plays a synergistic role because
pressure difference helps evacuating the concentrated liq-
uid phase easily promoting liquid movement  and separation.
Experimental data showed that this hydrodynamic movement
enabled by vacuum is a good way to accelerate liquid removal.
Therefore, in a future paper, the effect of these parameters on
the Block FC process kinetics will be analyzed.

As solute yield indicates the amount of solute recovery but
not the process velocity, it is useful to combine this param-
eter with the analysis of thawing time. The thawing time (t)
required to collect 50% of liquid (t at f = 0.5) is shown in Table 4
in increasing order. Also, the solute yield (Y) and the concen-
tration factor (CF) at f = 0.5 are presented.

The thawing time was lower for treatments 10, 4, 7, and 1,
which correspond to TT, 20 ◦C. Treatments with TT, 4 ◦C and TT,
1 ◦C resulted in a 25-fold increase in thawing times. The result
is similar for the solute recovery rate, in which TT showed a
significant effect. Comparing treatments with the same TT,
microwave thawing slightly reduced thawing time.

Vacuum separation helped to reduce t slightly. At the same
time, vacuum separation allowed more  solute to be recovered.
This suggests that vacuum separation promotes the separa-
tion of the concentrated liquid fraction from the ice matrix and
increases process efficiency, showing this separation mode as
an interesting topic in block FC.

The concentration factor (CF) at 50% of thawing is pre-
sented for each condition in Table 4. Values between 1.4 and
1.9 were obtained. These values are comparable with those
obtained using other concentration techniques. For exam-

ple, in falling film FC, CF is around 2 for one stage of FC
(Raventós et al., 2007), in progressive FC, where CF is around
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media with dielectric cores in microwave freeze drying.
2.8 (Miyawaki et al., 2005), in Block FC, CF = 1.4 without sepa-
ration assistance (Nakagawa et al., 2010b) and in microwave
assisted thawing Block FC, CF is close to 1.7 (Aider and Ounis,
2012) for one stage.

The highest CF was obtained for treatments with vacuum
separation, due to the positive effect of pressure difference on
the movement  of the concentrated liquid fraction.

On the other hand the shortest thawing time and high-
est solute recovery rate was obtained for treatment 10 (TT,
20 ◦C, MW thawing and vacuum separation). This condition
gave the best overall is appropriate for the performance of FC,
recovering 98% of solute when 50% of mass is thawed and just
spending 2.7 h of thawing time.

4.  Conclusions

The relationship between solute yield and thawing fraction
can be represented using the monomolecular model. Lineari-
zation of this model, using slope r which is not related to time,
simplifies the analysis in terms of the separation efficiency,
and quality of the recovered liquid.

The combination of microwave assisted thawing and vac-
uum separation exerts a synergistic positive effect on solute
recovery ratio. Experimental results showed that this oper-
ating condition is an appropriate tool to improve separation
quality in block FC.

Thawing temperature has a significant effect on solute
recovery ratio; both TT and TT × TT, are highly influential
parameters. Therefore, under the experimental conditions
used in this work temperature did not show a linear effect
on separation quality.

Block freeze-concentration is a potential technology for
food concentration. Process alternatives such as, thawing tem-
perature control, microwave thawing and vacuum separation
are helpful to increase solute recovery and should be taken
into account when scaling up this technology.
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A process to concentrate aqueous coffee extract by freeze concentration is proposed to achieve an
industrially viable system. The techniques of falling film freeze concentration, fractionated thawing
and block freeze concentration were studied. Batches of 40 kg of coffee extract with 5% initial solid con-
centration were freeze-concentrated in seven stages in a falling film multi-plate freeze concentrator. The
ice from each stage was fractionally thawed to recover the coffee solids retained in the ice. The diluted
fractions of the thawing stage were freeze-concentrated using the block technique. A concentrated
extract with 32.6% solids and an effluent with 0.27% solids were obtained through the integration of these
techniques. A concentration index of 6.5, a concentration efficiency of 99.2% and a solute yield of 95%
were obtained. The integration of these simple techniques results in a concentration index and solute
yield comparable to industrial standards in freeze-concentrated coffee extract production.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction terms of ice purity and increased concentration (Qin et al.,
Coffee is one of the most consumed beverage worldwide
(Esquivel and Jiménez, 2012; Sopelana et al., 2011). Freeze-dried
coffee is a high-quality product of the coffee industry because of
the flavour preservation due to the low-temperature processing
conditions (MacLeod et al., 2006). The process of obtaining freeze-
dried coffee begins with the extraction of roasted coffee beans by
percolation. Subsequently, the extract is freeze-concentrated to
remove part of the water and to obtain a concentrated extract.
The concentrated extract may be the final product or may be
freeze-dried to remove the remaining water to obtain soluble coffee
(Boss et al., 2004). The use of freeze-concentration technology is jus-
tified by the reduction of the freeze-drying process costs by 25%
(Van Pelt and Bassoli, 1990). In addition, the quality of the product
is preserved by low processing temperatures (Rahman et al., 2007).

Freeze concentration (FC) is a technique used to remove water
from food fluids by freezing (Sánchez et al., 2009). The solution is
cooled below the freezing point to produce and separate ice crys-
tals. Three techniques are used for growth of ice crystals, suspen-
sion FC, film FC (progressive or falling film FC) and block FC (also
known as freeze–thaw FC) (Aider and de Halleux, 2009; Sánchez
et al., 2011a).

The only technique implemented in coffee processing at the
industrial level is suspension FC. This is an efficient technique in
2007,2006; van der Ham et al., 2004). With this technique, it is
possible to concentrate the coffee extract to 32–35% solids and to
obtain a high-purity effluent with 0.1% solids (Van Mil and
Bouman, 1990; Van Pelt and Bassoli, 1990). However, this tech-
nique requires complicated systems of ice separation and many
moving parts, which increases the initial and operating costs (Aider
and de Halleux, 2009; Miyawaki et al., 2005; Sánchez et al., 2009).
For this reason, several other FC techniques have been studied.
Recently, the industrial future of freeze concentration has shifted
toward the configuration of one-step systems or a combination
of systems rather than suspension freeze concentration because
of the simpler separation step (Petzold and Aguilera, 2009, 2013).

In falling film freeze concentration (FFFC), the solution to be
concentrated is in contact with a cooled vertical plate on which
the fluid descends. The ice forms a single layer on the cold surface,
and the solution is re-circulated continuously (Sánchez et al.,
2011b). FFFC has been studied with several food fluids (Belén
et al., 2013; Chen et al., 1998; Hernández et al., 2009, 2010;
Raventós et al., 2007; Sánchez et al., 2010). Flesland (1995)
proposed multi-stage FFFC coupled to reverse osmosis for water
desalination. In that study, water elimination was efficient.
Recently, the recovery of solutes of sucrose solutions retained in
ice was attempted using fractionated thawing of the ice (Gulfo
et al., 2013; Miyawaki et al., 2012).

In contrast, in block freeze concentration (block FC), the whole
solution is frozen and partially thawed to recover the concentrated
liquid fraction (Aider and de Halleux, 2009). Block FC has been

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfoodeng.2013.12.022&domain=pdf
http://dx.doi.org/10.1016/j.jfoodeng.2013.12.022
mailto:ruth.ruiz@unisabana.edu.co
http://dx.doi.org/10.1016/j.jfoodeng.2013.12.022
http://www.sciencedirect.com/science/journal/02608774
http://www.elsevier.com/locate/jfoodeng


F.L. Moreno et al. / Journal of Food Engineering 128 (2014) 88–95 89
used for sucrose solutions, dairy products, syrup, mate extract and
fruit juices (Aider and Ounis, 2012; Aider et al., 2009; Boaventura
et al., 2012; Nakagawa et al., 2010a,b). For coffee extracts, Moreno
et al. (2014) and Moreno et al. (2013) studied the effect of process
conditions on the freezing and thawing stages of block FC. The via-
bility of the technique was primarily demonstrated for low solid
concentrations.

In some food applications, FC can be used to maximise the final
solid content of the solution. However, in the coffee industry, the
minimisation of the solid content of the final effluent is also impor-
tant due to the high value of the product. Currently, there is no
plan to use FFFC or block FC to obtain an extract with a high solid
concentration and an effluent with a low solid content that comply
with industrial requirements.

The aim of the present study was to propose a process to freeze-
concentrate coffee extracts through the integration of falling film
freeze concentration, which includes coffee solids recovery by frac-
tionated thawing and block freeze concentration techniques.
2. Materials and methods

2.1. Materials

A coffee extract with 5% (w/w) wet basis of total solid content
was prepared from freeze-dried soluble coffee supplied by
Buencafé Liofilizado de Colombia (Colombian Coffee Growers
Federation, Colombia) and water at 35 �C. The solution was stored
at 4 �C for 24 h prior to the tests.

2.2. Methods

Three techniques were studied for coffee extract freeze-concen-
tration following the flowchart shown in Fig. 1. First, the initial
extract was freeze-concentrated by the falling film technique. Sec-
ond, the ice formed in the first technique was thawed fractionally
to study the recovery of the retained solutes. Finally, the diluted
fractions obtained in the thawing stage were concentrated by the
block technique to recover the retained solids. Each technique
was individually studied. Based on the results, an integration of
the techniques in a global process was proposed.

2.2.1. Falling film freeze concentration tests
The FFFC tests were developed in a multi-plate freeze concen-

trator shown in Fig 2(a). The equipment included a freezing cham-
ber, a freezing system, and a hydraulic system. The freezing unit
consisted of two cooling plates with dimensions of 0.8 m width
and 0.6 m height in a closed chamber. The hydraulic system
spreads the coffee extract by means of two distributors with sev-
eral holes 3 mm in diameter. The coffee extract flows in a descend-
ing film over the cooling plates, and it was collected in a collector
tank and recirculated by a centrifugal pump. The ice growth on the
surface of the freezing plates was then removed in a batch
operation.

The freezing system consisted of refrigeration cycle using the
primary refrigerant R-507 with a compressor (Tecumseh Europe,
Fig. 1. Flowchart of freeze
La Verpilliere, France), a condenser and an expansion valve. The
evaporation of the refrigerant occurred in the interior of the cool-
ing plates, transferring the energy through the walls of the plate.
Consequently, this process produces layer crystallisation in which
the ice forms in thin layers on the surface of the heat exchanger.

All the stages of FFFC started with 40 kg of coffee extract.
The stage ended when the ice achieved an average width of
25–35 mm. After that, the ice was removed, and the concentrated
liquid fraction was used in the next stage. The initial mass in the
next stage was obtained adding extract prepared at the concentra-
tion of the extract used in the previous stage. A total of seven
stages of FFFC were developed. The mass of the concentrated
fractions and the ice was measured on a PS 60-KB scale with 1 g
precision (Gram Precision, Spain). The solid concentration percent-
age (Cs) was measured by refractometry (Atago Pal 100, Japan).
The relationship between Brix degrees and Cs is represented by
the equation CS = 0.87��Brix reported by Moreno et al. (2014) for
the same coffee used in the present study.
2.2.2. Coffee solids recovery by partial thawing tests
Thawing tests were performed according to the method

described by Gulfo et al. (2013). Cylindrical samples with a diam-
eter of 60 mm, thickness from 25 to 35 mm and weight between 65
and 75 g were taken from the ice obtained at each of the seven
stages of FFFC to study the solute recovery for fractionated thaw-
ing. A drill equipped with a puncher (Esgarret, Spain) was used
to obtain six samples homogeneously distributed in each of the
six ice sheets, for a total of 36 samples. Samples were taken in a
refrigerated chamber to avoid melting the ice.

The samples were subjected to thawing tests in the setup
shown in Fig. 2(b). The setup consisted of a cubic isolated chamber
with 0.48 m sides. The chamber has a temperature control system
(Pie Electro Dit, model 11 551, 0–300 W) and a 4-channel data log-
ger (Testo 177-T4, Germany). The thawing was carried out at
20 ± 1 �C in a vertical position, similar to the position that the ice
layers had in the freeze concentrator. The dripping of the melting
ice is collected by a funnel connected to a container on a scale
(Ohaus PA3102, USA) with a precision of 0.01 g to measure the
mass. Ten thawing fractions of equal mass were separated, and
the solid concentration was measured by refractometry. The aver-
age concentration was calculated from the data of the six samples
of ice from each stage.
2.2.3. Block freeze concentration tests
Based on the results of the fractionated thawing tests, the

diluted fractions of this stage (fractions where the concentration
index was less than 1) were mixed and freeze-concentrated by
the total block technique. The conditions of the FC test were as fol-
lows: cooling temperature �10 �C, thawing temperature 20 �C and
thawing direction opposite to the freezing direction according to
the best results reported by Moreno et al. (2014).

The block freeze concentrator is shown in Fig. 2(c). One hundred
sixty grams of the coffee sample was placed into a cylindrical dou-
ble jacked container measuring 5.2 cm in diameter and 8.5 cm in
height. The heat exchange fluid was a mixture of ethylene glycol
concentration tests.



Fig. 2. Experimental setup for freeze concentration tests. (a) Falling film freeze concentration; (b) fractionated thawing and (c) block freeze concentration.

90 F.L. Moreno et al. / Journal of Food Engineering 128 (2014) 88–95
and water (53% w/w) coming from two baths (Polystat, Cole Parm-
er, USA) with temperature control (�35 to 150 �C ± 0.01 �C).

The cooling fluid temperature was settled at �10 �C. After the
fluid reached that temperature, it was circulated to the internal
jacket to freeze the inner solution. The ice growth occurred from
the centre to the external wall of the container. When the sample
was completely frozen, the sample was thawed by pumping heat-
ing fluid through the external jacket at 20 �C. A valve located on the
bottom of the container and close to the external wall was opened,
and the liquid fraction was separated in a collector vessel on a scale
(Ohaus PA3102, USA) with a precision of 0.01 g for mass measure-
ment. Ten liquid fractions of the same mass were collected. The
solid concentration of each fraction was measured by refractome-
try (Atago Pal 100, Japan). Test were performed in triplicate.

2.2.4. Data analysis
2.2.4.1. Solute yield (Y). Solute yield represents the amount of
solute or coffee solids recovered from the original solution. Y was
defined as the relationship between the mass of solute present in
the freeze-concentrated liquid and the mass of the solute present
in the initial solution, as calculated by Eq. (1) (Moreno et al.,
2013; Nakagawa et al., 2010a,b):

Y ¼ ms liq=ms 0 ð1Þ

where Y is the solute yield, ms liq is the solute mass in the liquid frac-
tion, and ms 0 is the initial solute mass.

2.2.4.2. Concentration index. The concentration index (CI) was de-
fined as the relationship between the solid concentration in the li-
quid freeze-concentrated fraction and the solid concentration in
the initial solution (Nakagawa et al., 2009):

CI ¼ Cs liq=Cs 0 ð2Þ

where CI is the concentration index, Cs liq is the solid mass percent-
age in the freeze-concentrated liquid, and Cs 0 is the solid mass
percentage in the initial solution.
2.2.4.3. Thawing fraction. The thawing fraction (f) was defined as
the ratio between the thawed mass and the mass of the original
solution as calculated by Eq. (3) (Miyawaki et al., 2012; Nakagawa
et al., 2010a,b):

f ¼ mliq=m0 ð3Þ

where f is the thawing fraction, mliq is the freeze-concentrated li-
quid mass, and m0 is the initial mass.

2.2.4.4. Concentration efficiency. The concentration efficiency indi-
cates the increase in the concentration of the solution in relation
to the amount of solids remaining in the ice (Hernández et al.,
2010; Sánchez et al., 2010). Efficiency was calculated by Eq. (4):

Eff ¼ ðCs liq � Cs iceÞ=Cs liq � 100 ð4Þ

where Eff is the concentration efficiency (%), Cs liq is the solid mass
percentage in the freeze-concentrated liquid, and Cs ice is the solid
mass percentage in the ice (or diluted fraction).

2.2.4.5. Statistical analysis. The experimental results obtained from
this study were fit to different mathematical models using the sta-
tistical software SPSS 20.0. The fit was evaluated by the determina-
tion coefficient.

3. Results and discussion

3.1. Falling film freeze concentration

The total solid concentration in the freeze-concentrated liquid
for the seven FFFC stages is shown in Fig. 3. The concentration pro-
gressed linearly according to Eq. (5):

Cs liq ¼ 3:9 nþ C0 R2 ¼ 0:991 ð5Þ

where Cs liq represents the solid percentage in the freeze-
concentrated extract, n is the stage number, and C0 is the solid



Table 1
Initial coffee solid concentration (Cs 0), concentration index (CI), solute yield at each
stage (YSTAGE), ice fraction (fice) and concentration efficiency (Eff) of falling film freeze
concentration tests.

Stage Cs 0 (%) CI YSTAGE fICE Eff (%)

1 5.0 1.70 0.95 0.44 91.7
2 8.4 2.40 0.87 0.39 84.9
3 11.9 3.49 0.96 0.34 83.8
4 17.3 4.07 0.78 0.33 76.2
5 20.2 5.12 0.89 0.30 64.2
6 25.4 5.95 0.78 0.33 48.8
7 29.5 6.25 0.78 0.26 35.4
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concentration of the initial extract, which corresponds to 5% in
these tests. Linear behaviour was also obtained for orange, apple
and pear juices by Hernández et al. (2010) and Sánchez et al.
(2011b, 2010). The results indicate that the solid concentration in-
creased 3.9%, and the concentration index increased from 1.1 to 1.7
in each stage.

On the other hand, the solid concentration of the ice evolved
according to a quadratic function. The occluded solids in the ice
increased approximately linearly between the first and fourth
stages. From this point, when the solution had 20.2% of solids,
the solid retention in the ice. The increasing solid occlusion can
be explained by several effects. First, the higher amount of solids
in the extract produced an increased interaction between solids
and water molecules (Chen et al., 1998). Second, the solution is
more viscous (Hernández et al., 2010) and washing the concen-
trated liquid fractions from the falling film was more difficult. In
addition, the ice tends to grow in dendritic form at higher solid
concentrations, trapping more solids inside (Butler, 2002; Yee
et al., 2003).

As a consequence of the higher solid occlusion, the concentra-
tion efficiency decreased linearly with the solid concentration in
each stage, as shown in Table 1. A linear decrease in concentration
efficiency was also reported by Hernández et al. (2009, 2010) and
Raventós et al. (2007) for freeze concentration of must, fruit juices
and sugar solutions, respectively.

The final solid concentration over seven stages of FFFC was 31%,
corresponding to a concentration index of 6.25, as shown in Table
1. The ice fraction obtained in each stage (fICE) is presented in the
same table. The ice mass obtained decreased in each stage. When
the solid concentration of the extract increased, the amount of
water that had to be removed to increase the concentration was
lower. In addition, the freezing point decreased with the solid con-
centration, and the cooling capacity of the equipment limited the
ice production. The ice in the last stage was less consistent due
to the increased amount of solids.

In Table 1, the solute yield of each stage (YSTAGE) is presented.
The values began at 95% and decreased through the following
stages. Moreover, the accumulated solute yield in the seven stages
was 0.42 based on the total amount of solids in the initial extract.
This means that 42% of the coffee solids present in the initial ex-
tract were in the final extract. A large amount of solids was recov-
ered in the ice due to the amount of ice, despite the lower
concentration of these solids.

The results indicated that falling film freeze concentration can
be used to obtain a final extract with a solid concentration that
meets industrial requirements. However, a large amount of solids
remained occluded in the ice, and it is necessary to find a technique
Fig. 3. Solid concentration in liquid (s) and ice (h) at each stage of falling film
freeze concentration.
to recover them. For this reason, fractionated thawing tests were
performed.
3.2. Coffee solids recovery by fractionated thawing

The ice obtained in the seven stages of FFFC tests was thawed in
ten mass fractions to study the solid recovery. The concentration
index (CI), calculated as the ratio between the solid concentration
in the thawed fraction and the average solid concentration of the
ice, is shown in Fig. 4. The CI began with values higher than 1
and descended throughout all stages of the thawing process. This
indicated that the concentrated extract was collected in the first
fractions, and the thawing procedure can be used for solid recovery
in the ice. Gulfo et al. (2013), Miyawaki et al. (2012) and Yee et al.
(2003) reported similar behaviour of the concentration in solute
recovery in the thawing of sugar solutions.

The solid concentrations of the first fractions were higher than
the average mainly due to two phenomena. First, the concentration
of the external faces of the ice is higher than the concentration in
the internal portion; the external faces were the first thawed por-
tions. In the face in contact with the cooling plate, the nucleation at
supercooling temperatures increased the concentration of the li-
quid fraction trapped when the ice front grew (Scholz et al.,
1993). In the face in contact with the falling fluid film, the dendritic
growth of the ice trapped the concentrated extracts of the falling
film (Sánchez et al., 2010). Second, and possibly more important,
there was solute diffusion from the concentrated liquid occluded
in the ice to the thawed drops. When the water drops melted, there
was enough time for solute diffusion to the drops, increasing the
solid concentration and allowing the recovery of a concentrated
liquid (Nakagawa et al., 2009). If the ice is partially thawed, the
concentrated fraction trapped in the ice crystals can flow freely
Fig. 4. Concentration index as a function of the thawing fraction. (s) Stage 1; (h)
stage 2; (e) stage 3; (4) stage 4; (�) stage 5; ( ) stage 6; (+) stage 7.



Fig. 5. Concentration index (CI) at the recommended thawing fraction as a function
of the initial solid concentration (Cs0) of the ice.
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and be separated. This phenomenon is known as sweating, and it is
very important in the solute recovery (Guardani et al., 2001).

Fig. 4 shows that the concentration index decreased with f, and
there was a thawing fraction in which the CI was less than one.
From this point, the concentration of the following fractions was
less than the average; consequently, the thawing process should
be stopped at this point to avoid dilution of the recovered extract.
At this fraction (f at CI = 1), two products are obtained, the initial
fractions with CI > 1 (concentrated fraction) and the final fractions
with CI < 1 (diluted fraction).

The values of f at CI = 1 between 0.3 and 0.7 were obtained as
shown in Table 2. These values depended on the initial solid con-
centration of the ice (CS 0 ice). A small amount of ice had to be
thawed to recover the solids in the first stages, in which the ice
had a lower solid concentration. In contrast, in last stages, a higher
amount of ice had to be thawed. The concentration of the thawing
fraction was more homogenous (flatter curve in Fig. 4). In addition,
the movement of the solids is more difficult in high solid concen-
trations because of the interaction between molecules.

The solid concentrations of the diluted (Cs dil) and concentrated
fractions (Cs conc) for f at CI = 1 are shown in Table 2. Thawing frac-
tions where CI = 1 are also shown. These are the fractions in which
high solid recovery is achieved without excessive dilution of the
sample. With this strategy, a concentration index between 1.3
and 2.5 was obtained. The CI was highest in the first stages. Similar
results were reported by Gulfo et al. (2013) for sugar solutions. The
CI can be calculated from the concentrations reported in Table 2.
The CI decreased with the initial solid concentration in the ice, as
shown in Fig. 5. The behaviour can be described by Eq. (6):

CI ¼ 50:35 � C2
s0 � 16:98 � Cs0 þ 2:61 R2 ¼ 0:94 ð6Þ

Solute yield can be calculated from Eq. (7), which is obtained by
combining Eqs. (1)–(3) (Moreno et al., 2014). Solute yields from
73% to 81% were obtained. Miyawaki et al. (2012) reported solute
yields above 90% by ice thawing from a tubular progressive freeze
concentrator. The solute yield depends on the thawing fraction.

Y ¼ f � CI ð7Þ

The combination of the fractionated thawing process and the
FFFC technique resulted in a solute yield of 62%. Although the solid
recovery was increased by more than 70%, a large amount of coffee
solids remained in the diluted fraction. Another technique needed
to be integrated to the process to increase the solid recovery. Block
FC was studied for this purpose.
3.3. Block freeze-concentration

The diluted fractions from the fractionated thawing tests were
mixed and freeze-concentrated by the block technique to recover
the solids from this fraction. Ten fractions were obtained in the
first stage, and the solute yield (Y) and concentration index (CI)
were calculated. The diluted fractions (according to the CI values)
Table 2
Concentration of the diluted (Cs dil) and concentrated fractions (Cs conc) of the
recommended thawing fraction (f at CI = 1). Average ± standard deviation.

Stage f at CI = 1 Cs 0 ice (%) Cs conc (%) Cs dil (%)

1 0.3 0.7 ± 0.1 1.8 ± 0.4 0.2 ± 0.0
2 0.3 1.8 ± 0.2 4.5 ± 0.6 0.7 ± 0.0
3 0.4 2.9 ± 0.3 5.7 ± 0.8 1.0 ± 0.1
4 0.4 5.0 ± 0.7 8.6 ± 1.1 1.4 ± 0.3
5 0.5 9.4 ± 0.1 14.5 ± 0.2 4.2 ± 0.1
6 0.7 15.6 ± 1.0 20.4 ± 0.3 8.3 ± 2.9
7 0.7 20.0 ± 1.6 23.2 ± 1.4 12.6 ± 2.2
obtained in the first stage were mixed and freeze-concentrated in
a second stage. The results of the two stages are shown in Fig. 6.

Maximal CI values of 2.3 and 2.7 were obtained in the first
thawing fraction. These results were obtained because the sample
was frozen from the centre and thawed from the exterior of the
container. With this control of the thawing direction, the solids
moved to the growing freezing front by elution when the ice crys-
tals formed. The last fraction frozen was the first to be thawed. This
fraction had the highest solid content. The solid elution was
possible because of the low freezing rate achieved by the cooling
temperature of �10 �C; at this temperature the average freezing
rate was 1.84 lm s�1 (Moreno et al., 2014). The lower the freezing
rate is, the lower the solid occlusion is. Nakagawa et al. (2010a,b)
reported a limit of 8 lm s�1 for freeze concentration in a similar
cylindrical device.

The CI decreased during the thawing. The highest values were
obtained for the firsts thawing fractions due to sweating, similarly
to the fractionated thawing test results. Sweating is defined as
crystal purification based on partial melting by heating the cooling
surface at a temperature close to the freezing point (Jiang et al.,
2013). Sweating depends on factors such as temperature, porosity
of the ice layer, solid concentration, and thawing rate (Rich et al.,
2010). The coffee solids moved to the thawing drops and increased
the concentration in the drops; in this way, recovery of the major-
ity of solids was possible in the first fractions. As in fractionated
Fig. 6. Solute yield (Y) and concentration index (CI) after block freeze concentra-
tion. (s) Stage 1; (4) stage 2.



Table 3
Results of block freeze concentration of the thawing fractions when the concentration
index (CI) is 1. Thawing fraction when CI = 1 (f at CI = 1); solid concentration of the
Initial (Cs 0 (%)); the concentrated (Cs conc) and diluted fractions (Cs dil), and solute yield
(Y).

Stage f at CI = 1 Cs 0 (%) Cs conc (%) Cs dil (%) Y

1 0.5 1.9 ± 0.0 2.8 ± 0.1 0.9 ± 0.1 0.78 ± 0.01
2 0.4 0.9 ± 0.1 1.5 ± 0.1 0.5 ± 0.1 0.68 ± 0.02
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thawing, sweating is of great importance in block freeze concentra-
tion (Nakagawa et al., 2009).

The CI decreased until it reached a value of 1. In this thawing
fraction (f at CI = 1), it is convenient to stop the thawing stage
and to separate two streams, one diluted and one concentrated.
For the first stage of block FC with an initial solid concentration
of 1.8%, the CI was 1 at f = 0.5. At this point, 77% of coffee solids
have been recovered, and a CI of 1.54 has been achieved, as can
be calculated from data in Table 3. The mixture of the five diluted
fractions had a solid concentration of 0.9%; for this reason, this
mixture was freeze-concentrated in a second stage. For the second
stage, CI was 1 at f = 0.4. When 40% of the extract was thawed, a
solute yield of 66% and a CI of 1.6 were achieved. The diluted frac-
tion of the second stage had an average solid concentration of 0.5%,
as shown in Table 3.

Block FC was considered to be complete based on the solid con-
centration of the diluted fraction in the second stage. A third stage
could be implemented, but this decision depends on the global
process strategy and the desired solid concentration of the final
effluent.

3.4. Integration of falling film freeze concentration, ice thawing and
block freeze concentration

Falling film freeze concentration, fractionated thawing and
block freeze concentration can be integrated in a global strategy
to establish an industrial process to concentrate coffee extracts.
In this process, the objective is to obtain an extract that is as con-
centrated as possible and to minimise the concentration of the
effluent to avoid the coffee solid loss. Two streams, diluted and
concentrated, are obtained in each technique. The process is
presented in Fig. 7. The mass and solid concentration of the extract
Fig. 7. Integrated process to freeze-concentrate coffee extract using falling film freeze c
is presented for each stream. The mass balance was achieved for a
basis of calculation of 1000 kg/h of diluted coffee extract entering
the process (Feed). Even though the process must be scaled up,
mass balance can be applied to analyse the possible results at an
industrial level.

The process starts with seven stages of falling film freeze con-
centration. The solid concentration at the end of each stage was
calculated by Eq. (5). The concentrated fraction of each stage
entered the next stage. After falling film freeze concentration, the
ice is thawed to recover the occluded solids. This thawing can be
achieved using the same equipment used for FFFC. The concentra-
tion obtained from the thawing process was calculated by Eq. (6).
The thawing ended when the f values shown in Table 2 were
reached. The diluted and concentrated fractions can be separated.
At this point, 64% of the solids retained in the ice were recovered.
The diluted fraction of the first thawing stage had 0.24% solids and
was considered an effluent. The other diluted fractions can be
mixed to obtain 574.8 kg/h of extract with 1.7% of coffee solids.
This mixture can be freeze-concentrated by the block technique.

The results of block FC were calculated from the data reported
in Table 3. A diluted stream with 0.4% of coffee solids was obtained
after two stages of block FC. This stream can be mixed with the di-
luted fraction of the first thawing stage to obtain an effluent of
853.5 kg/h with 0.27% coffee solids. This final concentration is
acceptable according to industrial standards. The concentrated
fractions from the thawing stages and block FC can be mixed and
re-circulated through the process. A mixture of 1108.1 kg/h with
5.5% of solids was obtained and can be mixed with the feed.

With the proposed process, the concentration of the extract in-
creased from 5% to 32.6%. The concentration of the final effluent
was 0.27%, comparable to industrial standards (Van Mil and
Bouman, 1990; Van Pelt and Bassoli, 1990). The process results
are presented in Table 4. Through the combination of the three
techniques, the solute yield increased to 95%, the concentration in-
dex to 6.5, and the concentration efficiency to 99.2%. The results
indicate the convenience of the process to concentrate coffee
extract in comparison to FFFC. The process is comparable to the
suspension system currently implemented in the coffee industry
in terms of the concentration of the product and effluent.

Different variations of the process can be utilised to optimise
energy consumption or cost. For example, an alternative process
oncentration (FFFC), fractionated thawing (T) and block freeze concentration (BFC).



Table 4
Final results of the integrated freeze-concentration process. Solute yield (Y),
Concentration index (CI) and concentration efficiency (Eff).

Technique Y CI Eff (%)

Falling film freeze concentration (FFFC) 0.43 6.2 90.1
FFFC + fractionated thawing (T) 0.64 6.2 97.2
FFFC + T + Block FC 0.95 6.5 99.2
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can be proposed by analysing the concentration of the ice in the
three last stages of FFFC. These solid concentrations were higher
than the solid concentration of the initial extract, so they can be
re-circulated without going through the thawing stage. Applying
mass balance, with this alternative only one block FC stage is
required to obtain an effluent with a solid concentration less than
0.3%. The process would include seven stages of FFFC, four stages of
thawing and one stage of Block FC, reducing costs and time. In the
same way, other combinations of strategies can be performed. The
technical viability of the current strategy has been shown in terms
of the requirements of the final extract and the final effluent solid
concentrations. From this point, the optimisation of the process
and equipment sizing can be initiated. This process is in develop-
ment for future studies.
4. Conclusions

An operative strategy to integrate falling film freeze concentra-
tion, fractionated thawing and block freeze concentration was pro-
posed as an alternative to suspension freeze concentration of
aqueous coffee extract. Falling film freeze concentration is effective
for increasing the solid concentration of the extract to levels re-
ported by industry. However, a large amount of solid is occluded
in the ice. Fractionated thawing allows the recovery of the solids
occluded in the ice. Block freeze concentration is able to obtain a
final effluent with low solid content, reducing solids loss.

Falling film freeze concentration increased the concentration of
the coffee extract 6.2 times. With fractionated thawing, 64% of the
solids retained in the ice were recovered. By block freeze concen-
tration, a high-purity effluent was obtained. Through the process,
the coffee extract was concentrated from 5% to 32.5% with an efflu-
ent with 0.27% solids. The concentration efficiency increased to
99.2% and the solute yield to 95%. The process is an alternative to
the industrial freeze concentration systems based on suspension
technology, with the advantage of the simplicity of the falling film
and block freeze concentration equipment.
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The behaviour of falling-film freeze concentration of coffee extract was studied through determining the
solute inclusion in the ice produced in a single-plate freeze concentrator. The effect of the initial coffee
mass fraction of the extract, the average ice growth rate and the film velocity were studied. The coffee
extract at four coffee mass fractions (0.05, 0.15, 0.25 and 0.35 w/w) was freeze concentrated at three dif-
ferent cooling temperatures (�10, �15 and �20 �C) and three flow rates (5 � 10�5, 7.5 � 10�5 and
10 � 10�5 m3 s�1). The solute inclusion in the ice and the effect of each parameter were determined.
The coffee mass fraction, ice growth rate and film velocity affected the average distribution coefficient.
The coffee mass fraction had the greatest effect on average distribution coefficient. The Chen model
parameters to predict the average distribution coefficient and the concentration index were found. A
logistical model was proposed to predict the concentration reached in successive stages, which tended
to 35% at the studied intervals. The model showed an adjusted regression coefficient of 0.98 and the
experimental values were within the 95% confidence intervals. The model can be used to predict the
behaviour of falling film freeze concentration of coffee extract; this technique is an economic and simple
alternative to conventional freeze concentration.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Freeze concentration (FC) is a technique used to remove water
from solutions by cooling the solution until ice crystals are pro-
duced and separated (Sánchez et al., 2009). The final liquid fraction
has a higher concentration than the initial solution because of the
water removed in the form of ice. This technique is used in the food
industry due to its ability to preserve sensitive properties in prod-
ucts such as coffee extract.

Depending on the growth of ice crystals, there are three tech-
niques of FC, suspension FC, film FC (progressive or falling-film
FC) and block FC (also known as freeze–thaw FC) (Aider and de
Halleux, 2009; Boaventura et al., 2013; Sánchez et al., 2011a). Sus-
pension FC is the most implemented technique in the coffee indus-
try. This is an efficient technique to obtain high ice purity despite
the high operational costs (Miyawaki et al., 2005; Qin et al.,
2006; Sánchez et al., 2011a; Van der Ham et al., 2004).

The falling-film freeze concentration (FFFC) is a simple tech-
nique in which the solution to be concentrated is re-circulated
on a cooled vertical plate. The fluid descends in a film, and an ice
sheet is produced by freezing. The ice forms a single layer on the
cold surface. The solution is collected and re-circulated continu-
ously (Sánchez et al., 2011b). FFFC has been studied with several
food fluids (Belén et al., 2013; Chen et al., 1998; Flesland, 1995;
Hernández et al., 2009, 2010; Raventós et al., 2007; Sánchez
et al., 2010). Coffee extract freeze concentration has been studied
using the block technique (Moreno et al., 2013, 2014b) and pro-
gressive FC (Miyawaki et al., 2005). Moreno et al. (2014a) studied
falling-film freeze concentration to propose an alternative process
to concentrate coffee extract.

The solutes retained in the ice sheets determine the concentra-
tion efficiency (Raventós et al., 2007). Although the solute can be
recovered by partial thawing of the ice (Gulfo et al., 2013), a low
amount of solute occluded in the ice is desired. One way to express
the level of solid occlusion is the average distribution coefficient.
The average distribution coefficient is defined as the ratio between
the concentration of solute in the liquid fraction and the concentra-
tion of solute in the ice. Chen and Chen (2000) studied the solute
occlusion of the ice in falling-film freeze concentration for model
solutions. The authors proposed a correlation to evaluate the aver-
age distribution coefficient for model solutions and food fluids. The
solute inclusion of the ice produced in FFFC has not been studied
for coffee extract, and the effect of the ice growth rate and the fluid
flow rate has not been determined. This information is useful in the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfoodeng.2014.05.012&domain=pdf
http://dx.doi.org/10.1016/j.jfoodeng.2014.05.012
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Nomenclature

a width of the ice sheet (m)
CI concentration index (unitless)
f liquid fraction (unitless)
g acceleration due to gravity (9.8 m s�1)
h height of the ice sheet (m)
K average distribution coefficient (unitless)
mice mass of the ice sheet (kg)
ms 0 initial solute mass (unitless)
ms liq solute mass in the liquid fraction (kg)
m0 initial mass (kg)
mliq collected liquid mass (kg)
n number of stages (unitless)
Q fluid flow rate (m3 s�1)
T temperature (�C)
t time of freezing (s)

Us,1 fluid film velocity (m s�1)
Vice average ice growth rate (mm s�1)
Xs ice coffee mass fraction in the ice (w/w)
Xs 0 coffee mass fraction in the initial solution (w/w)
Xs liq coffee mass fraction in the freeze-concentrated liquid

fraction (w/w)
Y solute yield (unitless)
g coffee extract viscosity (Pa s)
q coffee extract density (kg m�3)
qc coffee solids density (kg m�3)
qice ice density (kg m�3)
qw water density (kg m�3)
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design of falling-film freeze concentration systems as a simpler
alternative than the suspension technique.

The aim of the present study was to evaluate the behaviour of
coffee extract during falling-film freeze concentration at different
coffee mass fractions, ice growth rates and film velocities on the
plate and to obtain the parameters for average distribution coeffi-
cient modelling.
2. Materials and methods

2.1. Materials

Coffee extract was prepared from soluble coffee supplied by
Buencafé Liofilizado de Colombia (Colombian Coffee Growers Fed-
eration, Colombia). The coffee was added to distilled water at 35 �C
and mixed for 20 min. The samples were stored at 4 �C for 12 h.
2.2. Experimental design

The coffee extract was freeze concentrated using a complete
factorial design with three variables as shown in Table 1. Four dif-
ferent coffee mass fractions were tested within the typical interval
for freeze-concentration processes (Moreno et al., 2014a). Three
plate temperatures were tested to achieve different ice growth
rates. Finally, three fluid fluxes were adjusted to obtain different
film velocities of fluid falling on the ice sheet.
2.3. Freeze concentration tests

In each test, 800 mL of coffee extract was freeze concentrated
by the falling-film technique. The experimental setup is shown in
Fig. 1. The coffee extract flows in a descending film over the cooling
plates, and it was collected in a collector tank and re-circulated by
a VGC-400 peristaltic pump (Seditesa, Spain) and a VFD007L2 fre-
quency variator (Seditesa, Spain). The ice growth on the surface of
Table 1
Experimental design.

Variable Level

Xs
a 0.05, 0.15, 0.25, 0.35

TP (�C) �10, �15, �20
Q (m3 s�1) 5 � 10�5; 7.5 � 10�5; 10 � 10�5

a The coffee mass fraction (Xs) was expressed as a fraction (w/w). It can be con-
verted to a percentage by multiplying 100.
the freezing plates was then removed in a batch operation. The
plate had dimensions of 25-cm width and 20-cm height.

The coffee mass fraction of the liquid fraction and the ice were
measured after one hour of processing by a Pal 100 refractometer
(Atago, Japan). The coffee mass fraction is defined as the mass of
coffee solids per unit of coffee solution mass. The relationship
between Brix degrees and Xs is represented by the equation
Xs = 0.0087 �Brix reported by Moreno et al. (2014c) for the same
product used in the present work.
2.4. Mathematical model

The solid inclusion in the ice is determined by the average dis-
tribution coefficient. The concentration of the solute in the solid
and liquid fractions can be calculated from this value. The average
distribution coefficient is defined as the ratio of the coffee mass
fraction of the ice to the coffee mass fraction of the freeze con-
centrated liquid as shown in Eq. (1).

K ¼ Xs ice

Xs liq
ð1Þ

The mathematical model used in the present work was pro-
posed by Chen et al. (1998). The model expressed the average dis-
tribution coefficient as a function of the ice growth rate on the
plate of a falling-film freeze concentrator and the film velocity of
the fluid on the ice sheet produced.
Fig. 1. Experimental setup. (1) Chamber; (2) cooling bath; (3) cooling plate; (4)
distribution duct; (5) ice sheet; (6) collector vessel; (7) pump.



Fig. 2. Effect of the ratio between average ice growth rate and fluid velocity on the
average distribution coefficient. Dots represent experimental data (D) Xs = 0.05; (s)
Xs = 0.15; (h) Xs = 0.25; (}) Xs = 0.35. Continuous lines represent the predicted data.
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The average ice growth rate depends on the heat transfer rate,
the degree of supercoiling and the thickness of the ice film, among
other variables (Qin et al., 2009). The average ice growth rate is
related to the plate temperature. The average ice growth rate
was calculated from the mass of the ice sheet at the end of the pro-
cess, the solid concentration in the ice, the process time, the ice
density and the dimensions of the plate, according to the Eq. (2)
(Chen et al., 1998).

�v ice ¼
miceð1� Xs iceÞ

t haqice
� 106 ðlm s�1Þ ð2Þ

Meanwhile, the fluid film velocity depends on the fluid flux reg-
ulated through the pump, the viscosity and density of the coffee
extract and the dimensions of the plate. The film velocity is related
to the mass transfer coefficient which is proportional to the fluid
velocity to a power of 0.5 (Chen et al., 1998). Consequently, the
Chen model includes the average ice growth rate and the falling
film velocity to represent heat transfer and mass transfer rates.
The fluid film velocity was calculated by Eq. (3). Eq. (3) is valid
for films descending on a plate, in laminar flow and without super-
ficial traction forces (Rane and Jabade, 2005; Perry et al., 1992).

Us;1 ¼
Q

að3Qg
qagÞ

1=3 ðms�1Þ ð3Þ

The viscosity and density of the coffee extract were calculated from
the average coffee mass fraction and the average temperature of the
extract using Eq. (4) and Eqs. (5)–(7), respectively. Eqs. (4)–(7) were
reported by Moreno et al. (2014c) for the same coffee used in the
present work and the same temperature and concentrations inter-
vals used in these tests.

log10g ¼ 21:3þ 2:1Xs liq þ
30� T
91þ T

� �
31:5� 12:7X2:53

s liq

� �
ð4Þ

1
q
¼ Xs liq

qc
þ ð1� Xs liqÞ

qw
ð5Þ

qc ¼ 1878:1� 40:76T þ 1:035T2 ð6Þ

qw ¼ 1000þ 2:30T � 0:11T2 ð7Þ

Once the model variables were calculated, the correlation can
be applied for prediction of the average distribution coefficient.
This correlation is presented in Eq. (8). The equation proposed by
Chen and Chen (2000) is composed of a term related to the coffee
mass fraction, a term related to the heat transfer and mass transfer
and an independent term.

K ¼ Aþ BXs 0 þ C
�v ice

U0:5
s;1

ð8Þ

The assumptions of the model presented in Eq. (8) were the follow-
ing: The solid distribution in the ice is uniform, the falling-film
flows in laminar flow, the ice growth rate is the average of the ice
growth rates during the process, the time of one stage is 60 min
and the freezing process is developed in vertical plate.

The concentration index, the solute yield and the liquid fraction
are variables used to evaluate the behaviour of the freeze concen-
tration process. They can be calculated from the average distribu-
tion coefficient. The liquid fraction is the ratio of the mass of the
concentrated liquid fraction to the mass of the original solution
defined by Eq. (9) (Miyawaki et al., 2012; Nakagawa et al., 2010).

f ¼ mliq=m0 ð9Þ
The solute yield was defined as the ratio of the mass of solute
present in the separated liquid to the mass of solute present in
the original solution and was calculated by Eq. (10) (Moreno
et al., 2013; Nakagawa et al., 2010).

Y ¼ ms liq=ms 0 ð10Þ

The concentration index was used to express the concentration
of solutes reached after the FC process. The concentration index, CI,
was defined as the ratio of the solid concentration in the liquid
fraction to the solid concentration in the initial solution. CI is also
known as relative concentration (Nakagawa et al., 2009).

CI ¼ Xs liq=Xs 0 ð11Þ

Eq. (12) can be obtained by combination of Eqs. (9)–(11).

Y ¼ f � CI ð12Þ

Eqs. (13) and (14) were obtained by combining Eqs. (1) and (12)
and by the application of mass balance.

K ¼ 1� Y
CI� Y

ð13Þ

K ¼ 1� f � CI
CI� f � CI

ð14Þ

The average distribution coefficient can be predicted from Eq. (8) at
different operational conditions of the freeze-concentration pro-
cess. The amount of solute recovery and the concentration index
can be calculated from Eqs. (13) and (14) for different liquid or
ice fractions.

2.5. Statistical analysis

The parameters of Eqs. (8) and (16) were fit by the least squares
regression method. A multiple regression analysis was performed
using the statistical software SAS 9.0. The fit was evaluated by
the adjusted regression coefficient. The 95% confidence intervals
were calculated.

3. Results

3.1. Effect of the average ice growth rate and the fluid velocity

The effect of the ratio of average ice growth rate to fluid velocity
to the power of 0.5 on the average distribution coefficient at differ-
ent coffee mass fractions is shown in Fig. 2. The average distribu-
Segmented lines represent the 95% confidence intervals.



Fig. 3. Effect of coffee mass fraction on average distribution coefficient.
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tion coefficient increased with the velocities ratio. A high value of K
indicates greater occlusion of solids in the ice sheet and lower con-
centration efficiency. The ratio of velocities is proportional to the
ice growth rate and inverse to the squared root of the fluid velocity.
The ratio, and consequently the average distribution coefficient,
increased with the ice growth rate and decreased with the fluid
film velocity.

This result can be explained by the effect of the growth of the
ice front. When the ice growth rate exceeds the velocity at which
solids can be expelled from the ice crystals to the ice–liquid inter-
face, the solids stay trapped in the ice sheet (Caretta et al., 2006;
Moreno et al., 2014b; Petzold and Aguilera, 2009). On the other
hand, a high fluid velocity can remove solids from the ice front
to the falling liquid, decreasing the solid occlusion.

The effect of the average ice growth rate was most obvious at
low solid concentrations, as reported by Moreno et al. (2014b).
For low solid concentration, heat transfer is the controlling phe-
nomenon during freeze concentration. Omran and King (1974)
reported that mass transfer controls the FC for solid concentrations
higher than 15% for sugar solutions and fruit juices. In the same
way, Sánchez et al. (2010) reported values lower than 17% solids
when the FC is controlled by heat transfer. In the present work,
the effect of the average ice growth rate on the average distribution
coefficient was highest for the lowest coffee mass fractions evalu-
ated, which were 5% and 15%. This confirms the observations
described by Omran and King (1974) and Sánchez et al. (2010).

The average ice growth rate varied from 0.2 to 4 lm s�1. The
highest rates were obtained at the lowest temperatures and con-
centrations of solids. Moreno et al. (2014b) and Nakagawa et al.
(2010) reported that freeze concentration occurs for an ice growth
rate lower than 6 lm s�1 for the block technique for model solu-
tions. Chen and Chen (2000) studied rates under 2 lm s�1 for fall-
ing-film freeze concentration of food fluids. Meanwhile, Flesland
(1995) reported rates between 0.2 and 2 lm s�1 for sucrose solu-
tions FFFC. The use of low supercooling temperatures decrease
energy consumption and decrease the ice growth rate (Rane and
Padiya, 2011). Low ice growth rates decrease solid occlusion, but,
at the same time, the productivity of the process can be affected;
as a consequence, both aspects have to be analysed.

On the other hand, the average distribution coefficient
decreased slightly with film velocity. Chen et al. (1998) reported
a reduction of the average distribution coefficient with the film
velocity for sugar solutions. Nevertheless, the effect was low for
the studied intervals. In contrast, in the progressive tubular freeze
concentration, where the pump provided velocities of 4.8 m s�1

(Miyawaki et al., 2005), this variable had a greater influence than
FFFC. These results suggest that the film velocity had less influence
in FFFC than other techniques because of the low velocity values of
the free falling-film. However, the combined effect of the ice
growth rate and the film velocity was significant as shown in p-val-
ues of the Table 2.
3.2. Effect of solid concentration

Fig. 3 shows the effect of the coffee mass fraction on the average
distribution coefficient. K increased linearly with the solid content
of the extract. The solid content had the greatest influence on the
Table 2
Multiple regression analysis of Eq. (15).

Variable Estimator of the parameter Standa

Intercept 0.089 0.023
Xs 2.123 0.067
Vice/Us,1

0.5 0.028 0.006
average distribution coefficient according to the slope of the line
shown in Fig. 3 and the standardized parameters showed in Table 2.
The same result was obtained for block freeze concentration.
Moreno et al. (2014b) reported that the solid content of coffee
extract primarily affects the separation efficiency (see Table 3).

The solid occlusion was increased with the coffee mass fraction
mainly for two reasons. First, the diffusion velocity of solutes from
the ice front to the falling-film of fluid decreased with the solid
content because of the interaction between solute molecules
(Hindmarsh et al., 2005; Petzold and Aguilera, 2009). Secondly,
the viscosity of the fluid increased with the solid concentration;
consequently, solute movement is slower and is therefore more
easily trapped in the ice front (Moreno et al., 2014c; Raventós
et al., 2007).

The average distribution coefficient increased from 0.2 to 0.9
when the coffee mass fraction increased from 0.05 to 0.35. This
result shows that when the solid extract concentration rises above
35%, the value of K tends to one. At this value of K, the liquid frac-
tion has the same concentration as the ice, and the concentration
efficiency tends to zero. A high value of the average distribution
coefficient is a problem in terms of the purity of the ice and the
concentration efficiency. However, this problem can be solved by
fractionated thawing of the ice sheet. Gulfo et al. (2013) proposed
a partial thawing of ice sheets to recover the retained solutes.
Moreno et al. (2014a) proposed a process to concentrate coffee
extract by the integration of the ice thawing with FFFC and block
FC. With this strategy, the operational limit of progressive FC can
be overtaken, and the concentration efficiency can be increased.
3.3. Mathematical modelling

The parameters of Eq. (3) were obtained from experimental
data. A multiple regression analysis was achieved to fit the param-
eters of the Chen model. The results are shown in Table 2. The
parameters of the three variables were statistically significant for
a confidence interval of 95%. These results confirm that the coffee
mass fraction and the ratio of the average ice growth rate to the
fluid velocity affected significantly the average distribution coeffi-
cient. An adjusted regression coefficient of 0.98 was obtained.
According to these results, the average distribution coefficient in
rd error Pr > |t| Standardized parameter

0.0006 0
<.0001 1.069
<.0001 0.161



Table 3
Parameters of Eq. (8) for several food fluids.

Fluid A B C R2

Coffee extract (present work) 0.09 2.12 0.03 0.98
Sucrose solution (Chen and Chen, 2000) �0.14 2.06 0.14 0.96
Orange juice (Chen and Chen, 2000) �0.12 2.18 0.12 0.98
Milk (Chen and Chen, 2000) �0.02 0.36 0.08 0.96

Fig. 5. Parity plot of the average distribution coefficient. Experimental vs predicted
data from Eq. (15).
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FFFC of coffee extract can be calculated as a function of the coffee
mass fraction of the extract, the average ice growth rate and the
fluid film velocity by Eq. (15).

The smallest average distribution coefficient was obtained for
the smallest solid concentration and the smallest ratio of average
ice growth rate to film velocity, as shown in Fig 4. Experimental
data were compared with the predicted data generated from Eq.
(15) in Fig. 5. A good fit was obtained as evaluated by the adjusted
regression coefficient.

K ¼ 0:089þ 2:123Xs þ 0:028
�v ice

U0:5
s;1

R2 ¼ 0:98 ð15Þ

The experimental data, the predicted data generated from Eq. (15)
and the 95% confidence intervals are shown in Fig 2. The three
parameters had significant effect on the average distribution coeffi-
cient as shown in Table 2. The parameter with the greatest effect on
the average distribution coefficient was the term associated with
the coffee mass fraction, according to the standardized parameters
presented in Table 2. This confirms the higher influence of solid
concentration on the solute occlusion in the ice.

The parameters of Eq. (8) were compared with the parameters
for other food fluids obtained by Chen and Chen (2000) in Table 2.
The parameters of Eq. (8) for coffee extract were similar to those of
orange juice, possibly due to the similar viscosity at low tempera-
tures and similar freezing points (Moreno et al., 2014c; Ibarz et al.,
2009). The behaviour of falling-film freeze concentration of orange
juice reported by Sánchez et al. (2010) was similar to the FFFC of
coffee extract (Moreno et al., 2014a).

3.4. Model for solid concentration prediction in successive stages

The behaviour of falling-film freeze-concentration at can be
predicted from the Chen model presented in Eq. (15). A simulation
of the process is presented based on the conditions of FFFC of cof-
fee extract reported by Moreno et al. (2014a). The following
parameters were used for the simulation: A coffee extract with
5% solids entered the first stage of FFFC. The average ice growth
Fig. 4. Modelling of the partition coefficient as a function of Xs, Vice and Us. Dots:
experimental data; plane: predicted data from Eq. (15).
rate was 2 lm s�1, and the film velocity was 0.5 m s�1. The simula-
tion parameters were established to compare them with experi-
mental data reported by Moreno et al. (2014a,b,c) and Auleda
et al. (2011) for falling-film freeze concentration of coffee extract
and sugar solutions, respectively in a geometrical similar device.
In addition, these parameters were all within the intervals tested
in the present work.

The average distribution coefficient was predicted from Eq.
(15). With this value, the solid concentration in the ice was calcu-
lated. After that, a mass balance was achieved assuming an ice frac-
tion between 0.26 and 0.44 according to the data reported by
Moreno et al. (2014a). These values were within the results
obtained to generate the model in Eq. (15). With the ice fraction,
the liquid fraction (f) was calculated. Subsequently, the solid con-
centrations of the extract were calculated from Eq. (13). This
extract can be freeze concentrated again in a new stage, so the cal-
culation process was repeated successively in six stages. The coffee
mass fraction of the freeze-concentrated extract at each stage is
shown in Fig. 6.

Starting with an extract of 5% coffee solids, the concentration of
the freeze-concentrated extract tended to 37% solids at the end of
the process. The concentration showed sigmoidal behaviour. The
same behaviour was reported by Bayindirli and Ungan (1993) in
the freeze concentration of apple juice and by Nonthanum and
Tansakul (2008) for lime juice. At the beginning, the concentration
Fig. 6. Predicted values of successive stages of falling film freeze concentration of
coffee extract. Bars: predicted data from Eq. (16). Lines: 95% confidence intervals.
Dots (s): experimental data reported by Moreno et al. (2014a).
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increased linearly. However, at the end, the concentration tends to
an asymptotic value due to the thermodynamic limit when the
extract was close to the eutectic point concentration.

The Chen model can be applied for one stage of FFFC. A mass
balance is needed to calculate the solid concentration in successive
stages. However, a model to predict the coffee mass fraction from
the number of stages used in FFFC can be adjusted from data gen-
erated with Eqs. (13)–(15). The sigmoidal behaviour can be mod-
elled with the logistic model presented in Eq. (16). The model
predicts the coffee mass fraction of the concentrated liquid as a
function of the initial coffee mass fraction and the number of
stages. The parameters of the Eq. (16) were obtained by least
squares regression with data generated from the Chen model.

Xs liq ¼
0:55x0

ð1:30x0 þ ð0:55� 1:30x0Þexpð�0:55nÞÞ R2 ¼ 0:998 ð16Þ

The concentration reached after successive stages of FFFC can be
predicted by Eq. (16). Fig. 6 shows the predicted data from Eq.
(16) (bars), the 95% confidence intervals (lines), and the experimen-
tal data of FFFC of coffee extract reported by Moreno et al. (2014a).
The experimental data presented a good fit with the models with an
adjusted regression coefficient of 0.998. The generated parameters
were significant for alpha 0.05. According to the simulation, after
six stages of FFFC, a coffee extract of 31.8% solids was obtained.
The concentration tended to 35%. Moreno et al. (2014a) reported
an extract with 30.4% solids after six stages of FFFC starting with
a 5% coffee extract. The results show that the Chen model accurately
predicts the behaviour of falling-film freeze concentration of coffee
extract. Likewise, the logistic model fit the data accurately for the
first stages. A slight deviation of experimental data was observed
for the three last stages. The differences can be attributed to the dif-
ference in the scale of the device reported by Moreno et al.
(2014a,b,c) and those used in the present work. However, the model
showed a trend for the solid concentration increasing. The logistic
model is useful to predict the solid concentration in terms of the
number of stages used in FFFC.
4. Conclusions

This study showed that the mass fraction of solids and the ratio
of the average growth rate of the freezing front to the velocity of the
fluid film affected significantly the average distribution coefficient
of the ice produced during the falling-film freeze concentration of
coffee extract. The greatest effect was obtained for the coffee mass
fraction of the extract. The parameters of the Chen model were
obtained for the prediction of average distribution coefficient of
coffee extract. A logistic model was adjusted to predict the behav-
iour of successive stages of falling-film freeze concentration. In suc-
cessive stages of falling-film freeze concentration, the coffee mass
fraction tends to 35% at the studied conditions. From this informa-
tion, it is possible to predict the coffee mass fraction of concentrated
liquid and ice during falling-film freeze concentration at different
operational conditions. The models properly fit the experimental
data.
Acknowledgements

This research was supported by Universidad de La Sabana and
COLCIENCIAS through project 1230521-28461 (2011). The authors
thank Eng. Carlos Osorio of Buencafe Liofilizado de Colombia
(Colombian Coffee Growers Federation) for providing the coffee
and assisting with the research. Author Moreno F L thanks COL-
CIENCIAS for its grant for doctoral studies (2013). Author Ruiz Y
thanks COLCIENCIAS for its grant for doctoral studies (2004).
References

Aider, M., de Halleux, D., 2009. Cryoconcentration technology in the bio-food
industry: principles and applications. LWT – Food Sci. Technol. 42 (3), 679–685.

Auleda, J.M., Raventós, M., Hernández, E., 2011. Calculation method for designing a
multi-plate freeze-concentrator for concentration of fruit juices. J. Food Eng.
107 (1), 27–35.

Bayindirli, L., Ungan, S., 1993. Mathematical analysis of freeze concentration of
apple juice. J. Food Eng. 19, 95–107.

Belén, F., Benedetti, S., Sánchez, J., Hernández, E., Auleda, J.M., Prudêncio, E.S.,
Petrus, J.C.C., et al., 2013. Behavior of functional compounds during freeze
concentration of tofu whey. J. Food Eng. 116 (3), 681–688.

Boaventura, B.C.B., Murakami, A.N.N., Prudêncio, E.S., Maraschin, M., Murakami, F.S.,
Amante, E.R., Amboni, R.D.D.M.C., 2013. Enhancement of bioactive compounds
content and antioxidant activity of aqueous extract of mate (Ilex paraguariensis
A. St. Hil.) through freeze concentration technology. Food Res. Int. 53 (2), 686–
692.

Caretta, O., Courtot, F., Davies, T., 2006. Measurement of salt entrapment during the
directional solidification of brine under forced mass convection. J. Cryst. Growth
294 (2), 151–155.

Chen, P., Chen, X.D., 2000. A generalized correlation of solute inclusion in ice formed
from aqueous solutions and food liquids on sub-cooled surface. Can. J. Chem.
Eng. 78, 312–319.

Chen, P., Chen, X.D., Free, K.W., 1998. Solute inclusion in ice formed from sucrose
solutions on a sub-cooled surface – an experimental study. J. Food Eng. 38, 1–
13.

Flesland, O., 1995. Freeze concentration by layer crystallization. Drying Technol. 13,
1713–1739.

Gulfo, R., Auleda, J.M., Moreno, F.L., Ruiz, Y., Hernández, E., Raventós, M., 2013.
Multi-plate freeze concentration: recovery of solutes occluded in the ice and
determination of thawing time. Food Sci. Technol. Int.. http://dx.doi.org/
10.1177/1082013213489127.

Hernández, E., Raventós, M., Auleda, J.M., Ibarz, a., 2009. Concentration of apple and
pear juices in a multi-plate freeze concentrator. Innovat. Food Sci. Emerg.
Technol. 10 (3), 348–355.

Hernández, E., Raventós, M., Auleda, J.M., Ibarz, A., 2010. Freeze concentration of
must in a pilot plant falling film cryoconcentrator. Innovat. Food Sci. Emerg.
Technol. 11 (1), 130–136.

Hindmarsh, J.P., Russell, A.B., Chen, X.D., 2005. Measuring dendritic growth in
undercooled sucrose solution droplets. J. Cryst. Growth 285 (1–2), 236–248.

Ibarz, R., Falguera, V., Garvín, A., Garza, S., Pagán, J., Ibarz, A., 2009. Flow behavior of
clarified orange juice at low temperatures. J. Texture Stud. 40, 445–456.

Miyawaki, O., Liu, L., Shirai, Y., Sakashita, S., Kagitani, K., 2005. Tubular ice system
for scale-up of progressive freeze-concentration. J. Food Eng. 69 (1), 107–113.

Miyawaki, O., Kato, S., Watabe, K., 2012. Yield improvement in progressive freeze-
concentration by partial melting of ice. J. Food Eng. 108 (3), 377–382.

Moreno, F.L., Robles, C.M., Sarmiento, Z., Ruiz, Y., Pardo, J.M., 2013. Effect of
separation and thawing mode on block freeze-concentration of coffee brews.
Food Bioprod. Process. 91 (4), 396–402.

Moreno, F.L., Hernández, E., Raventós, M., Robles, C., Ruiz, Y., 2014a. A process to
concentrate coffee extract by the integration of falling film and block freeze-
concentration. J. Food Eng. 128, 88–95.

Moreno, F.L., Raventós, M., Hernández, E., Ruiz, Y., 2014b. Block freeze-
concentration of coffee extract: effect of freezing and thawing stages on
solute recovery and bioactive compounds. J. Food Eng. 120, 158–166.

Moreno, F.L., Raventós, M., Hernández, E., Santamaría, N., Acosta, J., Pirachican, O.,
Torres, L., Ruiz, Y., 2014c. Rheological behaviour, freezing curve and density of
coffee solutions at temperatures close to freezing. Int. J. Food Prop.. http://
dx.doi.org/10.1080/10942912.2013.833221.

Nakagawa, K., Maebashi, S., Maeda, K., 2009. Concentration of aqueous dye solution
by freezing and thawing. Can. J. Chem. Eng 87 (5), 779–787.

Nakagawa, K., Maebashi, S., Maeda, K., 2010. Freeze–thawing as a path to
concentrate aqueous solution. Sep. Purif. Technol. 73 (3), 403–408.

Nonthanum, P., Tansakul, A., 2008. Freeze concentration of lime juice. Maejo Int. J.
Sci. Technol. 1, 27–37.

Omran, A.M., King, J., 1974. Kinetics of ice crystallization in sugar solutions and fruit
juices. AIChemE J. 20, 795–803.

Perry, H.R., Green, D., Maloney, J.O., 1992. Perry’s Chemical Engineering Handbook,
sixth ed. McGraw-Hill, New York, USA.

Petzold, G., Aguilera, J.M., 2009. Ice morphology: fundamentals and technological
applications in foods. Food Biophys. 4 (4), 378–396.

Qin, F., Chen, X.D., Ramachandra, S., Free, K., 2006. Heat transfer and power
consumption in a scraped-surface heat exchanger while freezing aqueous
solutions. Sep. Purif. Technol. 48 (2), 150–158.

Qin, F., Chen, X.D., Free, K., 2009. Freezing on subcooled surfaces, phenomena,
modeling and applications. Int. J. Heat Mass Transfer 52 (5–6), 1245–1253.

Rane, M.V., Jabade, S.K., 2005. Freeze concentration of sugarcane juice in a jaggery
making process. Appl. Therm. Eng. 25 (14–15), 2122–2137.

http://refhub.elsevier.com/S0260-8774(14)00213-1/h0005
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0005
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0010
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0010
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0010
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0015
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0015
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0020
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0020
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0020
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0175
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0175
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0175
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0175
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0175
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0030
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0030
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0030
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0035
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0035
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0035
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0040
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0040
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0040
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0045
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0045
http://dx.doi.org/10.1177/1082013213489127
http://dx.doi.org/10.1177/1082013213489127
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0055
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0055
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0055
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0060
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0060
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0060
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0065
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0065
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0070
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0070
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0075
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0075
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0080
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0080
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0100
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0100
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0100
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0085
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0085
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0085
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0090
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0090
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0090
http://dx.doi.org/10.1080/10942912.2013.833221
http://dx.doi.org/10.1080/10942912.2013.833221
http://refhub.elsevier.com/S0260-8774(14)00213-1/h9005
http://refhub.elsevier.com/S0260-8774(14)00213-1/h9005
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0105
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0105
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0110
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0110
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0115
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0115
http://refhub.elsevier.com/S0260-8774(14)00213-1/h9010
http://refhub.elsevier.com/S0260-8774(14)00213-1/h9010
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0120
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0120
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0125
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0125
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0125
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0130
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0130
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0135
http://refhub.elsevier.com/S0260-8774(14)00213-1/h0135


International Journal of Food Properties, 18:426–438, 2015
Copyright © Taylor & Francis Group, LLC
ISSN: 1094-2912 print/1532-2386 online
DOI: 10.1080/10942912.2013.833221

Rheological Behaviour, Freezing Curve, and Density of
Coffee Solutions at Temperatures Close to Freezing
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The physical properties of coffee solutions were determined for temperatures close to the freezing point.
Rheological behaviour, freezing curve, density, and their relationship between coffee mass fraction and
Brix degrees were determined for coffee mass fractions between 5 and 50% (wet basis) in the −6 to
20◦C temperature interval. Values of viscosity varied from 1.99 to 1037 mPa·s and values of density
from 1000 to 1236 kg·m−3. The freezing curve was generated using the undercooling method, giving
values within freezing curves for food fluids. The results were used to generate mathematical models
to predict viscosity, freezing point depression, and density as a function of coffee mass fraction and
temperature.

Keywords: Coffee, Properties, Rheology, Freezing, Modeling, Freeze-concentration.

INTRODUCTION

Coffee is the second most traded commodity in the world after petroleum and one of the most
consumed food beverages worldwide.[1,2] In the coffee industry, preservation of quality is highly
important; for this reason, low temperature technologies are commonly implemented. Technologies,
such as freeze-concentration and freeze-drying, are used to produce soluble coffee thanks to the
flavour preservation promoted for using low temperatures.[3−5]

The measurement of physical properties of food fluids at low temperatures is relevant in the
designing of processes and equipment for freezing technologies. The freezing curve of food fluids
represents the state of food as a function of solid concentration and temperature. The state diagram is
useful for process condition’s selection in freezing technologies.[6] Flux behaviour comprehension
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at temperatures just above the freezing point of fluids is required for sizing freeze-concentration
equipment, such as falling film or tubular systems. In a similar way, determining of the viscosity
and density is important to establish the power requirements for pumping during fluid processing.[7]

Determining of mathematical models for physical properties and rheological behaviour at low tem-
peratures and at different mass fractions allows applying calculation methods for designing and
sizing equipment for freeze concentration.[8]

The coffee mass fraction or solid content can be measured by gravimetric techniques; however,
◦Brix determination can be a faster technique. There is no coincidence between ◦Brix and solid con-
tent because the darker colour of coffee solutions and the minimum fraction of sediments of coffee
extract can affect the diffraction of light. A relationship between ◦Brix and coffee mass fraction has
not been described.

There are several mathematical models for viscosity prediction of food fluids.[9−12] However,
few studies report mathematical modeling of food fluids viscosity at low temperatures. In this sense,
viscosities for sugar solutions, fruit juices, and dairy emulsions at low temperatures were reported
by Falguera et al.,[13] Ibarz et al.,[14] Ruiz et al.,[15] Tavares et al.,[16] and Gabriele et al.[17] In
the case of coffee solutions, viscosity and some physical properties have been reported by Sobolik
et al.[18] and Telis-Romero et al.[19] for temperatures ranging from 20 to 80◦C. The freezing curve
of coffee extract was obtained by Thijssen[20] and Pardo et al.;[21] nevertheless, the authors report
the dependence of data on the type of coffee and extraction methods. Additionally, Telis-Romero
et al.[22] studied the physical properties of coffee extract. However, there are no reports of coffee
solution’s viscosity and physical properties for temperatures below 0◦C. The modeling of viscos-
ity and other physical properties at temperatures close to the freezing point could contribute to the
design of processes and equipment for freezing technologies, such as freeze concentration, freeze
drying, and coffee extract handling, in the coffee industry. The aim of the present work was to mea-
sure and model the relation of coffee mass fraction and ◦Brix, freezing curve, rheological behaviour,
and density of coffee solutions at temperatures close to the freezing point.

MATERIALS AND METHODS

Materials

Colombian freeze-dried coffee (Buencafé, Buencafé Liofilizado de Colombia) provided by the
Colombian Coffee Growers Federation was used to prepare aqueous solutions at different coffee
mass fractions. Soluble coffee granules were dissolved in distilled water at 30◦C to obtain samples
at different concentrations.

Relationship between Coffee Mass Fraction and ◦Brix

Coffee solutions were prepared at different coffee mass fractions: Xs = 0.10, 0.20, 0.30, 0.40, and
0.50. The solutions were stored at 20◦C. ◦Brix and index refraction were measured by refractometry
(Atago Pal 100, Japan) at 20◦C ± 1◦C. The total dry matter was measured by weight-loss after oven
drying at 103◦C ± 1◦C for 4 h according to technical standards.[23] Measurements were performed
in quadruplicate.

Freezing Curve

The method of undercooling reported by Auleda et al.,[24] Ayel et al.,[25] and Jie et al.[26] was used
to determine the freezing point of coffee solutions. Coffee solutions at Xs = 0.10, 0.20, 0.30, 0.40,
and 0.50 were tested. The method consisted of cooling the sample by immersion in a cooling bath.
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Four test tubes with 10 mL of the sample were immersed in a cooling bath (Polystat, Cole Parmer,
USA). The cooling fluid was a mixture of ethylene glycol and water (53% w/w). The bath was
temperature controlled at an interval from −35 to 150◦C ± 0.01◦C. The temperature of the bath was
settled at −13◦C ± 0.01◦C. The test tubes were immersed after the bath reached the temperature.
The test tubes contained a PT100-IP65 temperature sensor (Testo, Germany) located in the centre
of the sample. The sensor had a 2-mm diameter and a precision of ±0.01◦C, and it was connected
to a 176 T2 datalogger (Testo, Germany). The temperature profile was stored in a PC. The freezing
points were determined based on the cooling curves. The highest temperature reached after the
undercooling due to nucleation corresponded to the freezing point. All of the experiments were
performed in quadruplicate.

The method was previously standardized by measuring the freezing curve of sucrose solutions
and comparing it with reported data.[10,24] The solutions were prepared with sucrose of analytic
grade (Panreac Química, Colombia) at solid concentrations of 10–50% w/w and distilled water
at 40◦C. The solutions were stored and then freezing points were determined. The technique was
accepted when the difference between experimental and theoretical data was within 5%. This
difference may be attributed to the solute inclusion in ice.[27]

Rheological Measurements

Coffee solutions were prepared at Xs = 0.05, 0.20, 0.35, and 0.50. The solid content was verified
by refractometry (Atago Pal 100, Japan) at 20◦C ± 0.05◦C using the equation obtained in the ◦Brix
and coffee mass fraction measurements. The rheological behaviour of the samples was determined
using a viscometer of coaxial cylinders (FungiLab Viscostar L, Barcelona, Spain) equipped with a
device for low viscosity measurements, which is able to measure viscosities from 0 to 2000 mPa•s.
The 18-mL sample of coffee solution was placed on the device with a concentric inside spindle.
The device was immersed in a cryostat (Polysience Model 9505, USA, temperature range: −30 to
150◦C; temperature stability ±0.5◦C; readout accuracy: ±0.5◦C). The viscometer was connected to
a PC for data storing. The sample temperature was verified using a thermocouple type K (Precision
±0.5◦C; measurement range: −50 to 1000◦C) connected to a Datalogger (Testo 174 T4, Spain).
Viscosity was measured after the sample reached the desired temperature.

The measurements were performed varying shear rate, sample temperature, and coffee mass frac-
tion. Four shear rates were adjusted for each sample, from 5 to 120 s−1, depending on the solution’s
viscosity. The limit was established by the maximum torque of the viscometer. Shear rates were
calculated using an equation given by the viscometer to convert rotational speed into shear rate,
γ = 1.2236 ∗ ω. Different temperatures above freezing point were tested (−6, −4, −2, 0, 2, and
4◦C) depending on Xs, such that the solution remained in a liquid state. Four different coffee mass
fractions (0.05, 0.20, 0.35, and 0.50) were tested. Experiments were performed in triplicate. The
rheological behaviour of coffee solutions was modeled using the power law shown in Eq. (1):

σ = K · γ n. (1)

An Arrhenius type equation (Eq. 2) was used to describe the effect of temperature on the viscosity
of coffee solutions:[14]

η = k0 exp

(
Ea

RT

)
. (2)

Activation energy and frequency factor were fitted to the Xs dependent model[9] shown in Eqs. (3)
and (4):
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k0 = a exp (b ∗ xs), (3)

Ea = c exp (d ∗ xs). (4)

Two general models to predict viscosity of coffee solutions as a function of temperature and coffee
mass fraction simultaneously were fitted. Mathlouli and Genotelle (cited by [10]) proposed a general
model for sucrose solutions shown in Eq. (5):

log10
η

η∗ = a1 + a2x + ϕ
(
b1 + b2xc1

s

)
, (5)

where

ϕ = (30 − T) / (91 + T) . (6)

Moreover, Sobolik et al.[18] proposed a model applied to coffee solutions at room temperatures and
higher, as shown in Eq. (7):

η = exp

(
a3 + a4x + a5x2

s + a6 + a7x2
s

T + 273.15

)
. (7)

Density

The density of coffee solutions at Xs = 0.10, 0.20, 0.30, 0.40, and 0.50 was determined by using
a pycnometer at temperatures of 0, 5, 10, 15, 20, and 25◦C ± 0.01◦C. The pycnometers with the
samples were immersed in a cooling bath at the settled temperature (Polystat Cole Parmer, USA).
One blank sample had a PT100-IP65 temperature sensor (Testo, Germany) immersed to check the
temperature. After the sample reached the temperature, the pycnometers were closed and weighed
in an analytical scale (Mettler Toledo, USA). The measures were performed in triplicate.

Statistical Analysis

The average and the standard deviation of all data were calculated by SPSS 20.0 software. The
unknown parameters of the models shown in Eqs. (1) to (10) were adjusted from experimental
results using a linear regression fitting procedure with SPSS 20.0 for Eqs. (2) to (4) and a non-linear
regression procedure for the other intrinsically non-linear models. The goodness of model fit was
based on coefficient of determination (R2), defined by the ratio between the regression sum of square
and the total sum of squares. For the best fit, the R2 value should be high.

RESULTS AND DISCUSSION

Relationship between Coffee Mass Fraction and ◦Brix

The ◦Brix are a measure of the soluble solid content of sugar solutions. The relationship between
◦Brix and coffee mass fraction is presented in Table 1. A linear relation was obtained as seen in
Eq. (8). The equation allows measuring coffee mass fraction by refractometry. The equation can
be modified to %Solids = 0.87·◦Brix, in order to obtain solid percentage. Similar relationships are
used in the coffee industry.[28] The refractive index was also measured and its relation with Xs is
presented in Table 1. The relationship was fitted in Eq. (9). The models allowed calculating coffee
mass fraction using a quick technique, such as refractometry.
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TABLE 1
Xs and refractive index as a function of ◦Brix for coffee solutions

◦Brix Xs Refractive index

11.3 0.094 1.3500
10.7 0.095 1.3488
11.4 0.103 1.3499
11.4 0.100 1.3499
22.8 0.183 1.3685
23.0 0.204 1.3661
21.3 0.191 1.3674
22.0 0.154 1.3680
33.2 0.305 1.3870
33.7 0.308 1.3890
34.3 0.297 1.3864
32.9 0.303 1.3870
41.3 0.381 1.4024
45.3 0.396 1.4087
44.5 0.393 1.4112
45.7 0.396 1.4080
55.4 0.494 1.4317
56.2 0.496 1.4428
60.3 0.493 1.4241
51.9 0.459 1.4290

Xs = 0.0087 ·◦ Brix, R2 = 0.991; (8)

nD = 1.334 + 0.155Xs + 0.092Xs2, R2 = 0.984. (9)

Freezing Curve

The cooling curves of coffee solutions were determined in quadruplicate as shown in Fig. 1. The
super-cooling can be observed by the temperature decrease until the nucleation process begins.
Subsequently, a temperature increase was produced due to the latent heat of the phase change. The
highest temperature reached corresponded to the freezing point of the sample.[24] From the cooling
curves at different Xs, an average freezing point was calculated and the freezing curve for coffee
solutions was obtained (Table 2). Data correspond to average and standard deviation. The values are
comparable to those reported by Thijssen[20] and Thaler[29] for different types of coffee. The dif-
ference with the freezing point of water (0◦C) corresponded to the freezing point depression. Data
were fitted to Eq. (10) for freezing point depression prediction as a function of coffee mass fraction.
The regression coefficient obtained was 0.998, showing a good fitness.

FPD = 35.01 • Xs2 + 2.05 • Xs, R2 = 0.998. (10)

The freezing curve of coffee is between the freezing curves of glucose and sucrose, within the typical
region of food fluids proposed by Auleda et al.[24] This can be attributed to the polysaccharides
content of coffee extract, which varies from 20 to 75% dry basis,[29−31] depending on coffee variety,
roasting, and extracting processes.
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FIGURE 1 Cooling curves of coffee solutions. Xs = 0.40.

TABLE 2
Freezing point of coffee solutions as a function of coffee mass fraction

Xs Freezing point (◦C)

0.1 −0.76 ± 0.04
0.2 −1.92 ± 0.08
0.3 −3.45 ± 0.06
0.4 −6.54 ± 0.19
0.5 −9.79 ± 0.24

Rheological Measurements

Rheological behaviour

The rheograms of coffee solutions at Xs 5, 20, 35, and 50% and temperatures between −6 and
4◦C are presented in Fig. 2, where shear stress (σ ) as a function of shear rate (γ ) is plotted. The dots
correspond to experimental data and the lines were generated from parameters of Eq. (1), shown
in Table 3. For this regression, coefficients of determination between 0.95 and 1.00 were obtained,
suggesting good fitness of the models. A Newtonian behaviour was obtained with a flow index close
to 1. Exponents of power law were less than 1 for high Xs and low temperatures, showing a slightly
pseudoplastic behaviour. However, this result is not significant according to standard deviation. The
Newtonian behaviour was reported by Sobolik et al.[18] for concentrated coffee solutions at higher
temperatures in the interval from 0 to 1574 s−1. Moreover, the consistency coefficient of Eq. (1)
was increased with Xs and decreased with temperature, as indicated by several researchers.[7,32]

Assuming a Newtonian behaviour, the values of viscosity of coffee solutions at the tested shear rates
are presented in Table 2. As expected, the viscosity increased with increasing Xs and decreasing
temperature. It was observed that influence of Xs on viscosity is greater than influence of temper-
ature. These results are comparable with those obtained for other food solutions[15] and for coffee
solutions at higher temperatures.[18,19]

Viscosity mathematical modeling

The viscosity dependence on temperature is presented in Table 4. As expected, viscosity
increased with Xs and decreased with temperature. Data was fitted to Eq. (2) and the parameters
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FIGURE 2 Rheogram of coffee solutions at 4◦C (�), 2◦C (�), 0◦C (♦), −2◦C (◦), −4◦C (×), and −6◦C (—).
(a) Xs = 0.05, (b) Xs = 0.20, (c) Xs = 0.35, (d) Xs = 0.50. Lines are calculated values using parameters given in
Table 3.

for coffee solutions are presented in Table 5. The activation energy was increased with Xs, similarly
to the result obtained by Telis-Romero et al.[19] for coffee solutions at temperatures between 20 and
80◦C. On the other hand, Ko values decreased with Xs. A good fit between experimental and mod-
eled data was obtained. The results are comparable with those reported for other food solutions at
temperatures close to freezing.[13−15]

Ea for sucrose solutions was reported by Galmarini et al.,[33] for sucrose concentration of 35%
with a value of 22.0 kJ·mol−1 between 20 and 34◦C. For fruit juices, activation energy of 42 kJ·mol−1

is reported by Chin et al.[7] Likewise, the reported activation energy of untreated sugar cane juice is
36.79 kJ·mol−1.[34] Ea value for mandarin juice at low temperatures is 33 kJ·mol−1.[13] It is important
to remember that Ea for water is 14.4 kJ·mol−1 and this value can be increased until 60 kJ·mol−1

with solid concentration.[35] Ea for coffee solutions obtained in the present study varied from 22.0
to 51.3 kJ·mol−1, giving values within the range for food fluids.

General models. The regression analyses were performed for four different models of viscos-
ity prediction as a function of Xs and temperature. Parameters of models, standard deviation, and
coefficients of determination are given in Table 6. Values are comparable with those reported by
Ibarz et al.,[9] Longinotti and Corti,[10] and Sobolik et al.,[18] although there are some differences in
values due to specificity for coffee solutions at the present conditions. Equation (11) had the highest
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TABLE 3
Parameters of power law (Eq. 1) for different coffee mass fractions and temperatures

Xs T (◦C) K n R2

0.05 0 2.10∗10−3 ± 0.90∗10−3 1.01 ± 0.01 0.99
2 1.91∗10−3 ± 0.10∗10−3 1.01 ± 0.01 1.00
4 1.80∗10−3 ± 0.10∗10−3 1.03 ± 0.01 0.99

0.20 −4 9.14∗10−3 ± 0.40∗10−3 0.97 ± 0.01 0.99
−2 8.02∗10−3 ± 0.60∗10−3 0.98 ± 0.02 0.99

0 7.52∗10−3 ± 0.40∗10−3 0.98 ± 0.01 0.99
2 6.90∗10−3 ± 0.20∗10−3 0.98 ± 0.01 0.99
4 0.81∗10−3 ± 2.70∗10−3 0.93 ± 0.08 0.95

0.35 −4 5.67∗10−2 ± 0.47∗10−2 0.95 ± 0.04 0.98
−2 4.92∗10−2 ± 0.40∗10−2 0.96 ± 0.03 0.98

0 4.48∗10−2 ± 0.47∗10−2 0.96 ± 0.04 0.98
2 4.20∗10−2 ± 0.14∗10−2 0.96 ± 0.01 0.99
4 3.52∗10−2 ± 0.37∗10−2 0.97 ± 0.04 0.98

0.50 −6 1.10 ± 0.29 0.98 ± 0.08 0.95
−4 1.01 ± 0.18 0.94 ± 0.05 0.97
−2 0.91 ± 0.16 0.93 ± 0.05 0.97

0 0.79 ± 0.14 0.92 ± 0.05 0.97
2 0.65 ± 0.12 0.94 ± 0.04 0.98
4 0.53 ± 0.06 0.94 ± 0.03 0.99

TABLE 4
Viscosity of coffee solutions at different temperatures (T ) and coffee mass fractions (Xs) (mPa·s)

Xs

T (◦C) 0.05 0.20 0.35 0.50

4 1.99 ± 0.02 5.84 ± 0.08 32.9 ± 1.68 425.84 ± 16.94
2 2.13 ± 0.02 6.41 ± 0.07 36.8 ± 1.98 543.03 ± 44.73
0 2.29 ± 0.02 6.99 ± 0.09 40.7 ± 1.95 633.43 ± 54.68
−2 7.51 ± 0.18 45.6 ± 2.23 734.54 ± 58.74
−4 8.22 ± 0.12 51.1 ± 2.58 849.11 ± 74.89
−6 1037.24 ± 94.90

TABLE 5
Parameters of Arrhenius equation (Eq. 2) for coffee solutions at different Xs

Xs Ko (mPa·s) Ea (kJ·mol−1) R2

0.05 1.39∗10−4 ± 0.82∗10−4 22.0 ± 1.35 0.974
0.20 7.60∗10−5 ± 3.10∗10−5 25.9 ± 0.91 0.984
0.35 1.20∗10−5 ± 1.40∗10−5 34.1 ± 2.56 0.933
0.50 9.27∗10−8 ± 0.00∗10−8 51.3 ± 3.57 0.934

R2 value; thus, this model seems to be capable of adequately describing viscosity of coffee solutions
at different temperatures (◦C) and coffee mass fraction at the investigated conditions:

log10η = 21.3 + 2.1Xs +
(

30 − T

91 + T

) (
31.5 − 12.7Xs2.53

)
. (11)
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TABLE 6
Parameters of mathematical models for prediction of coffee solution’s viscosity

Equations Parameters R2

(3), (4) a = 8.1 ∗ 10−3 ± 3.0 ∗ 10−5 0.955
b = −15.8 ± 1.43
c = 18.9 ± 1.93
d = 1.87 ± 0.27

(5), (6) a1 = 21.3 ± 1.18 0.999
a2 = 2.10 ± 0.34
b1 = 31.5 ± 1.76
b2 = −12.7 ± 0.65
c1 = 2.53 ± 0.21

(7) a3 = −7.03 ± 19.5 0.992
a4 = 1.01 ± 9.48
a5 = −38.7 ± 79.8
a6 = 2.16 ∗ 103 ± 5.31 ∗ 103

a7 = 1.60 ∗ 103 ± 2.1 ∗ 104

The other two models tested presented a slightly lower regression coefficient, but the adjustment
was also satisfactory. Consequently, it is assumed that all models properly describe the viscosity of
coffee solutions in the temperature and coffee mass fraction intervals evaluated in this study.

The parameters of Eq. (7) for coffee solutions at temperatures between 0 and 80◦C were reported
by Sobolik et al.[18] It is possible to compare a coincident point between the reported model and
the model fitted in the present work. The viscosity of a coffee solution at Xs 0.20 and T = 0◦C,
generated by the model reported by Sobolik et al.[18] is 0.0085 Pa s and the corresponding value
obtained in this work is 0.0069 Pa s, showing a difference of 18%. Sobolik et al.[18] compared their
results with those obtained by Weisser in a previous work and found a maximum difference of 15%.
This difference is attributed by the authors to the fact that viscosity depends on the type of coffee and
its processing. The generation of parameters of this model at temperatures close to freezing expands
the range of application of the model to sub-zero temperatures.

A plot of viscosity values as a function of temperature and Xs was generated using the param-
eters of Eq. (11) (Fig. 3). This figure showed that viscosity increased with Xs and decreased with
temperature. The same result was reported by Diaz-Ocampo et al.[36] The curve on the surface rep-
resents the freezing point curve of coffee solutions using values obtained by Eq. (10). The viscosity
values beyond the line do not have physical significance because they are below the freezing point.
A higher dependence of viscosity on Xs than on T is evident in the studied interval.

Density

The density of coffee extract as a function of coffee mass fraction and temperature is shown in
Table 7. As expected, density increases with Xs and decreases with temperature.[37] Values between
1036 and 1277 kg·m−3 were obtained. The results are similar to those reported by Telis-Romero
et al.[22] between 1000 to 1200 kg m−3 for the same Xs intervals and higher temperatures. The den-
sity evidences a stronger dependence on solid content than on temperature. Density can be expressed
as an average of coffee solids density and water density;[18] in turn, density of these components is
dependent on temperature. The model fitted is shown in Eqs. (12) to (14). The regression coefficient
was R2 = 0.989, showing a good data fitting.
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PROPERTIES OF COFFEE SOLUTIONS AT LOW TEMPERATURES 435

FIGURE 3 Coffee solution’s viscosity as a function of temperature and coffee mass fraction. Predicted values using
Eq. (11). The curve on surface represents freezing point curve for coffee solutions modeled by Eq. (10).

TABLE 7
Density of coffee extract (kg·m−3) as a function of coffee mass fraction and temperature

T (◦C)

Xs 0 5 10 15 20 25

0.1 1083.1 ± 11.7 1073.6 ± 12.2 1053.0 ± 14.3 1042.1 ± 11.4 1037.4 ± 8.2 1036.3 ± 8.9
0.2 1133.4 ± 11.3 1115.7 ± 13.0 1087.3 ± 14.9 1072.1 ± 15.0 1062.8 ± 8.4 1058.6 ± 16.4
0.3 1177.0 ± 9.6 1159.8 ± 19.9 1134.9 ± 22.6 1114.3 ± 17.2 1107.6 ± 20.7 1099.6 ± 7.5
0.4 1224.2 ± 8.4 1205.2 ± 5.8 1174.3 ± 16.3 1153.6 ± 13.2 1147.1 ± 13.7 1141.7 ± 26.6
0.5 1277.2 ± 3.5 1263.0 ± 11.9 1230.0 ± 4.4 1215.1 ± 6.9 1204.2 ± 10.9 1196.1 ± 16.5

1

ρ
= Xs

ρc
+ (1 − Xs)

ρw
, R2 = 0.989; (12)

where

ρc = 1878.1 − 40.76T + 1.035T2, (13)

ρw = 1000 + 2.30T − 0.11T2. (14)

CONCLUSIONS

The viscosity of coffee solutions at temperatures close to the freezing point can be predicted by three
general models as a function of temperature and coffee mass fraction. The coffee solutions presented
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a Newtonian behaviour. A slight pseudoplasticity was found at high concentrations and low temper-
atures, but this result was not significant. In turn, a linear relationship between coffee mass fraction
and ◦Brix was found; this expression allows measuring coffee mass fraction by a simple technique,
such as refractometry. Meanwhile, the freezing curve presented a quadratic behaviour within the
zone for food fluids. Finally, the density of coffee solutions can be expressed as an average of coffee
solids and water densities. The characterisation of physical properties, rheological behaviour, and
freezing curve of coffee solutions is useful for designing operations, such as freeze-concentration
and freeze drying. Mathematical models for ◦Brix, viscosity, freezing point depression, and den-
sity of coffee solutions were fitted. These models can contribute in designing technologies, such as
freeze concentration and freeze drying in the coffee industry.

NOMENCLATURE

◦Brix Brix degrees
a, b, c, d Parameters of Eq. (3) and Eq. (4)
a1, a2, b1, b2, c1 Parameters of Eq. (5)
a3, a4, a5, a6, a7 Parameters of Eq. (7)
Ea Activation energy (kJ•mol−1)
FPD Freezing point depression
� Shear rate (s−1)
K Consistency coefficient (Pa•sn)
k0 Frequency factor (mPa•s)
n Flow behaviour index
Nd Refractive index
R Universal gas constant (8.314 kJ•mol−1•K−1)
R2 Coefficient of determination
T Temperature (◦C)
Xs Coffee mass fraction (g coffee/g solution)
ρ Density
ρc Density of coffee solids
ρw Density of water
σ Shear stress (Pa)
	 Temperature correction

 Rotational speed (rpm)
η Viscosity (mPa·s)
η∗ Standard reference viscosity (1 mPa·s)
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