dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.author | Mesa Gomez, Adriana Maria | |
dc.date.accessioned | 2015-03-16T19:27:23Z | |
dc.date.available | 2015-03-16T19:27:23Z | |
dc.date.created | 2015 | |
dc.date.issued | 2015-03-16 | |
dc.identifier.citation | Abdulrahman, R., Sebastine, I., 2013. Natural gas sweetening process simulation and optimization: A case study of Khurmala field in Iraqi Kurdistan region. Journal of Natural Gas Science and Engineering 14, 116-120. | |
dc.identifier.citation | Adewale, A., Mohammad, R.,. Abu, Z., 2013. Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications. Energy Procedia 37, 211 – 218. | |
dc.identifier.citation | Ahmed, A., Raafat, A., Valentin, N., Omar, A., 2011. Process design of waste gas treatment from Emirates Gold Refinery. Clean Techn Environ Policy 13, 447– 457. | |
dc.identifier.citation | Agarwal, R., Li, Y.-K., Santollani, O., Satyro, M., & Vieler, A. (2001). Undercovering the Realities of Simulation. Part I.: Chemical Engineering Progress. | |
dc.identifier.citation | Alejandro, D., Virginia, P., Patricia, H., Nélida, B, 2010. Systematic generation of a CAPE-OPEN compliant simulation module from GAMS and FORTRAN models. Chemical engineering research and design 88, 421–429. | |
dc.identifier.citation | Alimahmoodi, M., & Mulligan, C. N. (2011). Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process. Bioresource Technology, 102(2), 690-696. | |
dc.identifier.citation | Ana-Maria, I., Francois, H., Jean-Pierre, B., Denis, A., 2010. Physicochemical modelling of the classical steelmaking route for life cycle inventory analysis. Int J Life Cycle Assess 15, 304–310. | |
dc.identifier.citation | ANSI/API Standard 610, Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries. (2010). (Eleventh ed.). | |
dc.identifier.citation | API Recommended Practice 686, Recommended Practice for Machinery Installation and Installation Design. (2009). (Second ed.). | |
dc.identifier.citation | API Specification 12J, Specification for Oil and Gas Separators. (2009). (Eighth ed.). | |
dc.identifier.citation | Arnold, K., & Stewart, M. (2008a). Chapter 3 - Basic Principles. In K. Arnold & M. Stewart (Eds.), Surface Production Operations (Third Edition) (pp. 61-149). Burlington: Gulf Professional Publishing. | |
dc.identifier.citation | Arnold, K., & Stewart, M. (2008b). Chapter 5 - Three-Phase Oil and Water Separation. In K. Arnold & M. Stewart (Eds.), Surface Production Operations (Third Edition) (pp. 244-315). Burlington: Gulf Professional Publishing. | |
dc.identifier.citation | Aspen Technology Inc. (2006). Aspen HYSYS Property Packages: Aspen Process Engineering Webinar. | |
dc.identifier.citation | Bermúdez, J., Arenillas, A., Méndez, J., 2012. Equilibrium prediction of CO2 reforming of coke oven gas: Suitability for methanol production. Chemical Engineering Science 82, 95–103. | |
dc.identifier.citation | Bian, H., Xu, W., Li, X., & Qian, Y. (2011). A Novel Process for Natural Gas Liquids Recovery from Oil Field Associated Gas with Liquefied Natural Gas Cryogenic Energy Utilization. Chinese Journal of Chemical Engineering, 19(3), 452-461. | |
dc.identifier.citation | Biegler, L. (2010). Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. United States of America: MOS-SIAM Series on Optimization. | |
dc.identifier.citation | Bing, L., Xue-min, Y., Wen-li, S., Wei-gang, L., 2012. Process simulation of formation and emission of NO and N2O during coal decoupling combustion in a circulating fluidized bed combustor using Aspen Plus. Chemical Engineering Science 71, 375–391. | |
dc.identifier.citation | Carlos, M., García, S., Sandra M., Gómez, R., Nívea, S., Celso L., de Camargo, C., Theo, G., Kieckbusch, C., Regina, M., 2012. Measurements of normal boiling points of fatty acid ethyl esters and triacylglycerols by thermogravimetric analysis. Fuel 92, 158–161. | |
dc.identifier.citation | Carlson, E. (1996). Don´t Gamble with Physical Properties fo Simulations: Chemical Engineering Progress | |
dc.identifier.citation | Chebbia, R., Al-Amoodib, N., Abdel, N., Husseinia, G., Al, M., 2010. Optimum ethane recovery in conventional turboexpander process. Chemical engineering research and design 3, 326-333. | |
dc.identifier.citation | Christopher, H., Pawan, A., Richard, Z., Adam, C., 2011. The design and experimental evaluation of a scaffolded software environment to improve engineering students´ disciplinary problem-solving skills. Journal of engineering education 3, 174-203. | |
dc.identifier.citation | Damartzis, T., Michailos, S., Zabaniotou, A., 2012. Energetic assessment of a combined heat and power integrated biomass gasification–internal combustion engine system by using Aspen Plus®. Fuel Processing Technology 95, 37–44. | |
dc.identifier.citation | Davide, F., Douglas, S., 2011. Simulation and energy consumption analysis of a propane plus recovery plant from natural gas. Fuel Processing Technology 92, 656–662. | |
dc.identifier.citation | Deyong, C., Shaohua, L, Wenguang, Y., Jia, J., Nan, Z., 2012. Application of Numerical Simulation on Biomass Gasification. Energy Procedia 17, 49 – 54. | |
dc.identifier.citation | Domenico, F., Walter, W., Anton, F., Mattias, L., Guido, Z., Krzysztof, U., Mariusz, M., 2011. Effects of feedstocks on the process integration of biohydrogen production. Clean Techn Environ Policy 13, 547–558. | |
dc.identifier.citation | Dong-Ha, J., Hyung-Taek, Kim., Chan, L., Su-Hyun, K., 2013. Kinetic analysis of catalytic coal gasification process in fixed bed condition using Aspen Plus. International journal of hydrogen energy 38, 6021-6026. | |
dc.identifier.citation | Erik, B., Mohit, R., Maureen, E., 2012. Life-Cycle Assessment for the Production of Bioethanol from Willow Biomass Crops via Biochemical Conversion. Forest Products Journal 62. | |
dc.identifier.citation | Fabio, R.. Antonio, J., 2011. Computer simulation applied to studying continuous spirit distillation and product quality control. Food Control 69, 1592-1603. | |
dc.identifier.citation | Fanaei, M., Dehghani, H., Nadi, I., 2012. Comparing and controlling of three batch distillation column configurations for separating tertiary zeotropic mixtures. Scientia Iranica 19, 1672-1681. | |
dc.identifier.citation | Fancha, J., Mitchel, R., Arnold, K., Clegg, J., Holstein, E., & Warner Jr, H. (2007). Chapter 2 - Oil and Gas Separators. In Lake, L (Ed.), Petroleum Engineering Handbook (Vol. 3, pp. 13 - 59). USA: Society of Petroleum Engineers. | |
dc.identifier.citation | Fonny, L., Vishnu, P., Mark, T., Moses, O., Daniel, Ch., Nancy, C., Kaman, I., 2012.
Extractive distillation for CO2–ethane azeotrope separation. Chemical
Engineering and Processing 52, 155–161. | |
dc.identifier.citation | Gao, X., Chen, B., & He, X. (2006). An agent-oriented architecture for modeling and
optimization of naphtha pyrolysis process. In W. M. a. C. Pantelides (Ed.),
Computer Aided Chemical Engineering (Vol. Volume 21, pp. 475-481):
Elsevier | |
dc.identifier.citation | Gerald, O., 2013. Focus on engineering software. Chemical Engineering 118, 29. | |
dc.identifier.citation | Getu, M., Mahadzir, S., Long, N. V. D., & Lee, M. (2013). Techno-economic analysis
of potential natural gas liquid (NGL) recovery processes under variations of
feed compositions. Chemical Engineering Research and Design, 91(7), 1272-
1283. | |
dc.identifier.citation | Ghorbani, B., Salehi, G. R., Ghaemmaleki, H., Amidpour, M., & Hamedi, M. H.
(2012). Simulation and optimization of refrigeration cycle in NGL recovery
plants with exergy-pinch analysis. Journal of Natural Gas Science and
Engineering, 7(0), 35-43. | |
dc.identifier.citation | Gil, I., Guevara, J., García, J., & Leguizamón, A. (2011a). Análisis y simulación de
Procesos en Ingeniería Química (pp. 107 - 164). Bogotá D.C.: Universidad
Nacional de Colombia | |
dc.identifier.citation | Gil, I., Guevara, J., García, J., & Leguizamón, A. (2011b). Análisis y Simulación de
Procesos en Ingeniería Química (pp. 439 - 450). Bogotá D.C.: Universidad
Nacional de Colombia. | |
dc.identifier.citation | Goh, H., Salmiaton, A., Abdullah, N., Idris, A., 2012. Process simulation two-stage
evaporation and crystallization systems for Bis(2-hudroxyethyl) terephthalate
recovery. Journal of Applied Sciences 12, 1547-1555. | |
dc.identifier.citation | GPSA. (2004). Section 12 - Pumps and Hydraulic Turbines. Engineering Data Book
(Twelfth ed., Vol. I & II, pp. 12-11 - 12-20). Tulsa, Oklahoma: Gas Processors
Suppliers Association. | |
dc.identifier.citation | Grace, P., Ahmed, N., Mahmoud, M., Vladimir, M., 2010. Design and analysis of
biodiesel production from algae grown through carbon sequestration. Clean
Techn Environ Policy 12, 239–254. | |
dc.identifier.citation | Hanaâ, E., Chakib, B., François, W., 2012. Production of synthetic gasoline and
diesel fuel from dry reforming of methane. Energy Procedia 29, 156 – 165 | |
dc.identifier.citation | Hessam, V., Mazda, B., Ali, E., Ali, L., 2012. Dynamic behavior of coke drum process
safety valves during blocked outlet condition in the refinery delayed coking
unit. Journal of Loss Prevention in the Process Industries 25, 336-343 | |
dc.identifier.citation | Hitesh, P., 2013. Vapor depressurization: concept and implementation. Chemical
Engineering 120, 43 | |
dc.identifier.citation | Hou, W., Su, H., Hu, Y., & Chu, J. (2006). Modeling, Simulation and Optimization of
a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus
Platform. Chinese Journal of Chemical Engineering, 14(5), 584-591. | |
dc.identifier.citation | Huixiao, Z., Nalladurai, K., Vance, M., 2013. Aspen Plus simulation of biomass
integrated gasification combined cycle systems at corn ethanol plants.
Biomass and bioenergy 56, 197-210. | |
dc.identifier.citation | Iranshahi, D., Bahmanpour, A. M., Paymooni, K., Rahimpour, M. R., & Shariati, A.
(2011). Simultaneous hydrogen and aromatics enhancement by obtaining
optimum temperature profile and hydrogen removal in naphtha reforming
process; a novel theoretical study. International Journal of Hydrogen Energy,
36(14), 8316-8326. | |
dc.identifier.citation | Iranshahi, D., Pourazadi, E., Paymooni, K., & Rahimpour, M. R. (2012). Utilizing DE
optimization approach to boost hydrogen and octane number in a novel radialflow assisted membrane naphtha reactor. Chemical Engineering Science,
68(1), 236-249. | |
dc.identifier.citation | Jignesh, P., Viral, D.; Dipak, M., 2013. Absorber Optimization: Employing Process
Simulation Software. Chemical Engineering 120, 46. | |
dc.identifier.citation | João, A., Vitor, M., Henrique, A., Matos, F., 2012. Modeling of existing cooling towers
in ASPEN PLUS using an equilibrium stage method. Energy Conversion and
Management 64, 473–481. | |
dc.identifier.citation | Joe, L., 2013. Advanced features in easier-to-use formats allow chemical engineers
to take advange of process modeling solutions for organization-wade
optimization. Chemical Engineering 120, 18. | |
dc.identifier.citation | John, P., Carlos, C., Ramon, G., 2012. Analysis of the Production Process of
Optically Pure D-Lactic Acid from Raw Glycerol Using Engineered
Escherichia coli Strains. Appl Biochem Biotechnol 166, 680–699. | |
dc.identifier.citation | Keyvanloo, K., Towfighi, J., Sadrameli, S. M., & Mohamadalizadeh, A. (2010).
Investigating the effect of key factors, their interactions and optimization of
naphtha steam cracking by statistical design of experiments. Journal of
Analytical and Applied Pyrolysis, 87(2), 224-230. | |
dc.identifier.citation | Laszló, Z., Miklós, B., Sándor, N., Ferenc, S., 2011. Analysing divided wall columns.
Clean Techn Environ Policy 13, 633–636. | |
dc.identifier.citation | Leslie, J., Pierre-Yves, P., Caroline, S., 2012. Life cycle assessment (LCA) applied
to the process industry: a review. nt J Life Cycle Assess 7, 1028–1041. | |
dc.identifier.citation | Lewis, A., Khodabocus, F., Dhokun, M., 2010. Thermodynamic simulation and
evaluation of sugar refinery evaporators using a steady state modelling
approach. Applied Thermal Engineering 30, 2180-2186. | |
dc.identifier.citation | Manning, F. S., & Thomson, R. E. (1991a). Oilfield Processing, vol. 1, Natural Gas.
Tulsa, Oklahoma: Pennwell Publishing Company. | |
dc.identifier.citation | Manning, F. S., & Thomson, R. E. (1991b). Oilfield Processing, vol. 2, Crude Oil.
Tulsa, Oklahoma: Pennwell Publishing Company | |
dc.identifier.citation | Manuel, G., Alberto, G., José, S., Jesús, A., José, P., 2010. Prediction of normalized
biodiesel properties by simulation of multiple feedstock blends. Bioresource
Technology 101, 4431–4439. | |
dc.identifier.citation | Maria, A., Esther, Ch., Susan, S., 2010. Evaluation of integrated hydrogen systems:
IEA Task 18. International journal of hydrogen energy 35, 10031-10037. | |
dc.identifier.citation | Mark, S., Silvan, L., William, F., 2013. The direct integration method: a best practice
for relief valve sizing. Chemical Engineering 120, 54. | |
dc.identifier.citation | Mehdi, T., Morteza, S., Mohsen, D., Ahmad, M., 2012. Investigating energy
consumption and quality of rough rice drying process using a grain heat pump
dryer. Australian Journal of Crop Science 6(4), 592-597. | |
dc.identifier.citation | Mehmet, O., Marc, R., 2012. Efficiency comparison of various design schemes for
copper–chlorine (Cu–Cl) hydrogen production processes using Aspen Plus
software. Energy Conversion and Management 63, 70–86. | |
dc.identifier.citation | Mehrpooya, M., Vatani, A., & Ali Mousavian, S. M. (2010). Introducing a novel
integrated NGL recovery process configuration (with a self-refrigeration
system (open–closed cycle)) with minimum energy requirement. Chemical
Engineering and Processing: Process Intensification, 49(4), 376-388. | |
dc.identifier.citation | Michel, S., Pierre, D., 2011. Response of saprophagous wood-boring beetles
(Coleoptera: Cerambycidae) to severe habitat loss due to logging in an
aspen-dominated boreal landscape. Landscape Ecol 26, 573–586. | |
dc.identifier.citation | Min, Z., Yanzhong, L., Shanxiu, S., 2011. Analysis and optimization of two-column
cryogenic process for argon recovery from hydrogen-depleted ammonia
purge gas. Chemical engineering research and design 89, 863–878 | |
dc.identifier.citation | Mokhatab, S., & Poe, W. A. (2012). Chapter 10 - Natural Gas Liquids Recovery. In
S. Mokhatab & W. A. Poe (Eds.), Handbook of Natural Gas Transmission and
Processing (Second Edition) (pp. 353-391). Boston: Gulf Professional
Publishing | |
dc.identifier.citation | Monnery, W., & Svrcek, W. (1994). Succesfully Specify Three-Phase Separators
(pp. 29 - 40): Chemical Engineering Progress. | |
dc.identifier.citation | Mostafa, N., Ashraf, M., Wael, A., 2013. Production of mono-, di-, and triglycerides
from waste fatty acids through esterification with glycerol. Advances in
Bioscience and Biotechnology 4, 900-907 | |
dc.identifier.citation | Nestor, R., Sergio, M., Nicolas, S., 2011. Optimization of post-combustion CO2
process using DEA–MDEA mixtures. Chemical engineering research and
design 89, 1763–1773. | |
dc.identifier.citation | Ouman, R., Jinwook, L., Rosendahl, H., Kim, T., 2010. A performance analysis of
integrated solid oxide fuel cell and heat recovery steam generator for IGFC
system. Front. Energy Power Eng. China 4(3), 402–413. | |
dc.identifier.citation | Petra, L., Chris, K., Joachim, R., Felicitas, S., 2010. Potentials and impacts of shortrotation coppice plantation with aspen in Eastern Germany under conditions
of climate change. Reg Environ Change 10, 83–94. | |
dc.identifier.citation | Qiuying, L., Li, W., Yonglin, J., 2010. Liquefaction and impurity separation of
oxygen-bearing coal-bed methane. Front. Energy Power Eng. China 4(3),
319–325. | |
dc.identifier.citation | Rahimpour, M. R., Iranshahi, D., & Bahmanpour, A. M. (2010). Dynamic optimization
of a multi-stage spherical, radial flow reactor for the naphtha reforming
process in the presence of catalyst deactivation using differential evolution
(DE) method. International Journal of Hydrogen Energy, 35(14), 7498-7511. | |
dc.identifier.citation | Rahimpour, M. R., Iranshahi, D., Pourazadi, E., & Bahmanpour, A. M. (2012).
Boosting the gasoline octane number in thermally coupled naphtha reforming
heat exchanger reactor using de optimization technique. Fuel, 97(0), 109-
118. | |
dc.identifier.citation | Rahimpour, M., Seifi, M., Paymooni, K., Shariati, A., Raeissi, S., 2013. Enhancement
in NGL production and improvement in water dew point temperature by
optimization of slug catchers’ pressures in water dew point adjustment unit.
Journal of Natural Gas Science and Engineering 88, 779–787. | |
dc.identifier.citation | Scott, J., 2013. Focus on software. Chemical Engineering 120, 26. | |
dc.identifier.citation | Seider, W., Seader, J., & Lewin, D. Product and Process Design Principles (2a ed.).
New York: Wiley | |
dc.identifier.citation | Sekhavatjou, M., Hosseini, A., Karbassi, A., Daemolzekr, E., 2011. Minimization of
air pollutants emissions by process improvement of catalytic reforming unit in
an Iranian old refinery. Clean Techn Environ Policy 13, 743–749. | |
dc.identifier.citation | Shi, X., & Qian, F. (2011). A Multi-Agent Immune Network Algorithm and Its
Application to Murphree Efficiency Determination for the Distillation Column.
Journal of Bionic Engineering, 8(2), 181-190. | |
dc.identifier.citation | Tauqeer, A., Moinuddin, G., Salman, N., Zeeshan, R., 2012. Simulation study of
producing NH4HCO3 from the flue gas of brick kiln - and environmental
friendly approach. Sci.Int 24, 435-441. | |
dc.identifier.citation | Thomas, E., Himmelblau, D., & Lasdon, L. (2001). Optimization of Chemical
Processes (pp. 284): McGraw-Hill chemical engineering series. | |
dc.identifier.citation | Vatani, A., Mehrpooya, M., & Tirandazi, B. (2013). A novel process configuration for
co-production of NGL and LNG with low energy requirement. Chemical
Engineering and Processing: Process Intensification, 63(0), 16-24. | |
dc.identifier.citation | Victor, D., Kaj, T., Willy, J., Davide, B.,, Gianluca, V.,, Ennio, M., 2012. Comparison
of two electrolyte models for the carbon capture with aqueous ammonia.
International Journal of Greenhouse Gas Control 8, 61–72. | |
dc.identifier.citation | Xiaohui, P., Boshu, H., Linbo, Y., Chaojun, W., Weining, S., Jingge, S., 2013.
Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired
power plant using Aspen Plus. Energy Conversion and Management 76, 581–
587. | |
dc.identifier.citation | Yadollah, T., Seyyed, H., 2013. From laboratory experiments to simulation studies
of methanol dehydration to produce dimethyl ether reaction—Part II:
Simulation and cost estimation. Chemical Engineering and Processing 73,
151–157 | |
dc.identifier.citation | Yadollah, T., Seyyed, H., 2013. A novel application of reactive absorption to break
the CO2–ethane azeotrope with low energy requirement. Energy Conversion
and Management 75, 407–417. | |
dc.identifier.citation | Young-Ju, J., Moon, B., In-Ho, K., 2010. L-Ribose from L-arabinose by
epimerization and its purification by 3-zone simulated moving bed
chromatography. Bioprocess Biosyst Eng 33, 87–95 | |
dc.identifier.citation | Yuanxiu, W., Xiaoyan, S., Biyue, T., Bo, Z., Li-an, X., Minren, H., 2010. A genetic
linkage map of Populus adenopoda Maxim. 3 P. alba L. hybrid based on SSR
and SRAP markers. Euphytica 173, 193–205 | |
dc.identifier.citation | Zhang, U., Shen-Xue, C., Shuai, S., Yu, C., Su-Ling, L., Shu-Shen, Z., 2011. Aspen
Plus-based simulation of a cement calciner and optimization analysis of air
pollutants emission. Lean Techn Environ Policy 13, 459–468. | |
dc.identifier.uri | http://hdl.handle.net/10818/15378 | |
dc.description | 190 páginas | |
dc.description.abstract | El gas proveniente del subsuelo es procesado para remover los hidrocarburos líquidos más pesados de la corriente de gas. Estos hidrocarburos líquidos pesados, comúnmente referidos como Líquidos de Gas Natural (NGLs por sus siglas en inglés), incluyen etano, propano, butanos y gasolina natural (Nafta). En un proceso químico en el cual no se optimiza la recuperación de NGLs, se debe proporcionar un control riguroso del punto de rocío de los hidrocarburos en la corriente de gas, con el fin de evitar la formación insegura de una fase líquida durante su transporte. La Nafta tiene mayor valor comercial como producto separado que como parte de la corriente de gas natural, ya que actualmente es la principal materia prima en la producción de etileno, se usa como catalizador en la producción de gasolina de alto octanaje, se vende como combustible, es materia prima de refinerías y plantas petroquímicas, se usa como material de mezcla de gasolina y su principal función en las últimas décadas ha sido diluir crudo pesado disminuyendo su viscosidad para transportarlo por oleoductos y poliductos. Actualmente, las plantas de gas que están operativas en Colombia tienen una configuración que permite la recuperación de NGLs hasta el límite que exigen las especificaciones de venta del gas natural perdiendo contenidos de Nafta. | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Refinerías de petróleo | |
dc.subject | Combustibles gaseosos | |
dc.subject | Comercio de combustibles -- Colombia | |
dc.title | Diseño y optimización del proceso químico de una planta de gas existente para mejorar la producción de nafta | es_CO |
dc.type | masterThesis | |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | |
dc.publisher.department | Facultad de Ingeniería | |
dc.type.local | Tesis de maestría | |
dc.type.hasVersion | publishedVersion | |
dc.rights.accessRights | openAccess | |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | |