Mostrar el registro sencillo del ítem

dc.contributor.advisorValero Valdivieso, Manuel Fernando
dc.contributor.authorMesa Gomez, Adriana Maria
dc.date.accessioned2015-03-16T19:27:23Z
dc.date.available2015-03-16T19:27:23Z
dc.date.created2015
dc.date.issued2015-03-16
dc.identifier.citationAbdulrahman, R., Sebastine, I., 2013. Natural gas sweetening process simulation and optimization: A case study of Khurmala field in Iraqi Kurdistan region. Journal of Natural Gas Science and Engineering 14, 116-120.
dc.identifier.citationAdewale, A., Mohammad, R.,. Abu, Z., 2013. Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications. Energy Procedia 37, 211 – 218.
dc.identifier.citationAhmed, A., Raafat, A., Valentin, N., Omar, A., 2011. Process design of waste gas treatment from Emirates Gold Refinery. Clean Techn Environ Policy 13, 447– 457.
dc.identifier.citationAgarwal, R., Li, Y.-K., Santollani, O., Satyro, M., & Vieler, A. (2001). Undercovering the Realities of Simulation. Part I.: Chemical Engineering Progress.
dc.identifier.citationAlejandro, D., Virginia, P., Patricia, H., Nélida, B, 2010. Systematic generation of a CAPE-OPEN compliant simulation module from GAMS and FORTRAN models. Chemical engineering research and design 88, 421–429.
dc.identifier.citationAlimahmoodi, M., & Mulligan, C. N. (2011). Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process. Bioresource Technology, 102(2), 690-696.
dc.identifier.citationAna-Maria, I., Francois, H., Jean-Pierre, B., Denis, A., 2010. Physicochemical modelling of the classical steelmaking route for life cycle inventory analysis. Int J Life Cycle Assess 15, 304–310.
dc.identifier.citationANSI/API Standard 610, Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries. (2010). (Eleventh ed.).
dc.identifier.citationAPI Recommended Practice 686, Recommended Practice for Machinery Installation and Installation Design. (2009). (Second ed.).
dc.identifier.citationAPI Specification 12J, Specification for Oil and Gas Separators. (2009). (Eighth ed.).
dc.identifier.citationArnold, K., & Stewart, M. (2008a). Chapter 3 - Basic Principles. In K. Arnold & M. Stewart (Eds.), Surface Production Operations (Third Edition) (pp. 61-149). Burlington: Gulf Professional Publishing.
dc.identifier.citationArnold, K., & Stewart, M. (2008b). Chapter 5 - Three-Phase Oil and Water Separation. In K. Arnold & M. Stewart (Eds.), Surface Production Operations (Third Edition) (pp. 244-315). Burlington: Gulf Professional Publishing.
dc.identifier.citationAspen Technology Inc. (2006). Aspen HYSYS Property Packages: Aspen Process Engineering Webinar.
dc.identifier.citationBermúdez, J., Arenillas, A., Méndez, J., 2012. Equilibrium prediction of CO2 reforming of coke oven gas: Suitability for methanol production. Chemical Engineering Science 82, 95–103.
dc.identifier.citationBian, H., Xu, W., Li, X., & Qian, Y. (2011). A Novel Process for Natural Gas Liquids Recovery from Oil Field Associated Gas with Liquefied Natural Gas Cryogenic Energy Utilization. Chinese Journal of Chemical Engineering, 19(3), 452-461.
dc.identifier.citationBiegler, L. (2010). Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. United States of America: MOS-SIAM Series on Optimization.
dc.identifier.citationBing, L., Xue-min, Y., Wen-li, S., Wei-gang, L., 2012. Process simulation of formation and emission of NO and N2O during coal decoupling combustion in a circulating fluidized bed combustor using Aspen Plus. Chemical Engineering Science 71, 375–391.
dc.identifier.citationCarlos, M., García, S., Sandra M., Gómez, R., Nívea, S., Celso L., de Camargo, C., Theo, G., Kieckbusch, C., Regina, M., 2012. Measurements of normal boiling points of fatty acid ethyl esters and triacylglycerols by thermogravimetric analysis. Fuel 92, 158–161.
dc.identifier.citationCarlson, E. (1996). Don´t Gamble with Physical Properties fo Simulations: Chemical Engineering Progress
dc.identifier.citationChebbia, R., Al-Amoodib, N., Abdel, N., Husseinia, G., Al, M., 2010. Optimum ethane recovery in conventional turboexpander process. Chemical engineering research and design 3, 326-333.
dc.identifier.citationChristopher, H., Pawan, A., Richard, Z., Adam, C., 2011. The design and experimental evaluation of a scaffolded software environment to improve engineering students´ disciplinary problem-solving skills. Journal of engineering education 3, 174-203.
dc.identifier.citationDamartzis, T., Michailos, S., Zabaniotou, A., 2012. Energetic assessment of a combined heat and power integrated biomass gasification–internal combustion engine system by using Aspen Plus®. Fuel Processing Technology 95, 37–44.
dc.identifier.citationDavide, F., Douglas, S., 2011. Simulation and energy consumption analysis of a propane plus recovery plant from natural gas. Fuel Processing Technology 92, 656–662.
dc.identifier.citationDeyong, C., Shaohua, L, Wenguang, Y., Jia, J., Nan, Z., 2012. Application of Numerical Simulation on Biomass Gasification. Energy Procedia 17, 49 – 54.
dc.identifier.citationDomenico, F., Walter, W., Anton, F., Mattias, L., Guido, Z., Krzysztof, U., Mariusz, M., 2011. Effects of feedstocks on the process integration of biohydrogen production. Clean Techn Environ Policy 13, 547–558.
dc.identifier.citationDong-Ha, J., Hyung-Taek, Kim., Chan, L., Su-Hyun, K., 2013. Kinetic analysis of catalytic coal gasification process in fixed bed condition using Aspen Plus. International journal of hydrogen energy 38, 6021-6026.
dc.identifier.citationErik, B., Mohit, R., Maureen, E., 2012. Life-Cycle Assessment for the Production of Bioethanol from Willow Biomass Crops via Biochemical Conversion. Forest Products Journal 62.
dc.identifier.citationFabio, R.. Antonio, J., 2011. Computer simulation applied to studying continuous spirit distillation and product quality control. Food Control 69, 1592-1603.
dc.identifier.citationFanaei, M., Dehghani, H., Nadi, I., 2012. Comparing and controlling of three batch distillation column configurations for separating tertiary zeotropic mixtures. Scientia Iranica 19, 1672-1681.
dc.identifier.citationFancha, J., Mitchel, R., Arnold, K., Clegg, J., Holstein, E., & Warner Jr, H. (2007). Chapter 2 - Oil and Gas Separators. In Lake, L (Ed.), Petroleum Engineering Handbook (Vol. 3, pp. 13 - 59). USA: Society of Petroleum Engineers.
dc.identifier.citationFonny, L., Vishnu, P., Mark, T., Moses, O., Daniel, Ch., Nancy, C., Kaman, I., 2012. Extractive distillation for CO2–ethane azeotrope separation. Chemical Engineering and Processing 52, 155–161.
dc.identifier.citationGao, X., Chen, B., & He, X. (2006). An agent-oriented architecture for modeling and optimization of naphtha pyrolysis process. In W. M. a. C. Pantelides (Ed.), Computer Aided Chemical Engineering (Vol. Volume 21, pp. 475-481): Elsevier
dc.identifier.citationGerald, O., 2013. Focus on engineering software. Chemical Engineering 118, 29.
dc.identifier.citationGetu, M., Mahadzir, S., Long, N. V. D., & Lee, M. (2013). Techno-economic analysis of potential natural gas liquid (NGL) recovery processes under variations of feed compositions. Chemical Engineering Research and Design, 91(7), 1272- 1283.
dc.identifier.citationGhorbani, B., Salehi, G. R., Ghaemmaleki, H., Amidpour, M., & Hamedi, M. H. (2012). Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis. Journal of Natural Gas Science and Engineering, 7(0), 35-43.
dc.identifier.citationGil, I., Guevara, J., García, J., & Leguizamón, A. (2011a). Análisis y simulación de Procesos en Ingeniería Química (pp. 107 - 164). Bogotá D.C.: Universidad Nacional de Colombia
dc.identifier.citationGil, I., Guevara, J., García, J., & Leguizamón, A. (2011b). Análisis y Simulación de Procesos en Ingeniería Química (pp. 439 - 450). Bogotá D.C.: Universidad Nacional de Colombia.
dc.identifier.citationGoh, H., Salmiaton, A., Abdullah, N., Idris, A., 2012. Process simulation two-stage evaporation and crystallization systems for Bis(2-hudroxyethyl) terephthalate recovery. Journal of Applied Sciences 12, 1547-1555.
dc.identifier.citationGPSA. (2004). Section 12 - Pumps and Hydraulic Turbines. Engineering Data Book (Twelfth ed., Vol. I & II, pp. 12-11 - 12-20). Tulsa, Oklahoma: Gas Processors Suppliers Association.
dc.identifier.citationGrace, P., Ahmed, N., Mahmoud, M., Vladimir, M., 2010. Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Techn Environ Policy 12, 239–254.
dc.identifier.citationHanaâ, E., Chakib, B., François, W., 2012. Production of synthetic gasoline and diesel fuel from dry reforming of methane. Energy Procedia 29, 156 – 165
dc.identifier.citationHessam, V., Mazda, B., Ali, E., Ali, L., 2012. Dynamic behavior of coke drum process safety valves during blocked outlet condition in the refinery delayed coking unit. Journal of Loss Prevention in the Process Industries 25, 336-343
dc.identifier.citationHitesh, P., 2013. Vapor depressurization: concept and implementation. Chemical Engineering 120, 43
dc.identifier.citationHou, W., Su, H., Hu, Y., & Chu, J. (2006). Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform. Chinese Journal of Chemical Engineering, 14(5), 584-591.
dc.identifier.citationHuixiao, Z., Nalladurai, K., Vance, M., 2013. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and bioenergy 56, 197-210.
dc.identifier.citationIranshahi, D., Bahmanpour, A. M., Paymooni, K., Rahimpour, M. R., & Shariati, A. (2011). Simultaneous hydrogen and aromatics enhancement by obtaining optimum temperature profile and hydrogen removal in naphtha reforming process; a novel theoretical study. International Journal of Hydrogen Energy, 36(14), 8316-8326.
dc.identifier.citationIranshahi, D., Pourazadi, E., Paymooni, K., & Rahimpour, M. R. (2012). Utilizing DE optimization approach to boost hydrogen and octane number in a novel radialflow assisted membrane naphtha reactor. Chemical Engineering Science, 68(1), 236-249.
dc.identifier.citationJignesh, P., Viral, D.; Dipak, M., 2013. Absorber Optimization: Employing Process Simulation Software. Chemical Engineering 120, 46.
dc.identifier.citationJoão, A., Vitor, M., Henrique, A., Matos, F., 2012. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method. Energy Conversion and Management 64, 473–481.
dc.identifier.citationJoe, L., 2013. Advanced features in easier-to-use formats allow chemical engineers to take advange of process modeling solutions for organization-wade optimization. Chemical Engineering 120, 18.
dc.identifier.citationJohn, P., Carlos, C., Ramon, G., 2012. Analysis of the Production Process of Optically Pure D-Lactic Acid from Raw Glycerol Using Engineered Escherichia coli Strains. Appl Biochem Biotechnol 166, 680–699.
dc.identifier.citationKeyvanloo, K., Towfighi, J., Sadrameli, S. M., & Mohamadalizadeh, A. (2010). Investigating the effect of key factors, their interactions and optimization of naphtha steam cracking by statistical design of experiments. Journal of Analytical and Applied Pyrolysis, 87(2), 224-230.
dc.identifier.citationLaszló, Z., Miklós, B., Sándor, N., Ferenc, S., 2011. Analysing divided wall columns. Clean Techn Environ Policy 13, 633–636.
dc.identifier.citationLeslie, J., Pierre-Yves, P., Caroline, S., 2012. Life cycle assessment (LCA) applied to the process industry: a review. nt J Life Cycle Assess 7, 1028–1041.
dc.identifier.citationLewis, A., Khodabocus, F., Dhokun, M., 2010. Thermodynamic simulation and evaluation of sugar refinery evaporators using a steady state modelling approach. Applied Thermal Engineering 30, 2180-2186.
dc.identifier.citationManning, F. S., & Thomson, R. E. (1991a). Oilfield Processing, vol. 1, Natural Gas. Tulsa, Oklahoma: Pennwell Publishing Company.
dc.identifier.citationManning, F. S., & Thomson, R. E. (1991b). Oilfield Processing, vol. 2, Crude Oil. Tulsa, Oklahoma: Pennwell Publishing Company
dc.identifier.citationManuel, G., Alberto, G., José, S., Jesús, A., José, P., 2010. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends. Bioresource Technology 101, 4431–4439.
dc.identifier.citationMaria, A., Esther, Ch., Susan, S., 2010. Evaluation of integrated hydrogen systems: IEA Task 18. International journal of hydrogen energy 35, 10031-10037.
dc.identifier.citationMark, S., Silvan, L., William, F., 2013. The direct integration method: a best practice for relief valve sizing. Chemical Engineering 120, 54.
dc.identifier.citationMehdi, T., Morteza, S., Mohsen, D., Ahmad, M., 2012. Investigating energy consumption and quality of rough rice drying process using a grain heat pump dryer. Australian Journal of Crop Science 6(4), 592-597.
dc.identifier.citationMehmet, O., Marc, R., 2012. Efficiency comparison of various design schemes for copper–chlorine (Cu–Cl) hydrogen production processes using Aspen Plus software. Energy Conversion and Management 63, 70–86.
dc.identifier.citationMehrpooya, M., Vatani, A., & Ali Mousavian, S. M. (2010). Introducing a novel integrated NGL recovery process configuration (with a self-refrigeration system (open–closed cycle)) with minimum energy requirement. Chemical Engineering and Processing: Process Intensification, 49(4), 376-388.
dc.identifier.citationMichel, S., Pierre, D., 2011. Response of saprophagous wood-boring beetles (Coleoptera: Cerambycidae) to severe habitat loss due to logging in an aspen-dominated boreal landscape. Landscape Ecol 26, 573–586.
dc.identifier.citationMin, Z., Yanzhong, L., Shanxiu, S., 2011. Analysis and optimization of two-column cryogenic process for argon recovery from hydrogen-depleted ammonia purge gas. Chemical engineering research and design 89, 863–878
dc.identifier.citationMokhatab, S., & Poe, W. A. (2012). Chapter 10 - Natural Gas Liquids Recovery. In S. Mokhatab & W. A. Poe (Eds.), Handbook of Natural Gas Transmission and Processing (Second Edition) (pp. 353-391). Boston: Gulf Professional Publishing
dc.identifier.citationMonnery, W., & Svrcek, W. (1994). Succesfully Specify Three-Phase Separators (pp. 29 - 40): Chemical Engineering Progress.
dc.identifier.citationMostafa, N., Ashraf, M., Wael, A., 2013. Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Advances in Bioscience and Biotechnology 4, 900-907
dc.identifier.citationNestor, R., Sergio, M., Nicolas, S., 2011. Optimization of post-combustion CO2 process using DEA–MDEA mixtures. Chemical engineering research and design 89, 1763–1773.
dc.identifier.citationOuman, R., Jinwook, L., Rosendahl, H., Kim, T., 2010. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system. Front. Energy Power Eng. China 4(3), 402–413.
dc.identifier.citationPetra, L., Chris, K., Joachim, R., Felicitas, S., 2010. Potentials and impacts of shortrotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Reg Environ Change 10, 83–94.
dc.identifier.citationQiuying, L., Li, W., Yonglin, J., 2010. Liquefaction and impurity separation of oxygen-bearing coal-bed methane. Front. Energy Power Eng. China 4(3), 319–325.
dc.identifier.citationRahimpour, M. R., Iranshahi, D., & Bahmanpour, A. M. (2010). Dynamic optimization of a multi-stage spherical, radial flow reactor for the naphtha reforming process in the presence of catalyst deactivation using differential evolution (DE) method. International Journal of Hydrogen Energy, 35(14), 7498-7511.
dc.identifier.citationRahimpour, M. R., Iranshahi, D., Pourazadi, E., & Bahmanpour, A. M. (2012). Boosting the gasoline octane number in thermally coupled naphtha reforming heat exchanger reactor using de optimization technique. Fuel, 97(0), 109- 118.
dc.identifier.citationRahimpour, M., Seifi, M., Paymooni, K., Shariati, A., Raeissi, S., 2013. Enhancement in NGL production and improvement in water dew point temperature by optimization of slug catchers’ pressures in water dew point adjustment unit. Journal of Natural Gas Science and Engineering 88, 779–787.
dc.identifier.citationScott, J., 2013. Focus on software. Chemical Engineering 120, 26.
dc.identifier.citationSeider, W., Seader, J., & Lewin, D. Product and Process Design Principles (2a ed.). New York: Wiley
dc.identifier.citationSekhavatjou, M., Hosseini, A., Karbassi, A., Daemolzekr, E., 2011. Minimization of air pollutants emissions by process improvement of catalytic reforming unit in an Iranian old refinery. Clean Techn Environ Policy 13, 743–749.
dc.identifier.citationShi, X., & Qian, F. (2011). A Multi-Agent Immune Network Algorithm and Its Application to Murphree Efficiency Determination for the Distillation Column. Journal of Bionic Engineering, 8(2), 181-190.
dc.identifier.citationTauqeer, A., Moinuddin, G., Salman, N., Zeeshan, R., 2012. Simulation study of producing NH4HCO3 from the flue gas of brick kiln - and environmental friendly approach. Sci.Int 24, 435-441.
dc.identifier.citationThomas, E., Himmelblau, D., & Lasdon, L. (2001). Optimization of Chemical Processes (pp. 284): McGraw-Hill chemical engineering series.
dc.identifier.citationVatani, A., Mehrpooya, M., & Tirandazi, B. (2013). A novel process configuration for co-production of NGL and LNG with low energy requirement. Chemical Engineering and Processing: Process Intensification, 63(0), 16-24.
dc.identifier.citationVictor, D., Kaj, T., Willy, J., Davide, B.,, Gianluca, V.,, Ennio, M., 2012. Comparison of two electrolyte models for the carbon capture with aqueous ammonia. International Journal of Greenhouse Gas Control 8, 61–72.
dc.identifier.citationXiaohui, P., Boshu, H., Linbo, Y., Chaojun, W., Weining, S., Jingge, S., 2013. Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus. Energy Conversion and Management 76, 581– 587.
dc.identifier.citationYadollah, T., Seyyed, H., 2013. From laboratory experiments to simulation studies of methanol dehydration to produce dimethyl ether reaction—Part II: Simulation and cost estimation. Chemical Engineering and Processing 73, 151–157
dc.identifier.citationYadollah, T., Seyyed, H., 2013. A novel application of reactive absorption to break the CO2–ethane azeotrope with low energy requirement. Energy Conversion and Management 75, 407–417.
dc.identifier.citationYoung-Ju, J., Moon, B., In-Ho, K., 2010. L-Ribose from L-arabinose by epimerization and its purification by 3-zone simulated moving bed chromatography. Bioprocess Biosyst Eng 33, 87–95
dc.identifier.citationYuanxiu, W., Xiaoyan, S., Biyue, T., Bo, Z., Li-an, X., Minren, H., 2010. A genetic linkage map of Populus adenopoda Maxim. 3 P. alba L. hybrid based on SSR and SRAP markers. Euphytica 173, 193–205
dc.identifier.citationZhang, U., Shen-Xue, C., Shuai, S., Yu, C., Su-Ling, L., Shu-Shen, Z., 2011. Aspen Plus-based simulation of a cement calciner and optimization analysis of air pollutants emission. Lean Techn Environ Policy 13, 459–468.
dc.identifier.urihttp://hdl.handle.net/10818/15378
dc.description190 páginas
dc.description.abstract​El gas proveniente del subsuelo es procesado para remover los hidrocarburos líquidos más pesados de la corriente de gas. Estos hidrocarburos líquidos pesados, comúnmente referidos como Líquidos de Gas Natural (NGLs por sus siglas en inglés), incluyen etano, propano, butanos y gasolina natural (Nafta). En un proceso químico en el cual no se optimiza la recuperación de NGLs, se debe proporcionar un control riguroso del punto de rocío de los hidrocarburos en la corriente de gas, con el fin de evitar la formación insegura de una fase líquida durante su transporte. La Nafta tiene mayor valor comercial como producto separado que como parte de la corriente de gas natural, ya que actualmente es la principal materia prima en la producción de etileno, se usa como catalizador en la producción de gasolina de alto octanaje, se vende como combustible, es materia prima de refinerías y plantas petroquímicas, se usa como material de mezcla de gasolina y su principal función en las últimas décadas ha sido diluir crudo pesado disminuyendo su viscosidad para transportarlo por oleoductos y poliductos. Actualmente, las plantas de gas que están operativas en Colombia tienen una configuración que permite la recuperación de NGLs hasta el límite que exigen las especificaciones de venta del gas natural perdiendo contenidos de Nafta.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectRefinerías de petróleo
dc.subjectCombustibles gaseosos
dc.subjectComercio de combustibles -- Colombia
dc.titleDiseño y optimización del proceso químico de una planta de gas existente para mejorar la producción de naftaes_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local260273
dc.identifier.localTE07201
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International